搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晶体取向对定向凝固平界面失稳行为的影响

王理林 王贤斌 王红艳 林鑫 黄卫东

引用本文:
Citation:

晶体取向对定向凝固平界面失稳行为的影响

王理林, 王贤斌, 王红艳, 林鑫, 黄卫东

Effect of crystallographic orientation on instability behavior of planar interface in directional solidification

Wang Li-Lin, Wang Xian-Bin, Wang Hong-Yan, Lin Xin, Huang Wei-Dong
PDF
导出引用
  • 采用丁二腈-丙酮透明模型合金研究了不同晶体取向的晶粒在定向凝固条件下的平界面失稳过程.实验选择了三个界面失稳后具有不同生长形态的典型晶粒作为研究对象, 分别为择优生长枝晶、倾斜枝晶和海藻晶.结果表明可发展为择优生长枝晶的晶粒的平界面失稳孕育时间和初始扰动波长最小,海藻晶次之, 倾斜枝晶最大,这与以往的解析结果和相场模拟结果一致. 同时,实验观察发现可发展为择优生长枝晶和倾斜枝晶的晶粒的界面非稳态演化过程与海藻晶显著不同,这表明平界面失稳的非稳态演化过程与晶体取向相关.
    The instability process of planar interface in directional solidification with respect to the crystallographic orientation is studied using a transparent model alloysuccinonitrile-acetone. Three typical crystal grains which have preferred dendrite, tilted dendrite and seaweed patterns at rapid pulling velocity respectively are chosen in our experiment. The experimental results show that the preferred dendrite grain has the shortest incubation time and the smallest initial perturbation wavelength of planar interface instability, the tilted dendrite grain has the largest ones and the seaweed grain has median ones. These results accord qualitatively with previous analytical results and phase-field simulation results. It is also found that the interfacial non-steady-state evolution behaviors of the preferred dendrite grain and the tilted dendrite grain are significantly different from that of the seaweed grain, suggesting that the non-steady-state evolution behavior of planar interface instability is closely related to the crystallographic orientation.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB610402)、 国家自然科学基金(批准号: 50971102, 50901061)和凝固技术国家重点实验室自主研究项目(批准号: 02-TZ-2008, 36-TP-2009)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB610402), the National Natural Science Foundation of China (Grant Nos. 50971102, 50901061), and the Fund of the State Key Laboratory of Solidification Processing in NWPU, China (Grant Nos. 02-TZ-2008, 36-TP-2009).
    [1]

    Trivedi R, Somboonsuk K 1985 Acta Metall. 33 1061

    [2]

    Mullins W W, Sekerka R F 1964 J. Appl. Phys. 35 444

    [3]

    Huang W D, Zhou Y H 1991 Acta Metall. Sin. 27 A86 (in Chinese) [黄卫东, 周尧和 1991 金属学报 27 A86]

    [4]

    Warren J A, Langer J S 1993 Phys. Rev. E 47 2702

    [5]

    Losert W, Shi B Q, Cummins H Z 1998 Proc. Natl. Acad. Sci. 95 431

    [6]

    Losert W, Shi B Q, Cummins H Z 1998 Proc. Natl. Acad. Sci. 95 439

    [7]

    Lin X, Li T, Wang L L, Su Y P, Huang W D 2004 Acta Phys. Sin. 53 3971 (in Chinese) [林鑫, 李涛, 王琳琳, 苏云鹏, 黄卫东 2004 物理学报 53 3971]

    [8]

    Huang W D, Lin X, Li T, Wang L L, Inatomi Y 2004 Acta Phys. Sin. 53 3978 (in Chinese) [黄卫东, 林鑫, 李涛, 王琳琳, Inatomi Y 2004 物理学报 53 3978]

    [9]

    Pocheau A, Deschamps J, Georgelin M 2007 JOM 59 71

    [10]

    Utter B, Bodenschatz E 2002 Phys. Rev. E 66 051604

    [11]

    Zhao X B, Liu L, Yang C B, Li Y F, Zhang J, Li Y L, Fu H Z 2011 J. Alloys Compd. 509 9645

    [12]

    Coriell S R, Sekerka R F 1976 J. Cryst. Growth 34 157

    [13]

    Hoyle R B, McFadden G B, Davis S H 1996 Phil. Trans. R. Soc. Lond. A 354 2915

    [14]

    Golovin A A, Davis S H 1998 Physica D 116 363

    [15]

    Wang Z J, Wang J C, Yang G C 2009 Phys. Rev. E 80 052603

    [16]

    Wang Z J, Wang J C, Yang G C 2008 Acta Phys. Sin. 57 1246 (in Chinese) [王志军, 王锦程, 杨根仓 2008 物理学报 57 1246]

    [17]

    Wang Z J, Wang J C, Yang G C 2010 Chin. Phys. B 19 017305

    [18]

    Chen M W, Lan M, Yuan L, Wang Y Y, Wang Z D, Xu J J 2009 Chin. Phys. B 18 1691

    [19]

    Chen M W, Wang X F, Wang Y L, Wang Z D 2012 Adv. Mater. Res. 365 130

    [20]

    Eshelman M A, Trivedi R 1987 Acta Metall. 35 2443

    [21]

    De Cheveign S, Guthmann C, Lebrun M M 1985 J. Cryst. Growth 73 242

    [22]

    Liu L X, Kirkaldy J S 1994 J. Cryst. Growth 144 335

    [23]

    Fornaro O, Palacio H A 2006 Scripta Mater. 54 2149

    [24]

    Lipton J, Glicksman M, Kurz W 1987 Metall. Mater. Trans. A 18 341

    [25]

    Muschol M, Liu D, Cummins H Z 1992 Phys. Rev. A 46 1038

    [26]

    Huang W D, Ding G L, Zhou Y H 1995 Chin. J. Mater. Res. 9 193 (in Chinese) [黄卫东, 丁国陆, 周尧和 1995 材料研究学报 9 193]

    [27]

    Ding G L, Lin X, Huang W D, Zhou Y H 1997 Acta Phys. Sin. 46 1243 (in Chinese) [丁国陆, 林鑫, 黄卫东, 周尧和 1997 物理学报 46 1243]

    [28]

    Bottin-Rousseau S, Akamatsu S, Faivre G 2002 Phys. Rev. B 66 054102

    [29]

    Karma A 1993 Phys. Rev. E 48 3441

    [30]

    Hoyt J J, Trautt Z T, Upmanyu M 2010 Math. Comput. Simulat. 80 1382

  • [1]

    Trivedi R, Somboonsuk K 1985 Acta Metall. 33 1061

    [2]

    Mullins W W, Sekerka R F 1964 J. Appl. Phys. 35 444

    [3]

    Huang W D, Zhou Y H 1991 Acta Metall. Sin. 27 A86 (in Chinese) [黄卫东, 周尧和 1991 金属学报 27 A86]

    [4]

    Warren J A, Langer J S 1993 Phys. Rev. E 47 2702

    [5]

    Losert W, Shi B Q, Cummins H Z 1998 Proc. Natl. Acad. Sci. 95 431

    [6]

    Losert W, Shi B Q, Cummins H Z 1998 Proc. Natl. Acad. Sci. 95 439

    [7]

    Lin X, Li T, Wang L L, Su Y P, Huang W D 2004 Acta Phys. Sin. 53 3971 (in Chinese) [林鑫, 李涛, 王琳琳, 苏云鹏, 黄卫东 2004 物理学报 53 3971]

    [8]

    Huang W D, Lin X, Li T, Wang L L, Inatomi Y 2004 Acta Phys. Sin. 53 3978 (in Chinese) [黄卫东, 林鑫, 李涛, 王琳琳, Inatomi Y 2004 物理学报 53 3978]

    [9]

    Pocheau A, Deschamps J, Georgelin M 2007 JOM 59 71

    [10]

    Utter B, Bodenschatz E 2002 Phys. Rev. E 66 051604

    [11]

    Zhao X B, Liu L, Yang C B, Li Y F, Zhang J, Li Y L, Fu H Z 2011 J. Alloys Compd. 509 9645

    [12]

    Coriell S R, Sekerka R F 1976 J. Cryst. Growth 34 157

    [13]

    Hoyle R B, McFadden G B, Davis S H 1996 Phil. Trans. R. Soc. Lond. A 354 2915

    [14]

    Golovin A A, Davis S H 1998 Physica D 116 363

    [15]

    Wang Z J, Wang J C, Yang G C 2009 Phys. Rev. E 80 052603

    [16]

    Wang Z J, Wang J C, Yang G C 2008 Acta Phys. Sin. 57 1246 (in Chinese) [王志军, 王锦程, 杨根仓 2008 物理学报 57 1246]

    [17]

    Wang Z J, Wang J C, Yang G C 2010 Chin. Phys. B 19 017305

    [18]

    Chen M W, Lan M, Yuan L, Wang Y Y, Wang Z D, Xu J J 2009 Chin. Phys. B 18 1691

    [19]

    Chen M W, Wang X F, Wang Y L, Wang Z D 2012 Adv. Mater. Res. 365 130

    [20]

    Eshelman M A, Trivedi R 1987 Acta Metall. 35 2443

    [21]

    De Cheveign S, Guthmann C, Lebrun M M 1985 J. Cryst. Growth 73 242

    [22]

    Liu L X, Kirkaldy J S 1994 J. Cryst. Growth 144 335

    [23]

    Fornaro O, Palacio H A 2006 Scripta Mater. 54 2149

    [24]

    Lipton J, Glicksman M, Kurz W 1987 Metall. Mater. Trans. A 18 341

    [25]

    Muschol M, Liu D, Cummins H Z 1992 Phys. Rev. A 46 1038

    [26]

    Huang W D, Ding G L, Zhou Y H 1995 Chin. J. Mater. Res. 9 193 (in Chinese) [黄卫东, 丁国陆, 周尧和 1995 材料研究学报 9 193]

    [27]

    Ding G L, Lin X, Huang W D, Zhou Y H 1997 Acta Phys. Sin. 46 1243 (in Chinese) [丁国陆, 林鑫, 黄卫东, 周尧和 1997 物理学报 46 1243]

    [28]

    Bottin-Rousseau S, Akamatsu S, Faivre G 2002 Phys. Rev. B 66 054102

    [29]

    Karma A 1993 Phys. Rev. E 48 3441

    [30]

    Hoyt J J, Trautt Z T, Upmanyu M 2010 Math. Comput. Simulat. 80 1382

  • [1] 钮迪, 蒋晗. 界面动力学参数对深胞晶界面形态整体波动不稳定性的影响. 物理学报, 2022, 71(16): 168101. doi: 10.7498/aps.71.20220322
    [2] 楚硕, 郭春文, 王志军, 李俊杰, 王锦程. 浓度相关的扩散系数对定向凝固枝晶生长的影响. 物理学报, 2019, 68(16): 166401. doi: 10.7498/aps.68.20190603
    [3] 徐小花, 陈明文, 王自东. 各向异性表面张力对定向凝固中共晶生长形态稳定性的影响. 物理学报, 2018, 67(11): 118103. doi: 10.7498/aps.67.20180186
    [4] 张桐鑫, 王志军, 王理林, 李俊杰, 林鑫, 王锦程. 定向凝固单晶冰的取向确定与选晶. 物理学报, 2018, 67(19): 196401. doi: 10.7498/aps.67.20180700
    [5] 贾琳, 王理林, 申洁楠, 张忠明, 李俊杰, 王锦程, 王志军. 聚乙烯醇水溶液二维定向凝固的微观组织演化. 物理学报, 2017, 66(19): 196402. doi: 10.7498/aps.66.196402
    [6] 蒋晗, 陈明文, 王涛, 王自东. 各向异性界面动力学与各向异性表面张力的相互作用对定向凝固过程中深胞晶生长的影响. 物理学报, 2017, 66(10): 106801. doi: 10.7498/aps.66.106801
    [7] 康永生, 赵宇宏, 侯华, 靳玉春, 陈利文. 相场法模拟Fe-C合金定向凝固的液相通道. 物理学报, 2016, 65(18): 188102. doi: 10.7498/aps.65.188102
    [8] 蒋晗, 陈明文, 史国栋, 王涛, 王自东. 各向异性表面张力对深胞晶界面形态稳定性的影响. 物理学报, 2016, 65(9): 096803. doi: 10.7498/aps.65.096803
    [9] 高鹏飞, 刘铁, 柴少伟, 董蒙, 王强. 磁感应强度和冷却速率对Tb0.27Dy0.73Fe1.95合金凝固过程中取向行为的影响. 物理学报, 2016, 65(3): 038104. doi: 10.7498/aps.65.038104
    [10] 郭春文, 李俊杰, 马渊, 王锦程. 定向凝固过程中枝晶侧向分枝生长行为与强制调控规律. 物理学报, 2015, 64(14): 148101. doi: 10.7498/aps.64.148101
    [11] 陈瑞, 许庆彦, 柳百成. 基于元胞自动机方法的定向凝固枝晶竞争生长数值模拟. 物理学报, 2014, 63(18): 188102. doi: 10.7498/aps.63.188102
    [12] 陈明文, 陈弈臣, 张文龙, 刘秀敏, 王自东. 各向异性表面张力对定向凝固中深胞晶生长的影响. 物理学报, 2014, 63(3): 038101. doi: 10.7498/aps.63.038101
    [13] 王贤斌, 林鑫, 王理林, 宇红雷, 王猛, 黄卫东. 液相对流对定向凝固胞/枝晶间距的影响. 物理学报, 2013, 62(7): 078102. doi: 10.7498/aps.62.078102
    [14] 王贤斌, 林鑫, 王理林, 白贝贝, 王猛, 黄卫东. 晶体取向对定向凝固枝晶生长的影响. 物理学报, 2013, 62(10): 108103. doi: 10.7498/aps.62.108103
    [15] 李川, 刘敬华, 陈立彪, 蒋成保, 徐惠彬. Fe81Ga19合金晶体生长取向与磁致伸缩性能. 物理学报, 2011, 60(9): 097505. doi: 10.7498/aps.60.097505
    [16] 王华滔, 秦昭栋, 倪玉山, 张文. 不同晶体取向下纳米压痕的多尺度模拟. 物理学报, 2009, 58(2): 1057-1063. doi: 10.7498/aps.58.1057
    [17] 王狂飞, 郭景杰, 米国发, 李邦盛, 傅恒志. Ti-45at.% Al合金定向凝固过程中显微组织演化的计算机模拟. 物理学报, 2008, 57(5): 3048-3058. doi: 10.7498/aps.57.3048
    [18] 王志军, 王锦程, 杨根仓. 各向异性作用下合金定向凝固界面稳定性的渐近分析. 物理学报, 2008, 57(2): 1246-1253. doi: 10.7498/aps.57.1246
    [19] 汪 渊, 宋忠孝, 徐可为. 体心立方金属W薄膜晶体取向的膜厚尺寸效应及其表面映射. 物理学报, 2007, 56(12): 7248-7254. doi: 10.7498/aps.56.7248
    [20] 李梅娥, 杨根仓, 周尧和. 二元合金高速定向凝固过程的相场法数值模拟. 物理学报, 2005, 54(1): 454-459. doi: 10.7498/aps.54.454
计量
  • 文章访问数:  4415
  • PDF下载量:  678
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-09
  • 修回日期:  2011-12-22
  • 刊出日期:  2012-07-05

晶体取向对定向凝固平界面失稳行为的影响

  • 1. 西北工业大学凝固技术国家重点实验室, 西安 710072
    基金项目: 国家重点基础研究发展计划(批准号: 2011CB610402)、 国家自然科学基金(批准号: 50971102, 50901061)和凝固技术国家重点实验室自主研究项目(批准号: 02-TZ-2008, 36-TP-2009)资助的课题.

摘要: 采用丁二腈-丙酮透明模型合金研究了不同晶体取向的晶粒在定向凝固条件下的平界面失稳过程.实验选择了三个界面失稳后具有不同生长形态的典型晶粒作为研究对象, 分别为择优生长枝晶、倾斜枝晶和海藻晶.结果表明可发展为择优生长枝晶的晶粒的平界面失稳孕育时间和初始扰动波长最小,海藻晶次之, 倾斜枝晶最大,这与以往的解析结果和相场模拟结果一致. 同时,实验观察发现可发展为择优生长枝晶和倾斜枝晶的晶粒的界面非稳态演化过程与海藻晶显著不同,这表明平界面失稳的非稳态演化过程与晶体取向相关.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回