搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双边扩散枝晶生长的定量相场模型

潘诗琰 朱鸣芳

引用本文:
Citation:

双边扩散枝晶生长的定量相场模型

潘诗琰, 朱鸣芳

Quantitative phase-field model for dendritic growth with two-sided diffusion

Pan Shi-Yan, Zhu Ming-Fang
PDF
导出引用
  • 本文针对非对称双边扩散条件下的二元合金枝晶生长,建立了一个包含溶质截流项的定量相场模型. 本模型耦合了非线性热力学函数并采用化学势相等的界面条件. 通过对相场方程进行二阶的薄界面渐进分析,并结合溶质拖拽模型, 推导出相场迁移率和溶质截流项.随后将模型简化为二元稀溶液合金等温枝晶生长的相场模型以对其进行理论验证. 通过在各种相场界面厚度条件下进行数值模拟, 测试了本模型的数值收敛性. 用所建立的模型模拟了Fe-0.15 mol%C合金的等温枝晶生长, 将相场模拟结果和经典Gibbs-Thomson关系, 线性可解性理论以及改进的Lipton-Glicksman-Kurz (LGK) 解析模型进行比较,取得了良好的符合. 模拟结果表明本模型能有效地消除延拓的界面厚度所导致的界面异常效应, 具有良好的定量模拟能力. 而且,本模型能够定量地描述从单边扩散到对称扩散的各种固相扩散迁移率条件下的枝晶生长.
    A quantitative phase-field (PF) model with an anti-trapping current (ATC) is developed to simulate the dendritic growth with two-sided diffusion. The asymptotic analysis is performed at the second-order for the PF equations coupled with nonlinear thermodynamic properties and an ATC term under the equal chemical potential condition. The PF mobility and ATC are derived based on the asymptotic analysis in the thin interface limit, and the solute drag model. Then the model is reduced to the dilute solution limit for dendrite solidification of binary alloys. The test of convergence with respect to the interface width exhibits an excellent convergent behavior of the proposed model. The performance of the model is then validated by comparing PF simulations with the predictions of the Gibbs-Thomson relation, the linearized solvability theory, and the modified-Lipton-Glicksman-Kurz (M-LGK) analytical model, for the isothermal dendritic growth of an Fe-0.15 mol%C alloy. The results demonstrate quantitative capabilities of the model that effectively suppresses the abnormal solute trapping effect when the interface is taken artificially to be wide. It is also found that the present model can quantitatively describe dendrite growth with various solid diffusivities, ranging from the case with one-sided diffusion to the symmetrical model.
    • 基金项目: 美国AO Smith Corporate Technology Center, 国家自然科学基金(批准号: 50971042)和江苏省先进金属材料高技术研究重点实验室开放课题(AMM201005)资助的课题.
    • Funds: Project supported by the AO Smith Corporate Technology Center, USA, the National Natural Science Foundation of China (Grant No. 50971042), and the Jiangsu Key Laboratory for Advanced Metallic Materials (Grant No. AMM201005).
    [1]

    Yao W J, Yang C, Han X J, Chen M, Wei B B, Guo Z Yun 2003 Acta Phys. Sin. 52 448 (in Chinese) [姚文静, 杨春, 韩秀君, 陈民, 魏炳波, 过增元 2003 物理学报 52 448]

    [2]

    Zang D Y, Wang H P, Wei B B 2007 Acta Phys. Sin. 56 4804 (in Chinese) [臧渡洋, 王海鹏, 魏炳波 2007物理学报 56 4804]

    [3]

    Wang J Y, Chen C L, Zhai W, Jin K X 2009 Acta Phys. Sin. 58 6554 (in Chinese) [王建元, 陈长乐, 翟薇, 金克新 2009 物理学报 58 6554]

    [4]

    Zhao D P, JingT, Liu B C 2003 Acta Phys. Sin. 52 1737 (in Chinese) [赵代平, 荆涛, 柳百成 2003物理学报 52 1737]

    [5]

    Zong Y P, Wang M T, Guo W 2009 Acta Phys. Sin. 58 S161 (in Chinese) [宗亚平, 王明涛, 郭巍 2009 物理学报 58 S161]

    [6]

    Shan B W, Lin X, Wei L, Huang W D 2009 Acta Phys. Sin. 58 1132 (in Chinese) [单博炜, 林鑫, 魏雷, 黄卫东 2009 物理学报 58 1132]

    [7]

    Li Q, Li D Z, Qian B N 2004 Acta Phys. Sin. 53 3477 (in Chinese) [李强, 李殿中, 钱百年2004 物理学报 53 3477]

    [8]

    Pan S Y, Zhu M F 2009 Acta Phys. Sin. 58, S278 (in Chinese) [潘诗琰, 朱鸣芳 2009 物理学报 58 S278]

    [9]

    Chen Y, Kang X H, Li D Z 2009 Acta Phys. Sin. 58 390 (in Chinese) [陈云, 康秀红, 李殿中 2009 物理学报 58 390]

    [10]

    Long W Y, Cai Q Z, Chen L L, Wei B K 2005 Acta Phys. Sin. 54 256 (in Chinese) [龙文元, 蔡启舟, 陈立亮, 魏伯康 2005 物理学报 54 256]

    [11]

    Zhu C S, Wang Z P, Jing T, Xiao R Z 2006 Acta Phys. Sin. 55 1502 (in Chinese) [朱昌盛, 王智平, 荆涛, 肖荣振2006物理学报 55 1502]

    [12]

    Li J J, Wang J C, Xu Q, Yang G C 2007 Acta Phys. Sin. 56 1514 (in Chinese) [李俊杰, 王锦程, 许泉, 杨根仓 2007物理学报 56 1514]

    [13]

    Feng L, Wang Z P, Lu Y, Zhu C S 2008 Acta Phys. Sin. 57 1084 (in Chinese) [冯力, 王智平, 路阳, 朱昌盛 2008 物理学报 57 1084]

    [14]

    Karma A, Rappel W J 1998 Phys. Rev. E 57 4323

    [15]

    Almgren R F 1999 SIAM J. Appl. Math. 59 2086

    [16]

    Karma A 2001 Phys. Rev. Lett. 87 115701

    [17]

    Echebarria B, Folch R, Karma A, Plapp M 2004 Phys. Rev. E 70 061604

    [18]

    Gopinath A, Armstrong R C, Brown R A 2006 J. Cryst. Growth 291 272

    [19]

    Steinbach I 2009 Modelling Simul. Mater. Sci. Eng. 17 073001

    [20]

    Ohno M, Matsuura K 2009 Phys. Rev. E 79 031603

    [21]

    Svoboda J, Fischer F D, Gamsjäger E 2002 Acta Mater. 50 967

    [22]

    Hillert M 1999 Acta Mater. 47 4481

    [23]

    Kim S G, Kim WT, Suzuki T 1999 Phys. Rev. E 60 7186

    [24]

    Ode M, Suzuki T, Kim S G, Kim W T 2000 Sci. Tech. Adv. Mater. 1 43

    [25]

    Ohno M, Matsuura K 2010 Acta Mater. 58 5749

    [26]

    Ramirez J C, Beckermann C, Karma A, Diepers H J 2004 Phys. Rev. E 69 051607

    [27]

    Ramirez J C, Beckermann C 2005 Acta Mater. 53 1721

    [28]

    Barbieri A, Langer J S 1989 Phys. Rev. A 39 5314

    [29]

    Lipton J, Clicksman M E, Kurz W 1984 Mater. Sci. Eng. 65 57

  • [1]

    Yao W J, Yang C, Han X J, Chen M, Wei B B, Guo Z Yun 2003 Acta Phys. Sin. 52 448 (in Chinese) [姚文静, 杨春, 韩秀君, 陈民, 魏炳波, 过增元 2003 物理学报 52 448]

    [2]

    Zang D Y, Wang H P, Wei B B 2007 Acta Phys. Sin. 56 4804 (in Chinese) [臧渡洋, 王海鹏, 魏炳波 2007物理学报 56 4804]

    [3]

    Wang J Y, Chen C L, Zhai W, Jin K X 2009 Acta Phys. Sin. 58 6554 (in Chinese) [王建元, 陈长乐, 翟薇, 金克新 2009 物理学报 58 6554]

    [4]

    Zhao D P, JingT, Liu B C 2003 Acta Phys. Sin. 52 1737 (in Chinese) [赵代平, 荆涛, 柳百成 2003物理学报 52 1737]

    [5]

    Zong Y P, Wang M T, Guo W 2009 Acta Phys. Sin. 58 S161 (in Chinese) [宗亚平, 王明涛, 郭巍 2009 物理学报 58 S161]

    [6]

    Shan B W, Lin X, Wei L, Huang W D 2009 Acta Phys. Sin. 58 1132 (in Chinese) [单博炜, 林鑫, 魏雷, 黄卫东 2009 物理学报 58 1132]

    [7]

    Li Q, Li D Z, Qian B N 2004 Acta Phys. Sin. 53 3477 (in Chinese) [李强, 李殿中, 钱百年2004 物理学报 53 3477]

    [8]

    Pan S Y, Zhu M F 2009 Acta Phys. Sin. 58, S278 (in Chinese) [潘诗琰, 朱鸣芳 2009 物理学报 58 S278]

    [9]

    Chen Y, Kang X H, Li D Z 2009 Acta Phys. Sin. 58 390 (in Chinese) [陈云, 康秀红, 李殿中 2009 物理学报 58 390]

    [10]

    Long W Y, Cai Q Z, Chen L L, Wei B K 2005 Acta Phys. Sin. 54 256 (in Chinese) [龙文元, 蔡启舟, 陈立亮, 魏伯康 2005 物理学报 54 256]

    [11]

    Zhu C S, Wang Z P, Jing T, Xiao R Z 2006 Acta Phys. Sin. 55 1502 (in Chinese) [朱昌盛, 王智平, 荆涛, 肖荣振2006物理学报 55 1502]

    [12]

    Li J J, Wang J C, Xu Q, Yang G C 2007 Acta Phys. Sin. 56 1514 (in Chinese) [李俊杰, 王锦程, 许泉, 杨根仓 2007物理学报 56 1514]

    [13]

    Feng L, Wang Z P, Lu Y, Zhu C S 2008 Acta Phys. Sin. 57 1084 (in Chinese) [冯力, 王智平, 路阳, 朱昌盛 2008 物理学报 57 1084]

    [14]

    Karma A, Rappel W J 1998 Phys. Rev. E 57 4323

    [15]

    Almgren R F 1999 SIAM J. Appl. Math. 59 2086

    [16]

    Karma A 2001 Phys. Rev. Lett. 87 115701

    [17]

    Echebarria B, Folch R, Karma A, Plapp M 2004 Phys. Rev. E 70 061604

    [18]

    Gopinath A, Armstrong R C, Brown R A 2006 J. Cryst. Growth 291 272

    [19]

    Steinbach I 2009 Modelling Simul. Mater. Sci. Eng. 17 073001

    [20]

    Ohno M, Matsuura K 2009 Phys. Rev. E 79 031603

    [21]

    Svoboda J, Fischer F D, Gamsjäger E 2002 Acta Mater. 50 967

    [22]

    Hillert M 1999 Acta Mater. 47 4481

    [23]

    Kim S G, Kim WT, Suzuki T 1999 Phys. Rev. E 60 7186

    [24]

    Ode M, Suzuki T, Kim S G, Kim W T 2000 Sci. Tech. Adv. Mater. 1 43

    [25]

    Ohno M, Matsuura K 2010 Acta Mater. 58 5749

    [26]

    Ramirez J C, Beckermann C, Karma A, Diepers H J 2004 Phys. Rev. E 69 051607

    [27]

    Ramirez J C, Beckermann C 2005 Acta Mater. 53 1721

    [28]

    Barbieri A, Langer J S 1989 Phys. Rev. A 39 5314

    [29]

    Lipton J, Clicksman M E, Kurz W 1984 Mater. Sci. Eng. 65 57

  • [1] 杨朝曦, 柳文波, 张璁雨, 贺新福, 孙正阳, 贾丽霞, 师田田, 恽迪. Fe-Cr合金晶界偏析及辐照加速晶界偏析的相场模拟. 物理学报, 2021, 70(11): 116101. doi: 10.7498/aps.70.20201840
    [2] 楚硕, 郭春文, 王志军, 李俊杰, 王锦程. 浓度相关的扩散系数对定向凝固枝晶生长的影响. 物理学报, 2019, 68(16): 166401. doi: 10.7498/aps.68.20190603
    [3] 段培培, 邢辉, 陈志, 郝冠华, 王碧涵, 金克新. 镁基合金自由枝晶生长的相场模拟研究. 物理学报, 2015, 64(6): 060201. doi: 10.7498/aps.64.060201
    [4] 孟广慧, 林鑫. 二元层片共晶凝固过程的特征尺度选择. 物理学报, 2014, 63(6): 068104. doi: 10.7498/aps.63.068104
    [5] 陈海楠, 孙东科, 戴挺, 朱鸣芳. 凝固前沿和气泡相互作用的大密度比格子玻尔兹曼方法模拟. 物理学报, 2013, 62(12): 120502. doi: 10.7498/aps.62.120502
    [6] 苑轶, 李英龙, 王强, 刘铁, 高鹏飞, 赫冀成. 强磁场对Mn-Sb包晶合金相变及凝固组织的影响. 物理学报, 2013, 62(20): 208106. doi: 10.7498/aps.62.208106
    [7] 杜立飞, 张蓉, 邢辉, 张利民, 张洋, 刘林. 横向限制下凝固微观组织演化的相场法模拟. 物理学报, 2013, 62(10): 106401. doi: 10.7498/aps.62.106401
    [8] 王明光, 赵宇宏, 任娟娜, 穆彦青, 王伟, 杨伟明, 李爱红, 葛洪浩, 侯华. 相场法模拟NiCu合金非等温凝固枝晶生长. 物理学报, 2011, 60(4): 040507. doi: 10.7498/aps.60.040507
    [9] 王春江, 苑轶, 王强, 刘铁, 娄长胜, 赫冀成. 强磁场条件下金属凝固过程中第二相的迁移行为. 物理学报, 2010, 59(5): 3116-3122. doi: 10.7498/aps.59.3116
    [10] 朱昌盛, 王军伟, 王智平, 冯力. 受迫流动下的枝晶生长相场法模拟研究. 物理学报, 2010, 59(10): 7417-7423. doi: 10.7498/aps.59.7417
    [11] 张宗宁, 刘美林, 李蔚, 耿长建, 赵骞, 张林. 熔融Cu55团簇在Cu(010)表面上凝固过程的分子动力学模拟. 物理学报, 2009, 58(13): 67-S71. doi: 10.7498/aps.58.67
    [12] 徐送宁, 张林, 张彩碚, 祁阳. 熔融Cu55团簇在铜块体中凝固过程的分子动力学模拟. 物理学报, 2009, 58(13): 40-S46. doi: 10.7498/aps.58.40
    [13] 单博炜, 林鑫, 魏雷, 黄卫东. 纯物质枝晶凝固的元胞自动机模型. 物理学报, 2009, 58(2): 1132-1138. doi: 10.7498/aps.58.1132
    [14] 孙东科, 朱鸣芳, 杨朝蓉, 潘诗琰, 戴挺. 强制对流和自然对流作用下枝晶生长的数值模拟. 物理学报, 2009, 58(13): 285-S291. doi: 10.7498/aps.58.285
    [15] 朱昌盛, 冯力, 王智平, 肖荣振. 三维枝晶生长的相场法数值模拟研究. 物理学报, 2009, 58(11): 8055-8061. doi: 10.7498/aps.58.8055
    [16] 龙文元, 吕冬兰, 夏春, 潘美满, 蔡启舟, 陈立亮. 强迫对流影响二元合金非等温凝固枝晶生长的相场法模拟. 物理学报, 2009, 58(11): 7802-7808. doi: 10.7498/aps.58.7802
    [17] 龙文元, 蔡启舟, 魏伯康, 陈立亮. 相场法模拟多元合金过冷熔体中的枝晶生长. 物理学报, 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [18] 杨 弘, 张清光, 陈 民. 热扰动对过冷熔体中二次枝晶生长影响的相场法模拟. 物理学报, 2005, 54(8): 3740-3744. doi: 10.7498/aps.54.3740
    [19] 李 强, 李殿中, 钱百年. 元胞自动机方法模拟枝晶生长. 物理学报, 2004, 53(10): 3477-3481. doi: 10.7498/aps.53.3477
    [20] 于艳梅, 杨根仓, 赵达文, 吕衣礼, A. KARMA, C. BECKERMANN. 过冷熔体中枝晶生长的相场法数值模拟. 物理学报, 2001, 50(12): 2423-2428. doi: 10.7498/aps.50.2423
计量
  • 文章访问数:  5890
  • PDF下载量:  624
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-15
  • 修回日期:  2012-06-09
  • 刊出日期:  2012-11-05

双边扩散枝晶生长的定量相场模型

  • 1. 东南大学江苏省先进金属材料高技术研究重点实验室, 南京 211189
    基金项目: 美国AO Smith Corporate Technology Center, 国家自然科学基金(批准号: 50971042)和江苏省先进金属材料高技术研究重点实验室开放课题(AMM201005)资助的课题.

摘要: 本文针对非对称双边扩散条件下的二元合金枝晶生长,建立了一个包含溶质截流项的定量相场模型. 本模型耦合了非线性热力学函数并采用化学势相等的界面条件. 通过对相场方程进行二阶的薄界面渐进分析,并结合溶质拖拽模型, 推导出相场迁移率和溶质截流项.随后将模型简化为二元稀溶液合金等温枝晶生长的相场模型以对其进行理论验证. 通过在各种相场界面厚度条件下进行数值模拟, 测试了本模型的数值收敛性. 用所建立的模型模拟了Fe-0.15 mol%C合金的等温枝晶生长, 将相场模拟结果和经典Gibbs-Thomson关系, 线性可解性理论以及改进的Lipton-Glicksman-Kurz (LGK) 解析模型进行比较,取得了良好的符合. 模拟结果表明本模型能有效地消除延拓的界面厚度所导致的界面异常效应, 具有良好的定量模拟能力. 而且,本模型能够定量地描述从单边扩散到对称扩散的各种固相扩散迁移率条件下的枝晶生长.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回