搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe-Cr合金晶界偏析及辐照加速晶界偏析的相场模拟

杨朝曦 柳文波 张璁雨 贺新福 孙正阳 贾丽霞 师田田 恽迪

引用本文:
Citation:

Fe-Cr合金晶界偏析及辐照加速晶界偏析的相场模拟

杨朝曦, 柳文波, 张璁雨, 贺新福, 孙正阳, 贾丽霞, 师田田, 恽迪

Phase field simulation of grain boundary segregation and radiation-enhanced segregation in Fe-Cr alloys

Yang Zhao-Xi, Liu Wen-Bo, Zhang Cong-Yu, He Xin-Fu, Sun Zheng-Yang, Jia Li-Xia, Shi Tian-Tian, Yun Di
PDF
HTML
导出引用
  • 基于WBM相场模型对热力学条件和辐照条件下Fe-Cr合金晶界处Cr元素偏析行为进行了模拟. 模拟结果表明温度对Fe-Cr合金晶界处Cr元素的偏析有很大影响: 当温度低于500 ℃时, 晶界处的偏析量很小; 而当温度高于500 ℃时晶界处的偏析量增加明显. 基体中Cr元素含量对晶界Cr元素的相对偏析量也有显著影响: 随着基体中Cr元素含量的增加, 相同模拟条件下晶界处Cr元素的相对浓度增量降低. 辐照条件下, 晶界处Cr元素的相对偏析量比热力学条件下的相对偏析量有明显增加; 随着辐照剂量率的提高, 晶界中心处Cr元素浓度增量变大; 相同辐照条件下, 随着Cr元素含量的增加, 晶界处Cr元素的相对浓度增量也降低.
    Ferritic/martensitic steel, with Cr atomic content in a range of 7%–15%, is a promising candidate for advanced nuclear power systems, due to its swelling resistance and creep fracture resistance under irradiation. Under thermodynamic conditions, Cr segregation usually occurs at grain boundary (GB) in Fe-Cr alloys. However, irradiation can greatly accelerate this process. The enrichment of Cr at GB will enhance precipitation, resulting in embrittlement; while the depletion of Cr at GB may greatly weaken the corrosion resistance properties. In the present work, thermodynamic segregation and radiation-enhanced segregation of Cr element at GB in Fe-Cr alloy is investigated by using the Wheeler-Boettinger-McFadden (WBM) phase-field model. The simulation results show that temperature has a great influence during thermodynamic segregation of Cr at the GB without radiation: when the temperature is lower than 500 ℃ the segregation amount of Cr at the GB is relatively small; when the temperature is higher than 500 ℃ the Cr concentration at GB increases significantly. In addition, as the concentration of Cr in the matrix increases, the amount of relative increase of Cr concentration at GB decreases. However, the Cr concentration at GB under irradiation is significantly enhanced, compared with the counterpart without irradiation. With the increase of dose rate, the Cr concentration in the center of GB also increases. Moreover, with the increase of Cr concentration in the matrix, the relative increase of the Cr concentration at the GB weakens.
      通信作者: 柳文波, liuwenbo@xjtu.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 11705137)、国家自然科学基金委员会-中国工程物理研究院联合基金(批准号: U1830124)、中国博士后科学基金(批准号: 2019M663738)、中国核工业集团有限公司领创科研项目和中央高校基本科研业务费专项资金资助的课题
      Corresponding author: Liu Wen-Bo, liuwenbo@xjtu.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11705137), the Joint Fund of the National Natural Science Foundation of China and The China Academy of Engineering Physics (Grant No. U1830124), the China Postdoctoral Science Foundation (Grant No. 2019M663738), the Innovative Scientific Program of CNNC, and the Fundamental Research Fund for the Central Universities, China
    [1]

    Yvon P, Le F M, Cabet C, Seran J L 2015 Nucl. Eng. Des. 294 161Google Scholar

    [2]

    Zinkle S J, Busby J T 2009 Mater. Today 385 217Google Scholar

    [3]

    Yvon P, Carré F 2009 J. Nucl. Mater. 385 217Google Scholar

    [4]

    Lucas G E 2002 J. Nucl. Mater. 302 232Google Scholar

    [5]

    刘涛, 杨梅, 王刚, 王璐, 徐东生 2020 稀有金属材料与工程 56 1114

    Liu T, Yang M, Wang G, Wang L, Xu D S 2020 Rare Metal Mater. Eng. 56 1114

    [6]

    Nastar M, Soisson F 2012 Compr. Nucl. Mater. 1 471Google Scholar

    [7]

    Wharry J P, Was G S 2013 J. Nucl. Mater. 442 7Google Scholar

    [8]

    Faulkner R G 1997 J. Nucl. Mater. 251 269Google Scholar

    [9]

    Terentyev D, He X, Zhurkin E, Bakaev A 2011 J. Nucl. Mater. 408 161Google Scholar

    [10]

    朱陆陆 2014 硕士学位论文 (武汉: 华中师范大学)

    Zhu L L 2014 M. S. Thesis (Wuhan: Central China Normal University) (in Chinese)

    [11]

    Was G S, Wharry J P, Frisbie B, Wirth B D, Morgan D, Tucker J D, Allen T R 2011 J. Nucl. Mater. 411 41Google Scholar

    [12]

    Xia L D, Ji Y Z, Liu W B, Chen H, Yang Z G, Zhang C, Chen L Q 2020 Nucl. Eng. Technol. 52 148Google Scholar

    [13]

    柯常波, 周敏波, 张新平 2014 金属学报 50 294Google Scholar

    Ke C B, Zo H M, Zhang X P 2014 Acta Metall. Sin. 50 294Google Scholar

    [14]

    Wheeler A A, Boettinger W J, McFadden G B 1992 Phys. Rev. A 45 7424Google Scholar

    [15]

    Kim S G, Kim W T, Suzuki T 1999 Phys. Rev. E 60 7186Google Scholar

    [16]

    Kim S G, Lee J S, Lee B J 2016 Acta Mater. 112 150Google Scholar

    [17]

    Badillo A, Bellon P, Averback R S 2015 Model. Simul. Mater. Sci. Eng. 23 035008Google Scholar

    [18]

    Piochaud J B, Nastar M, Soisson F, Thuinet L, Legris A 2016 Comput. Mater. Sci. 122 249Google Scholar

    [19]

    Grönhagen K, Ågren J 2007 Acta Mater. 55 955Google Scholar

    [20]

    Zhang C Y, Chen H, Zhu J N, Liu W B, Liu G, Zhang C, Yang Z G 2019 Scr. Mater. 162 44Google Scholar

    [21]

    Allen S M, Cahn J W 1979 Acta Metall. 27 1085Google Scholar

    [22]

    Cahn J W 1961 Acta Metall. 9 795Google Scholar

    [23]

    Odette G R, Yamamoto T, Klingensmith D 2005 Philos. Mag. 85 779Google Scholar

    [24]

    Ke H, Wells P, Edmondson P D, Almirall N, Barnard L, Odette G R, Morgan D 2017 Acta Mater. 138 10Google Scholar

    [25]

    Gamsjäger E, Svoboda J, Fischer F D 2005 Comput. Mater. Sci. 32 360

    [26]

    Ke J H, Reese E R, Marquis E A, Odette G R, Morgan D 2019 Acta Mater. 164 586Google Scholar

    [27]

    Makin M J, Minter F J 1960 Acta Metall. 8 691Google Scholar

    [28]

    Enomoto M, White C L, Aaronson H I 1988 Metall. Trans. A 19A 1807

    [29]

    Chen H, Zwaag S V D 2014 Acta Mater. 72 1Google Scholar

    [30]

    Zhu J N, Luo H W, Yang Z G, Zhang C, Zwaag S V D, Chen H 2017 Acta Mater. 133 258Google Scholar

    [31]

    Malerba L 2006 J. Nucl. Mater. 351 28Google Scholar

    [32]

    Martinez E, Senninger O, Fu C C 2012 Matter Mater. Phys. 86 1Google Scholar

    [33]

    Lavrentiev M Y, Nguyen-Manh D, Dudarev S L 2018 J. Nucl. Mater. 499 613Google Scholar

    [34]

    Moelans N, Blanpain B, Wollants P 2008 Calphad 32 268Google Scholar

    [35]

    Li J, Wang J, Yang G 2009 Acta Mater. 57 2108Google Scholar

    [36]

    贾丽霞, 贺新福, 王东杰 2018 原子能科学技术 52 1040Google Scholar

    Jia L X, He X F, Wang D J 2018 Atomic Energy Science and Technology 52 1040Google Scholar

    [37]

    McLean D 1957 Grain Boundaries in Metals (London: Oxford at the Clarendon Press) p1

    [38]

    Seah M P 1980 J. Phys. F: Met. Phys. 10 1063

  • 图 1  相场变量ϕx的初始分布

    Fig. 1.  Initial distribution of phase field variable ϕ and x.

    图 2  Fe-Cr合金中晶界处Cr元素浓度的变化曲线 (a) Fe-9Cr; (b) Fe-10Cr; (c) Fe-12Cr; (d) Fe-15Cr

    Fig. 2.  Evolution of Cr concentration at grain boundary in Fe-Cr alloys: (a) Fe-9Cr; (b) Fe-10Cr; (c) Fe-12Cr; (d) Fe-15Cr.

    图 3  500 ℃模拟100 s后不同成分的Fe-Cr合金的相场变量 (a) x; (b) ϕ

    Fig. 3.  The curves of the phase field variables of Fe-Cr alloys with different compositions after 100 s at 500 ℃: (a) x; (b) ϕ.

    图 4  500 ℃下100 s后晶界处的相对Cr浓度增量和基体中Cr浓度的关系曲线

    Fig. 4.  The relationship between the relative change of Cr concentration at grain boundary and the bulk Cr concentration after 100 s at 500 ℃.

    图 5  不同温度下晶界处Cr元素的浓度分布 (a) Fe-9Cr; (b) Fe-10Cr; (c) Fe-12Cr; (d) Fe-15Cr

    Fig. 5.  Distribution of Cr concentration at grain boundary with different temperatures: (a) Fe-9Cr; (b) Fe-10Cr; (c) Fe-12Cr; (d) Fe-15Cr.

    图 6  450 ℃辐照剂量率为10–4 dpa/s下晶界处Cr元素的浓度分布 (a) Fe-9Cr; (b) Fe-10Cr; (c) Fe-12Cr; (d) Fe-15Cr

    Fig. 6.  Concentration distribution of Cr element at GB at a dose rate of 10–4 dpa/s at 450 ℃: (a) Fe-9Cr; (b) Fe-10Cr; (c) Fe-12Cr; (d) Fe-15Cr.

    图 7  450 ℃辐照剂量率为10–5 dpa/s下晶界处Cr元素浓度的变化曲线 (a) Fe-9Cr; (b) Fe-10Cr; (c) Fe-12Cr; (d) Fe-15Cr

    Fig. 7.  Evolution of Cr concentration at grain boundary with a dose rate of 10–5 dpa/s at 450 ℃: (a) Fe-9Cr; (b) Fe-10Cr; (c) Fe-12Cr; (d) Fe-15Cr.

    图 8  不同辐照剂量率下晶界处Cr元素浓度的分布 (a) Fe-9Cr; (b) Fe-10Cr; (c) Fe-12Cr; (d) Fe-15Cr

    Fig. 8.  Distribution of Cr concentration with different dose rates: (a) Fe-9Cr; (b) Fe-10Cr; (c) Fe-12Cr; (d) Fe-15Cr.

    图 9  450 ℃时不同剂量率下晶界处的相对Cr浓度增量和初始Cr浓度的关系曲线

    Fig. 9.  The relationship between the relative change of Cr concentration at grain boundary and the bulk Cr concentration at different dose rates at 450 ℃

    图 10  辐照剂量率为1.2 × 10–5 dpa/s时模拟结果与实验结果对比

    Fig. 10.  Comparison of simulation results and experimental results when the dose rate is 1.2 × 10–5 dpa/s.

    表 1  Fe-Cr合金的物理参数

    Table 1.  Physical parameters of Fe-Cr alloys.

    物理参数数值参考文献
    $ {\varepsilon }^{2} $/(J·m–1)$ 4\times {10}^{-10} $[20]
    $ {V}_{{\rm{m}}} $/(m3·mol–1)$ 7.0\times {10}^{-6} $[20]
    w/(J·m-1)$ 3\times {10}^{4} $[20]
    m4.5[28, 29]
    σ/(J·m–2)0.3[30]
    R/(J·mol-1·k–1)8.314
    下载: 导出CSV

    表 2  Fe-Cr合金辐照加速扩散模型的参数

    Table 2.  Parameters of radiation enhanced diffusion model of Fe-Cr alloys.

    物理参数数值参考文献
    d/m$ 2.49\times {10}^{-10} $
    k/(J·K–1)$ 1.38\times {10}^{-23} $
    $ {r}_{\rm{c}}/{\rm{m}} $$ 3\times {10}^{-10} $[26]
    ξ0.33[31]
    $ {V}_{{\rm{a}}} $/m3$ 1.18\times {10}^{-29} $
    $ {E}_{{\rm{m}}} $/eV1.1[32]
    $ {S}_{{\rm{d}}} $/m–2$ 1.0\times {10}^{-13} $
    $ {R}_{\rm{r}} $/m$ 5.7\times {10}^{-10} $[23]
    $ {R}_{\rm{t}} $/m$ 5.7\times {10}^{-10} $[23]
    $ {H}_{\rm{b}} $/eV0.094[33]
    $ {S}_{{\rm{s}}{\rm{a}}{\rm{t}}} $/m–2$ 3.0\times {10}^{-15} $
    下载: 导出CSV
  • [1]

    Yvon P, Le F M, Cabet C, Seran J L 2015 Nucl. Eng. Des. 294 161Google Scholar

    [2]

    Zinkle S J, Busby J T 2009 Mater. Today 385 217Google Scholar

    [3]

    Yvon P, Carré F 2009 J. Nucl. Mater. 385 217Google Scholar

    [4]

    Lucas G E 2002 J. Nucl. Mater. 302 232Google Scholar

    [5]

    刘涛, 杨梅, 王刚, 王璐, 徐东生 2020 稀有金属材料与工程 56 1114

    Liu T, Yang M, Wang G, Wang L, Xu D S 2020 Rare Metal Mater. Eng. 56 1114

    [6]

    Nastar M, Soisson F 2012 Compr. Nucl. Mater. 1 471Google Scholar

    [7]

    Wharry J P, Was G S 2013 J. Nucl. Mater. 442 7Google Scholar

    [8]

    Faulkner R G 1997 J. Nucl. Mater. 251 269Google Scholar

    [9]

    Terentyev D, He X, Zhurkin E, Bakaev A 2011 J. Nucl. Mater. 408 161Google Scholar

    [10]

    朱陆陆 2014 硕士学位论文 (武汉: 华中师范大学)

    Zhu L L 2014 M. S. Thesis (Wuhan: Central China Normal University) (in Chinese)

    [11]

    Was G S, Wharry J P, Frisbie B, Wirth B D, Morgan D, Tucker J D, Allen T R 2011 J. Nucl. Mater. 411 41Google Scholar

    [12]

    Xia L D, Ji Y Z, Liu W B, Chen H, Yang Z G, Zhang C, Chen L Q 2020 Nucl. Eng. Technol. 52 148Google Scholar

    [13]

    柯常波, 周敏波, 张新平 2014 金属学报 50 294Google Scholar

    Ke C B, Zo H M, Zhang X P 2014 Acta Metall. Sin. 50 294Google Scholar

    [14]

    Wheeler A A, Boettinger W J, McFadden G B 1992 Phys. Rev. A 45 7424Google Scholar

    [15]

    Kim S G, Kim W T, Suzuki T 1999 Phys. Rev. E 60 7186Google Scholar

    [16]

    Kim S G, Lee J S, Lee B J 2016 Acta Mater. 112 150Google Scholar

    [17]

    Badillo A, Bellon P, Averback R S 2015 Model. Simul. Mater. Sci. Eng. 23 035008Google Scholar

    [18]

    Piochaud J B, Nastar M, Soisson F, Thuinet L, Legris A 2016 Comput. Mater. Sci. 122 249Google Scholar

    [19]

    Grönhagen K, Ågren J 2007 Acta Mater. 55 955Google Scholar

    [20]

    Zhang C Y, Chen H, Zhu J N, Liu W B, Liu G, Zhang C, Yang Z G 2019 Scr. Mater. 162 44Google Scholar

    [21]

    Allen S M, Cahn J W 1979 Acta Metall. 27 1085Google Scholar

    [22]

    Cahn J W 1961 Acta Metall. 9 795Google Scholar

    [23]

    Odette G R, Yamamoto T, Klingensmith D 2005 Philos. Mag. 85 779Google Scholar

    [24]

    Ke H, Wells P, Edmondson P D, Almirall N, Barnard L, Odette G R, Morgan D 2017 Acta Mater. 138 10Google Scholar

    [25]

    Gamsjäger E, Svoboda J, Fischer F D 2005 Comput. Mater. Sci. 32 360

    [26]

    Ke J H, Reese E R, Marquis E A, Odette G R, Morgan D 2019 Acta Mater. 164 586Google Scholar

    [27]

    Makin M J, Minter F J 1960 Acta Metall. 8 691Google Scholar

    [28]

    Enomoto M, White C L, Aaronson H I 1988 Metall. Trans. A 19A 1807

    [29]

    Chen H, Zwaag S V D 2014 Acta Mater. 72 1Google Scholar

    [30]

    Zhu J N, Luo H W, Yang Z G, Zhang C, Zwaag S V D, Chen H 2017 Acta Mater. 133 258Google Scholar

    [31]

    Malerba L 2006 J. Nucl. Mater. 351 28Google Scholar

    [32]

    Martinez E, Senninger O, Fu C C 2012 Matter Mater. Phys. 86 1Google Scholar

    [33]

    Lavrentiev M Y, Nguyen-Manh D, Dudarev S L 2018 J. Nucl. Mater. 499 613Google Scholar

    [34]

    Moelans N, Blanpain B, Wollants P 2008 Calphad 32 268Google Scholar

    [35]

    Li J, Wang J, Yang G 2009 Acta Mater. 57 2108Google Scholar

    [36]

    贾丽霞, 贺新福, 王东杰 2018 原子能科学技术 52 1040Google Scholar

    Jia L X, He X F, Wang D J 2018 Atomic Energy Science and Technology 52 1040Google Scholar

    [37]

    McLean D 1957 Grain Boundaries in Metals (London: Oxford at the Clarendon Press) p1

    [38]

    Seah M P 1980 J. Phys. F: Met. Phys. 10 1063

  • [1] 史芳杰, 李南, 郭峻铭, 陈柏屹, 李飒腾, 刘浩良, 郭建业, 李乾武, 李烨飞, 肖冰. Fe-Cr二元合金微观组织演化的质量密度场耦合动力学Monte-Carlo模拟研究. 物理学报, 2023, 72(13): 136401. doi: 10.7498/aps.72.20230291
    [2] 夏文强, 赵彦, 刘振智, 鲁晓刚. 应变诱发四方相小角度对称倾侧晶界位错反应的晶体相场模拟. 物理学报, 2022, 71(9): 096102. doi: 10.7498/aps.71.20212278
    [3] 姜彦博, 柳文波, 孙志鹏, 喇永孝, 恽迪. 外加应力作用下 UO2 中空洞演化过程的相场模拟. 物理学报, 2022, 71(2): 026103. doi: 10.7498/aps.71.20211440
    [4] 徐攀攀, 韩培德, 张竹霞, 张彩丽, 董楠, 王剑. 硼在fcc-Fe晶界偏析及对界面结合能力影响的第一性原理研究. 物理学报, 2021, 70(16): 166401. doi: 10.7498/aps.70.20210361
    [5] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟. 物理学报, 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [6] 杨辉, 冯泽华, 王贺然, 张云鹏, 陈铮, 信天缘, 宋小蓉, 吴璐, 张静. Fe-Cr合金辐照空洞微结构演化的相场法模拟. 物理学报, 2021, 70(5): 054601. doi: 10.7498/aps.70.20201457
    [7] 杨一波, 赵宇宏, 田晓林, 侯华. Ni60Al20V20中熵合金沉淀过程微扩散相场法模拟. 物理学报, 2020, 69(14): 140201. doi: 10.7498/aps.69.20200154
    [8] 刘迪, 王静, 王俊升, 黄厚兵. 相场模拟应变调控PbZr(1–x)TixO3薄膜微观畴结构和宏观铁电性能. 物理学报, 2020, 69(12): 127801. doi: 10.7498/aps.69.20200310
    [9] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [10] 张军, 陈文雄, 郑成武, 李殿中. γ-α相变中不同晶界特征下铁素体生长形貌的相场模拟. 物理学报, 2017, 66(7): 070701. doi: 10.7498/aps.66.070701
    [11] 段培培, 邢辉, 陈志, 郝冠华, 王碧涵, 金克新. 镁基合金自由枝晶生长的相场模拟研究. 物理学报, 2015, 64(6): 060201. doi: 10.7498/aps.64.060201
    [12] 杜立飞, 张蓉, 邢辉, 张利民, 张洋, 刘林. 横向限制下凝固微观组织演化的相场法模拟. 物理学报, 2013, 62(10): 106401. doi: 10.7498/aps.62.106401
    [13] 潘诗琰, 朱鸣芳. 双边扩散枝晶生长的定量相场模型. 物理学报, 2012, 61(22): 228102. doi: 10.7498/aps.61.228102
    [14] 王明光, 赵宇宏, 任娟娜, 穆彦青, 王伟, 杨伟明, 李爱红, 葛洪浩, 侯华. 相场法模拟NiCu合金非等温凝固枝晶生长. 物理学报, 2011, 60(4): 040507. doi: 10.7498/aps.60.040507
    [15] 任秀, 王锦程, 杨玉娟, 杨根仓. 纯物质晶界结构及运动的晶体相场法模拟. 物理学报, 2010, 59(5): 3595-3600. doi: 10.7498/aps.59.3595
    [16] 王刚, 徐东生, 杨锐. Ti-6Al-4V合金中片层组织形成的相场模拟. 物理学报, 2009, 58(13): 343-S348. doi: 10.7498/aps.58.343
    [17] 龙文元, 蔡启舟, 魏伯康, 陈立亮. 相场法模拟多元合金过冷熔体中的枝晶生长. 物理学报, 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [18] 朱昌盛, 王智平, 荆 涛, 肖荣振. 二元合金微观偏析的相场法数值模拟. 物理学报, 2006, 55(3): 1502-1507. doi: 10.7498/aps.55.1502
    [19] 赵代平, 荆 涛, 柳百成. 相场方法模拟铝合金三维枝晶生长. 物理学报, 2003, 52(7): 1737-1742. doi: 10.7498/aps.52.1737
    [20] 万发荣, 褚武扬, 肖纪美, 高桥平七郎. Fe-10%Cr铁素体合金中氢对辐照诱起偏析的影响. 物理学报, 1996, 45(3): 464-469. doi: 10.7498/aps.45.464
计量
  • 文章访问数:  5284
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-04
  • 修回日期:  2021-01-05
  • 上网日期:  2021-05-24
  • 刊出日期:  2021-06-05

/

返回文章
返回