搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮化镓基高电子迁移率晶体管单粒子和总剂量效应的实验研究

陈睿 梁亚楠 韩建伟 王璇 杨涵 陈钱 袁润杰 马英起 上官士鹏

引用本文:
Citation:

氮化镓基高电子迁移率晶体管单粒子和总剂量效应的实验研究

陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏

Single event effect and total dose effect of GaN high electron mobility transistor using heavy ions and gamma rays

Chen Rui, Liang Ya-Nan, Han Jian-Wei, Wang Xuan, Yang Han, Chen Qian, Yuan Run-Jie, Ma Ying-Qi, Shangguan Shi-Peng
PDF
HTML
导出引用
  • 利用重离子加速器和60Co γ射线实验装置, 开展了p型栅和共栅共源级联结构增强型氮化镓基高电子迁移率晶体管的单粒子效应和总剂量效应实验研究, 给出了氮化镓器件单粒子效应安全工作区域、总剂量效应敏感参数以及辐射响应规律. 实验发现, p型栅结构氮化镓器件具有较好的抗单粒子和总剂量辐射能力, 其单粒子烧毁阈值大于37 MeV·cm2/mg, 抗总剂量效应水平高于1 Mrad (Si), 而共栅共源级联结构氮化镓器件则对单粒子和总剂量辐照均很敏感, 在线性能量传输值为22 MeV·cm2/mg的重离子和累积总剂量为200 krad (Si)辐照时, 器件的性能和功能出现异常. 利用金相显微镜成像技术和聚焦离子束扫描技术分析氮化镓器件内部电路结构, 揭示了共栅共源级联结构氮化镓器件发生单粒子烧毁现象和对总剂量效应敏感的原因. 结果表明, 单粒子效应诱发内部耗尽型氮化镓器件的栅肖特基势垒发生电子隧穿可能是共栅共源级联结构氮化镓器件发生源漏大电流的内在机制. 同时发现, 金属氧化物半导体场效应晶体管是导致共栅共源级联结构氮化镓器件对总剂量效应敏感的可能原因.
    The single event effect (SEE) and the total ionizing dose (TID) effect of a commercial enhancement mode gallium nitride (GaN) high electron nobility transistor (HEMT) with p-type gate structure and cascode structure are studied by using the radiation of heavy ions and 60Co gamma in this paper. The safe operating areas ofSEE, the sensitive parameters degradation of TID effect and the SEE and TID characteristics of GaN HEMT device are respectively presented. The experimental results show that the SEE and TID effect have less influence on the p-type gate GaN device. The linear energy transfer (LET) threshold of the single event Burnout effect (SEB) is higher than 37 MeV·cm2/mg and the failure threshold of TID effect is above 1M rad (Si) for p-type gate GaN device. However, the GaN HEMT device with cascode structure is much more sensitive to SEE and TID effect than p-type gate GaN device. Under heavy ions at LET of 22 MeV·cm2/mg and a cumulative dose of 200 krad (Si), the SEB phenomenon and parameters-degradation of cascode-type GaN HEMT are respectively observed. Besides, the circuit structure of the cascode-type GaN HEMT device is analyzed by using metallographic microscope imaging and focused ions beam technology. It reveals the possible reason why it is sensitive to SEB and TID for cascode-type GaN HEMT. These results show that the extra carriers caused by heavy ion radiation can tunnel the Schottky barrier formed by gate metal and AlGaN layer, leading to a large source-drain current in GaN HEMT device. Meanwhile, it is shown that the metal oxide semiconductor field-effect transistor in cascode circuit for TP90H180PS GaN HEMT may be the main reason why the cascode-type GaN HEMT is sensitive to TID.
      通信作者: 陈睿, ch.ri.520@163.com
    • 基金项目: 北京市科委项目(批准号: E039360101)和中国科学院战略性先导科技专项(A类)(批准号: XDA17010301)资助的课题
      Corresponding author: Chen Rui, ch.ri.520@163.com
    • Funds: Project supported by the Beijing Municipal Science and Technology Commission, China (Grant No. E039360101) and the Strategic Priority Research Program of Chinese Academy of Sciences, China (Grant No. XDA17010301)
    [1]

    Scheick L Z 2017 Proceedings of the 19th European Conference on Radiation and Its Effects on Components and Systems Geneva, Switzerland, October 2−6, 2017 pp 1−7

    [2]

    Bazzoli S, Girard S, Ferlet-Cavrois V, Baggio J, Paillet P, Duhamel O 2007 Proceedings of the 9th European Conference on Radiation and Its Effects on Components and Systems Deauville, France, September 10−14, 2007 pp1−5

    [3]

    郭伟玲, 陈艳芳, 李松宇, 雷亮, 柏常青 2007 发光学报 38 760

    Guo W L, Chen Y F, Li S Y, Lei L, Bai C Q 2007 Chinese J. Lumin. 38 760

    [4]

    何亮, 刘扬 2016 电源学报 14 1

    He L, Liu Y 2016 J. Power Supply 14 1

    [5]

    Martinez M J, King M. P, Baca A G, Aller-man A A, Armstrong A A, Klein B A, Douglas E A, Kaplar R J, Swanson S E 2019 IEEE Trans. Nucl. Sci. 66 344Google Scholar

    [6]

    Onoda S, Hasuike A, Nabeshima Y, Sasaki H, Yajima K, Sato S I, Ohshima T 2013 IEEE Trans. Nucl. Sci. 60 4446Google Scholar

    [7]

    Mizuta E, Kuboyama S, Nakada Y, Takeyama A, Ohshima T, Iwata Y, Suzuki K 2018 IEEE Trans. Nucl. Sci. 65 1956Google Scholar

    [8]

    谷文萍, 张进城, 王冲, 冯倩, 马晓华, 郝跃 2009 物理学报 58 1161Google Scholar

    Gu W P, Zhang J C, Wang C, Feng Q, Ma X H, Hao Y 2009 Acta Phys. Sin. 58 1161Google Scholar

    [9]

    Xiao S, Saadat O I, Chen J, Zhang E X, Cui S, Palacios T, Fleetwood D M, Ma T P 2013 IEEE Trans. Nucl. Sci. 60 4074Google Scholar

    [10]

    董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平 2020 物理学报 69 078501Google Scholar

    Dong S J, Guo H X, Ma W Y, Lv L, Peng X Y, Lei Z F, Yue S Z, Hao R J, Ju A A, Zhong X L, Ouyang X P 2020 Acta Phys. Sin. 69 078501Google Scholar

    [11]

    Jiang R, Zhang E X, Mccurdy M W, Wang P, Gong H, Yan D, Schrimpf R D, Fleetwood D M 2019 IEEE Trans. Nucl. Sci. 66 170Google Scholar

    [12]

    Aktas O, Kuliev A, Kumar V, Schwindt R, Toshkov S, Costescu D, Stubbins J, Adesida I 2004 Solid State Electron. 48 471Google Scholar

    [13]

    张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓辉 2013 物理学报 62 117103Google Scholar

    Zhang M L, Yang R X, Li Z X, Cao X Z, Wang B Y, Wang X H 2013 Acta Phys. Sin. 62 117103Google Scholar

    [14]

    Wrobel F, Touboul A D, Pouget V, Dilillo L, Boch J, Saigne F 2017 Microelectron Reliab. 76 644

    [15]

    Rowena I B, Selvaraj S L, Egawa T 2011 IEEE Electron Device Lett. 32 1534Google Scholar

    [16]

    Khachatrian A, Roche N J H, Buchner S P, Koehler A D, Greenlee J D, Anderson T J, Warner J H, McMorrow D 2016 IEEE Trans. Nucl. Sci. 63 1995Google Scholar

    [17]

    Zerarka M, Austin P, Bensoussan A, Morancho F, Durier A 2017 IEEE Trans. Nucl. Sci. 64 2242

    [18]

    Scheick L 2014 IEEE Trans. Nucl. Sci. 61 2881Google Scholar

    [19]

    Oldham T, Mclean F 2003 IEEE Trans. Nucl. Sci. 50 483Google Scholar

    [20]

    Fleetwood D M 2018 IEEE Trans. Nucl. Sci. 65 1465Google Scholar

  • 图 1  实验现场 (a)单粒子效应实验现场; (b)总剂量效应实验现场

    Fig. 1.  Experiment setup: (a) SEE experiment; (b) TID experiment.

    图 2  GaN器件开封装图 (a) GS0650111L; (b) TP90H180PS

    Fig. 2.  The decapping photograph of GaN device: (a) GS0650111L; (b) TP90H180PS.

    图 3  单粒子和总剂量效应实验电路原理图

    Fig. 3.  Schematic diagram of SEE and TID test circuit.

    图 4  (a) GS0650111L和TP90H180PS器件安全工作区域; (b)漏、栅端电流随时间的变化

    Fig. 4.  (a) Safe operating area of GS0650111L and TP90H180PS; (b) the variations of drain current and gate current with time.

    图 5  TP90H180PS器件发生SEB的实物图 (a) SEB敏感区域; (b) SEB区域局部示意图

    Fig. 5.  The SEB photograph of TP90H180PS: (a) SEB sensitive areas; (b) partial enlargement of SEB sensitive areas.

    图 6  器件漏极电流随辐照累积剂量及退火时间(168 h)的变化 (a)开态偏置; (b)关态偏置

    Fig. 6.  The variations of drain current with cumulative dose and annealing time: (a) On-state bias; (b) off-state bias.

    图 7  器件阈值电压随辐照累积剂量及退火时间(168 h)的变化关系 (a)开态偏置; (b)关态偏置

    Fig. 7.  The variations of threshold voltage with cumulative dose and annealing time: (a) On-state bias; (b) off-state bias.

    图 8  重离子辐照后关态模式下Cascode器件的栅漏电流随漏极电压的变化

    Fig. 8.  The variations of gate/drain current with drain voltage for Cascode device in off-state mode after heavy ion irradiation.

    图 9  (a) Cascode型GaN HEMT电路结构原理图; (b)耗尽型GaN HEMT的剖面示意图

    Fig. 9.  (a) The circuit schematic diagram of Cascode type GaN HEMT device; (b) the cross-section diagram of the depletion type GaN HEMT.

    图 10  p型栅GaN HEMT的剖面示意图

    Fig. 10.  The cross-section diagram of the p-type gate GaN HEMT.

    表 1  实验样品的参数

    Table 1.  Parameters of the tested sample.

    型号类型结构额定电
    压/V
    导通电
    阻/mΩ
    生产厂商
    GS0650111L增强型p型栅650150GaN Systems
    TP90H180PS增强型Cascode900205Transphorm
    下载: 导出CSV
  • [1]

    Scheick L Z 2017 Proceedings of the 19th European Conference on Radiation and Its Effects on Components and Systems Geneva, Switzerland, October 2−6, 2017 pp 1−7

    [2]

    Bazzoli S, Girard S, Ferlet-Cavrois V, Baggio J, Paillet P, Duhamel O 2007 Proceedings of the 9th European Conference on Radiation and Its Effects on Components and Systems Deauville, France, September 10−14, 2007 pp1−5

    [3]

    郭伟玲, 陈艳芳, 李松宇, 雷亮, 柏常青 2007 发光学报 38 760

    Guo W L, Chen Y F, Li S Y, Lei L, Bai C Q 2007 Chinese J. Lumin. 38 760

    [4]

    何亮, 刘扬 2016 电源学报 14 1

    He L, Liu Y 2016 J. Power Supply 14 1

    [5]

    Martinez M J, King M. P, Baca A G, Aller-man A A, Armstrong A A, Klein B A, Douglas E A, Kaplar R J, Swanson S E 2019 IEEE Trans. Nucl. Sci. 66 344Google Scholar

    [6]

    Onoda S, Hasuike A, Nabeshima Y, Sasaki H, Yajima K, Sato S I, Ohshima T 2013 IEEE Trans. Nucl. Sci. 60 4446Google Scholar

    [7]

    Mizuta E, Kuboyama S, Nakada Y, Takeyama A, Ohshima T, Iwata Y, Suzuki K 2018 IEEE Trans. Nucl. Sci. 65 1956Google Scholar

    [8]

    谷文萍, 张进城, 王冲, 冯倩, 马晓华, 郝跃 2009 物理学报 58 1161Google Scholar

    Gu W P, Zhang J C, Wang C, Feng Q, Ma X H, Hao Y 2009 Acta Phys. Sin. 58 1161Google Scholar

    [9]

    Xiao S, Saadat O I, Chen J, Zhang E X, Cui S, Palacios T, Fleetwood D M, Ma T P 2013 IEEE Trans. Nucl. Sci. 60 4074Google Scholar

    [10]

    董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平 2020 物理学报 69 078501Google Scholar

    Dong S J, Guo H X, Ma W Y, Lv L, Peng X Y, Lei Z F, Yue S Z, Hao R J, Ju A A, Zhong X L, Ouyang X P 2020 Acta Phys. Sin. 69 078501Google Scholar

    [11]

    Jiang R, Zhang E X, Mccurdy M W, Wang P, Gong H, Yan D, Schrimpf R D, Fleetwood D M 2019 IEEE Trans. Nucl. Sci. 66 170Google Scholar

    [12]

    Aktas O, Kuliev A, Kumar V, Schwindt R, Toshkov S, Costescu D, Stubbins J, Adesida I 2004 Solid State Electron. 48 471Google Scholar

    [13]

    张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓辉 2013 物理学报 62 117103Google Scholar

    Zhang M L, Yang R X, Li Z X, Cao X Z, Wang B Y, Wang X H 2013 Acta Phys. Sin. 62 117103Google Scholar

    [14]

    Wrobel F, Touboul A D, Pouget V, Dilillo L, Boch J, Saigne F 2017 Microelectron Reliab. 76 644

    [15]

    Rowena I B, Selvaraj S L, Egawa T 2011 IEEE Electron Device Lett. 32 1534Google Scholar

    [16]

    Khachatrian A, Roche N J H, Buchner S P, Koehler A D, Greenlee J D, Anderson T J, Warner J H, McMorrow D 2016 IEEE Trans. Nucl. Sci. 63 1995Google Scholar

    [17]

    Zerarka M, Austin P, Bensoussan A, Morancho F, Durier A 2017 IEEE Trans. Nucl. Sci. 64 2242

    [18]

    Scheick L 2014 IEEE Trans. Nucl. Sci. 61 2881Google Scholar

    [19]

    Oldham T, Mclean F 2003 IEEE Trans. Nucl. Sci. 50 483Google Scholar

    [20]

    Fleetwood D M 2018 IEEE Trans. Nucl. Sci. 65 1465Google Scholar

  • [1] 崔艺馨, 马英起, 上官士鹏, 康玄武, 刘鹏程, 韩建伟. 空间用GaN功率器件单粒子烧毁效应激光定量模拟技术研究. 物理学报, 2022, 71(13): 136102. doi: 10.7498/aps.71.20212297
    [2] 张晋新, 王信, 郭红霞, 冯娟, 吕玲, 李培, 闫允一, 吴宪祥, 王辉. 三维数值仿真研究锗硅异质结双极晶体管总剂量效应. 物理学报, 2022, 71(5): 058502. doi: 10.7498/aps.71.20211795
    [3] 张晋新, 王信, 郭红霞, 冯娟. 基于三维数值仿真的SiGe HBT总剂量效应关键影响因素机理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211795
    [4] 李顺, 宋宇, 周航, 代刚, 张健. 双极型晶体管总剂量效应的统计特性. 物理学报, 2021, 70(13): 136102. doi: 10.7498/aps.70.20201835
    [5] 彭超, 恩云飞, 李斌, 雷志锋, 张战刚, 何玉娟, 黄云. 绝缘体上硅金属氧化物半导体场效应晶体管中辐射导致的寄生效应研究. 物理学报, 2018, 67(21): 216102. doi: 10.7498/aps.67.20181372
    [6] 梁昌慧, 张小安, 李耀宗, 赵永涛, 周贤明, 王兴, 梅策香, 肖国青. 不同离子激发Au靶的多电离效应. 物理学报, 2018, 67(24): 243201. doi: 10.7498/aps.67.20181642
    [7] 秦丽, 郭红霞, 张凤祁, 盛江坤, 欧阳晓平, 钟向丽, 丁李利, 罗尹虹, 张阳, 琚安安. 铁电存储器60Co γ射线及电子总剂量效应研究. 物理学报, 2018, 67(16): 166101. doi: 10.7498/aps.67.20180829
    [8] 李淑萍, 张志利, 付凯, 于国浩, 蔡勇, 张宝顺. 基于原位等离子体氮化及低压化学气相沉积-Si3N4栅介质的高性能AlGaN/GaN MIS-HEMTs器件的研究. 物理学报, 2017, 66(19): 197301. doi: 10.7498/aps.66.197301
    [9] 周航, 崔江维, 郑齐文, 郭旗, 任迪远, 余学峰. 电离辐射环境下的部分耗尽绝缘体上硅n型金属氧化物半导体场效应晶体管可靠性研究. 物理学报, 2015, 64(8): 086101. doi: 10.7498/aps.64.086101
    [10] 王信, 陆妩, 吴雪, 马武英, 崔江维, 刘默寒, 姜柯. 深亚微米金属氧化物场效应晶体管及寄生双极晶体管的总剂量效应研究. 物理学报, 2014, 63(22): 226101. doi: 10.7498/aps.63.226101
    [11] 卓青青, 刘红侠, 彭里, 杨兆年, 蔡惠民. 总剂量辐照条件下部分耗尽半导体氧化物绝缘层N沟道金属氧化物半导体器件的三种kink效应. 物理学报, 2013, 62(3): 036105. doi: 10.7498/aps.62.036105
    [12] 卓青青, 刘红侠, 王志. 三维H形栅SOINMOS器件总剂量条件下的单粒子效应. 物理学报, 2013, 62(17): 176106. doi: 10.7498/aps.62.176106
    [13] 商怀超, 刘红侠, 卓青青. 低剂量率60Co γ 射线辐照下SOI MOS器件的退化机理. 物理学报, 2012, 61(24): 246101. doi: 10.7498/aps.61.246101
    [14] 李明, 余学峰, 薛耀国, 卢健, 崔江维, 高博. 部分耗尽绝缘层附着硅静态随机存储器总剂量辐射损伤效应的研究. 物理学报, 2012, 61(10): 106103. doi: 10.7498/aps.61.106103
    [15] 胡志远, 刘张李, 邵华, 张正选, 宁冰旭, 毕大炜, 陈明, 邹世昌. 深亚微米器件沟道长度对总剂量辐照效应的影响. 物理学报, 2012, 61(5): 050702. doi: 10.7498/aps.61.050702
    [16] 刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明, 邹世昌. 0.18 m MOSFET器件的总剂量辐照效应. 物理学报, 2011, 60(11): 116103. doi: 10.7498/aps.60.116103
    [17] 王义元, 陆妩, 任迪远, 郭旗, 余学峰, 何承发, 高博. 双极线性稳压器电离辐射剂量率效应及其损伤分析. 物理学报, 2011, 60(9): 096104. doi: 10.7498/aps.60.096104
    [18] 贺朝会, 耿斌, 何宝平, 姚育娟, 李永宏, 彭宏论, 林东生, 周辉, 陈雨生. 大规模集成电路总剂量效应测试方法初探. 物理学报, 2004, 53(1): 194-199. doi: 10.7498/aps.53.194
    [19] 贺朝会, 耿 斌, 杨海亮, 陈晓华, 李国政, 王燕萍. 浮栅ROM器件辐射效应机理分析. 物理学报, 2003, 52(9): 2235-2238. doi: 10.7498/aps.52.2235
    [20] 郭红霞, 陈雨生, 张义门, 周辉, 龚建成, 韩福斌, 关颖, 吴国荣. 稳态、瞬态X射线辐照引起的互补性金属-氧化物-半导体器件剂量增强效应研究. 物理学报, 2001, 50(12): 2279-2283. doi: 10.7498/aps.50.2279
计量
  • 文章访问数:  2296
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-01
  • 修回日期:  2020-12-31
  • 上网日期:  2021-05-26
  • 刊出日期:  2021-06-05

氮化镓基高电子迁移率晶体管单粒子和总剂量效应的实验研究

  • 1. 中国科学院国家空间科学中心, 北京 100190
  • 2. 中国科学院大学, 北京 100049
  • 通信作者: 陈睿, ch.ri.520@163.com
    基金项目: 北京市科委项目(批准号: E039360101)和中国科学院战略性先导科技专项(A类)(批准号: XDA17010301)资助的课题

摘要: 利用重离子加速器和60Co γ射线实验装置, 开展了p型栅和共栅共源级联结构增强型氮化镓基高电子迁移率晶体管的单粒子效应和总剂量效应实验研究, 给出了氮化镓器件单粒子效应安全工作区域、总剂量效应敏感参数以及辐射响应规律. 实验发现, p型栅结构氮化镓器件具有较好的抗单粒子和总剂量辐射能力, 其单粒子烧毁阈值大于37 MeV·cm2/mg, 抗总剂量效应水平高于1 Mrad (Si), 而共栅共源级联结构氮化镓器件则对单粒子和总剂量辐照均很敏感, 在线性能量传输值为22 MeV·cm2/mg的重离子和累积总剂量为200 krad (Si)辐照时, 器件的性能和功能出现异常. 利用金相显微镜成像技术和聚焦离子束扫描技术分析氮化镓器件内部电路结构, 揭示了共栅共源级联结构氮化镓器件发生单粒子烧毁现象和对总剂量效应敏感的原因. 结果表明, 单粒子效应诱发内部耗尽型氮化镓器件的栅肖特基势垒发生电子隧穿可能是共栅共源级联结构氮化镓器件发生源漏大电流的内在机制. 同时发现, 金属氧化物半导体场效应晶体管是导致共栅共源级联结构氮化镓器件对总剂量效应敏感的可能原因.

English Abstract

    • 随着空间卫星、深空探测等航天技术的不断发展, 对于耐高温、大功率、小型化、适应极端辐射环境的电源系统需求日益明显[1-4]. 氮化镓(GaN)基功率器件作为宽禁带半导体技术的核心代表之一, 相较于传统的硅器件具有击穿电压高、导通电阻小以及耐高温等优点, 可满足新一代航天器电源系统的应用需求. 由于采用异质结层替代栅氧层工艺, GaN等宽禁带器件天然具有较好的抗总剂量效应(total ionizing dose effect, TID)能力, 但其对空间高能粒子导致的单粒子效应(single event effect, SEE)较为敏感[5-7]. 目前国内外针对GaN器件的总剂量效应研究相对较多, 主要涉及抗辐射GaN材料和工艺加固设计、p型栅结构增强型GaN器件的实验评估和影响因素研究. 相关实验研究发现, 增强型GaN器件的抗总剂量水平可达到1 Mrad(Si), 并初步揭示了其总剂量辐射损伤机理[7-13]. 但目前有关共源共栅级联结构(Cascode)GaN高电子迁移率晶体管(high electron mobility transistor, HEMT)器件的总剂量效应研究报道较少, 尤其是对比研究不同电路结构GaN HEMT器件的总剂量效应的特征与规律尚存在明显不足. 相对于总剂量效应, GaN器件单粒子效应研究相对薄弱, 主要集中在GaN器件单粒子失效模式和表现特征的实验研究, 以及相关辐射损伤机理研究存在不足, 严重制约了GaN器件在航天器电源系统的广泛应用.

      本文针对GaN Systems公司p型栅结构和Transphorm公司共源共栅级联结构的增强型GaN HEMT器件, 利用重离子加速器和60Co γ射线分别进行了单粒子烧毁(single event burnout, SEB)效应和总剂量效应实验研究, 获得了GaN HEMT的辐射响应特征、敏感参数和区域, 并揭示了Cascode型GaN HEMT对SEB和总剂量辐射敏感的物理机理.

    • 利用中国原子能科学院H-13串列加速器, 开展了GaN HEMT的SEB效应研究. 辐照离子分别为能量169 MeV的48Ti离子和210 MeV的74Ge离子, 线性能量传输值(linear energy transfer, LET)分别为21.8和37 MeV·cm2/mg, 束流强度和注量分别为2 × 104 cm–2/s和5 × 106 cm–2. 利用北京大学60Co γ射线总剂量实验模拟源, 开展了GaN HEMT的总剂量效应研究, 辐照剂量率为100 rad(Si)/s, 累积辐照总剂量分别为200 krad(Si), 500 krad(Si) 和1 Mrad(Si), 辐照实验参数采用在线测试. 总剂量辐照后采用室温168 h退火测试, 单粒子和总剂量实验现场图如图1所示.

      图  1  实验现场 (a)单粒子效应实验现场; (b)总剂量效应实验现场

      Figure 1.  Experiment setup: (a) SEE experiment; (b) TID experiment.

      单粒子效应和总剂量效应实验样品分别选用同一批次GaN Systems公司650 V GS0650111L型和Transphorm公司900 V TP90H180PS型的GaN HEMT各5片, 正面开封图如图2所示, 实验样品信息如表1所列. 单粒子效应实验器件均经过正面开盖处理且功能测试正常. GaN HEMT单粒子效应和总剂量效应的辐照实验电路参照MIL-STD-750D标准, 如图3所示, 在器件漏源端和栅源端分别通过串联电阻和并联电容接入Keithley2470和2450型圆表, 用来提供器件的偏置电压和监测器件漏源端电流、阈值电压等电学参数变化. GaN HEMT单粒子效应实验偏置条件采用关态偏置: 漏源电压Vds为0—650 V(900 V), 栅源电压Vgs为–5, –3, –1和0 V. 总剂量效应实验偏置条件采用关态和开态两种偏置, 其中关态偏置: VdsVgs均为0 V, 开态偏置: Vgs为2.6 V, Vds为1 V.

      图  2  GaN器件开封装图 (a) GS0650111L; (b) TP90H180PS

      Figure 2.  The decapping photograph of GaN device: (a) GS0650111L; (b) TP90H180PS.

      型号类型结构额定电
      压/V
      导通电
      阻/mΩ
      生产厂商
      GS0650111L增强型p型栅650150GaN Systems
      TP90H180PS增强型Cascode900205Transphorm

      表 1  实验样品的参数

      Table 1.  Parameters of the tested sample.

      图  3  单粒子和总剂量效应实验电路原理图

      Figure 3.  Schematic diagram of SEE and TID test circuit.

    • 图4(a)给出了GS0650111L和TP90H180PS器件分别在能量为210 MeV的Ge (LET值为37 MeV·cm2/mg)和能量为169 MeV的Ti (LET值为22 MeV·cm2/mg)离子辐照下, 器件漏源电压Vds随栅源电压Vgs的变化关系, 即器件SEB效应的安全工作区域. 当入射粒子LET值分别为37和22 MeV·cm2/mg时, 随着器件的栅极电压Vgs从–5 V增加到0 V, GS0650111L和TP90H180PS器件的漏极电压Vds分别保持650和50 V不变. GS0650111L和TP90H180PS器件漏端电流Id和栅端电流Ig随辐照时间的变化如图4(b)所示, 在粒子LET值为37 MeV·cm2/mg辐照下, GS0650111L器件漏极电压为650 V时, 器件漏端电流Id和栅端电流Ig未出现明显变化, 而当粒子LET值降为22 MeV·cm2/mg, 器件漏极电压为100 V时, TP90H180PS器件漏端电流Id随时间不断增大, 直到限流值10 mA, 栅端电流基本保持不变, 表现出明显的漏端大电流现象.

      图  4  (a) GS0650111L和TP90H180PS器件安全工作区域; (b)漏、栅端电流随时间的变化

      Figure 4.  (a) Safe operating area of GS0650111L and TP90H180PS; (b) the variations of drain current and gate current with time.

      图5为TP90H180PS器件发生SEB效应的实物图, 从图5(a)可以发现Cascode结构中的耗尽型GaN HEMT出现了SEB现象, 且主要发生在插指结构的金属布线层上, 而硅(Si)金属氧化物场效应晶体管(metal oxide semiconductor field effect transistor, MOSFET)未出现SEB现象. 图5(b)所示为利用金相显微镜拍照分析提取的器件SEB区域细节, 可以看到器件金属布线层中的栅区域和漏区域之间出了明显的烧毁现象.

      图  5  TP90H180PS器件发生SEB的实物图 (a) SEB敏感区域; (b) SEB区域局部示意图

      Figure 5.  The SEB photograph of TP90H180PS: (a) SEB sensitive areas; (b) partial enlargement of SEB sensitive areas.

    • 图6所示为TP90H180PS和GS0650111L器件工作在开态和关态偏置时, 器件漏电流随辐照累积剂量的变化. 当器件工作在开态偏置条件时, 从图6(a)可以看到, 随着辐照累积剂量增大到200 krad(Si)时, GS0650111L器件的漏电流从正常工作电流约2.1 nA增大到约150 µA, 当辐照剂量累积到1 M rad(Si)时, 器件漏电流减小约为75 µA. 之后, 随着退火时间增加, 器件漏电流不断减小, 当经过约50 h的室温退火后, 器件的漏电流基本上恢复至正常工作电流值, 而TP90H180PS器件在辐照剂量累积到1 Mrad(Si)时, 器件的漏电流基本未发生变化. 当器件工作在关态偏置条件下, 漏电流约为20 nA. 从图6(b)可以看到, 当辐照累积剂量增加到1 Mrad (Si)时, GS0650111L器件漏电流基本保持不变, 随后经过168 h的退火后, 器件的漏电增大到约15 µA, 此时器件的功能正常. TP90H180PS器件随着辐照累积剂量增加, 漏电流在不断增加, 累积剂量为1 Mrad (Si)时, 漏电流增大到约10 µA, 但经过168 h小时的室温退火后, 漏电流恢复至正常工作电流值附近.

      图  6  器件漏极电流随辐照累积剂量及退火时间(168 h)的变化 (a)开态偏置; (b)关态偏置

      Figure 6.  The variations of drain current with cumulative dose and annealing time: (a) On-state bias; (b) off-state bias.

      在开态和关态辐照偏置时, TP90H180PS和GS0650111L器件阈值电压随辐照累积剂量的变化如图7所示. 从图7(a)可以看到, 当辐照时器件工作在开态偏置条件时, 随着辐照累积剂量增大到1 Mrad (Si)时, TP90H180PS器件的阈值电压负向偏移约为5 V, GS0650111L器件阈值电压基本保持不变. 当经过168 h室温退火后, TP90H180PS器件的阈值电压仍处于负向偏移状态, 器件的功能出现异常. 当器件工作在关态偏置条件下, 由图7(b)可见, 辐照累积剂量增加到1 Mrad(Si)时, TP90H180PS器件的阈值电压负向偏移量约为1.7 V, 且经168 h的退火仍未恢复, 此时器件的功能异常, GS0650111L器件随着辐照累积剂量增加, 其阈值电压基本保持不变.

      图  7  器件阈值电压随辐照累积剂量及退火时间(168 h)的变化关系 (a)开态偏置; (b)关态偏置

      Figure 7.  The variations of threshold voltage with cumulative dose and annealing time: (a) On-state bias; (b) off-state bias.

    • 图4中在不同LET值辐照下, TP90H180PS和GS0650111L器件漏端和栅端电流随时间的变化可以发现, 相对于p型栅结构, Cascode结构的GaN器件对单粒子效应更加敏感. 在LET值为22 MeV·cm2/mg的粒子辐照下, TP90H180PS器件工作电压从900 V衰减到50 V, 下降近95%, 此时器件的漏极电流出现明显的增大, 而栅极电流基本保持不变.

      重离子辐照后, TP90H180PS器件在关态模式下, 器件的栅、漏电流随漏端电压的变化如图8所示. 可以看到, 器件的栅极电流仍保持在纳安量级, 即器件的栅源端处于截止状态, 而随着漏极电压增加, 器件的漏极电流在不断增大, 即表明器件漏源区域之间存在导电通道. 进一步对图9(a)所示的Cascode GaN器件内部电路结构分析可得, TP90H180PS型GaN器件电路由低压增强型Si MOSFET和高压耗尽型GaN HEMT共源极、共栅极级联组成. 当器件处于反偏截止状态时, 低压增强型Si MOSFET截止, 高压耗尽型GaN HEMT的漏极、栅极以及Si MOSFET的源极可形成TP90H180PS器件的源漏漏电路径, 导致器件源漏端出现大电流现象, 这可能是图5中TP90H180PS器件SEB区域主要在高压耗尽型GaN HEMT的主要原因. 此外, 分析图9所示的耗尽型GaN HEMT的剖面结构[14]可以发现, GaN器件的源端、栅端和漏端通过AlGaN势垒层和GaN沟道层隔离(二者之间形成了二维电子气). 由于GaN器件栅源端接地, 内部Si MOSFET处于截止状态, 在耗尽型GaN HEMT和Si MOSFET G_Si及D_Si构成的电流路径上电流极小, 即GaN器件栅极电流很小. 当重离子入射耗尽型GaN HEMT时, 在粒子入射的径迹上势必产生大量的电子空穴对, 由于耗尽型GaN HEMT的漏栅极之间存在高压偏置, 导致辐射诱发的载流子向器件AlGaN层不断注入, 随着辐射诱发的电子浓度在AlGaN势垒层中不断积累, 栅电极与半导体形成的肖特基势垒宽度不断减小, 促使辐射诱发的电子隧穿栅势垒[15-17], 形成耗尽型GaN HEMT的漏端、栅端和Si MOSFET源端的大电流路径, 与图5(b)中耗尽型GaN器件栅漏端之间出现SEB的现象一致.

      图  8  重离子辐照后关态模式下Cascode器件的栅漏电流随漏极电压的变化

      Figure 8.  The variations of gate/drain current with drain voltage for Cascode device in off-state mode after heavy ion irradiation.

      图  9  (a) Cascode型GaN HEMT电路结构原理图; (b)耗尽型GaN HEMT的剖面示意图

      Figure 9.  (a) The circuit schematic diagram of Cascode type GaN HEMT device; (b) the cross-section diagram of the depletion type GaN HEMT.

      p型栅结构GaN HEMT的剖面结构如图10所示. 二维电子气存在于AlGaN势垒层和GaN沟道层之间, 通过施加栅极电压控制p型GaN和n型AlGaN形成PN结的导通与截止, 实现GaN HEMT的开关特性. 当重离子入射GaN HEMT时, 辐射诱发的电子相对较难连续穿过AlGaN势垒层和p型GaN, 形成类似耗尽型GaN HEMT的栅漏端大电流通道. 相关的研究报道发现, 单粒子入射p型栅GaN HEMT可能会导致器件AlGaN势垒层局部出现缺陷, 造成器件源漏端漏电增大. 当漏电流增大到一定的程度时, 会导致器件的介质层被击穿, 进而出现大电流现象. 但通过聚焦离子束扫描技术(focused ion beam, FIB)发现, GS0650111L器件的介质层厚度远大于1 µm, 较难被单粒子辐射感生载流子形成的电场击穿, 这可能是p型栅结构GaN HEMT单粒子烧毁LET阈值相对较高的原因.

      图  10  p型栅GaN HEMT的剖面示意图

      Figure 10.  The cross-section diagram of the p-type gate GaN HEMT.

    • 分析图6图7可发现, 与国内外相关GaN HEMT的总剂量实验研究报道相一致, p型栅结构的GS0650111 L型GaN器件具有较强抗总剂量效应能力, 在辐照总剂量累积到1 Mrad(Si)时, 在开态和关态偏置条件下, 器件的漏电流和阈值电压基本保持不变. 室温退火时, 器件的漏电流略有增加, 但器件的输出和转移功能正常. 由图9(b)图10(a)中所示的GaN HEMT剖面图可发现, GaN HEMT主要通过AlGaN势垒层和GaN沟道层之间极化的二维电子气漂移扩散产生电流, 不存在栅氧化层工艺, 总剂量效应主要通过在p型GaN和SiN钝化层界面或AlGaN势垒层和GaN沟道层界面处产生额外的感生界面陷阱电荷, 进而影响器件的性能参数与功能[18]. 由于GaN HEMT界面层厚度较薄且界面陷阱电荷迁移率较低, 极大地抑制了总剂量辐射诱发界面陷阱电荷的数量和作用范围, 这可能是p型栅结构GaN HEMT对总剂量辐射不敏感的主要原因. 此外, 由于总剂量效应累积剂量较高, 总剂量辐射感生的界面陷阱在室温退火时可能会继续增长, 进而造成器件漏极电流增加[19].

      与p型栅GaN HEMT的总剂量辐射响应特征相反, Cascode结构的TP90H180PS型GaN HEMT在开态和关态偏置条件下, 均表现出对总剂量效应较为敏感. 在开态偏置条件下, 当辐照总剂量累积到200 krad(Si)时, 器件的漏电流和阈值电压出现明显增加; 在关态偏置条件下, 器件的漏电流在累积剂量为500 krad(Si)时显著增加, 器件功能出现异常. 分析TP90H180PS型GaN HEMT的内部电路结构可知, 器件漏电流、阈值电压、开关频率等性能参数均受低压NMOSFET的影响. 众所周知, 商用Si NMOSFET对总剂量效应非常敏感, 通常会造成器件的漏电流增加和阈值电压负向偏移[20]. 这可能是总剂量效应导致TP90H180PS型GaN器件漏电流增加和阈值电压负向偏移的主要原因.

    • 本文利用重离子加速器和60Co γ射线实验装置, 分别开展了p型栅和Cascode结构增强型GaN HEMT的单粒子效应和总剂量效应实验研究. 研究获得了不同结构GaN HEMT的单粒子效应响应特征及安全工作区域, 获得了不同工作模式下, 不同结构GaN HEMT的总剂量效应表现特征与规律. 值得注意的是, 研究发现p型栅结构GaN HEMT具有较强的抗单粒子和总剂量能力, 但是Cascode结构的GaN HEMT对单粒子效应和总剂量效应均很敏感. 实验研究揭示了单粒子辐射诱发耗尽型GaN HEMT栅极肖特基势垒发生电子隧穿可能是导致Cascode结构GaN HEMT出现SEB的内在机制, 以及Si NMOSFET是导致Cascode结构GaN HEMT对总剂量效应敏感的可能原因.

参考文献 (20)

目录

    /

    返回文章
    返回