-
利用重离子加速器和60Co γ射线实验装置, 开展了p型栅和共栅共源级联结构增强型氮化镓基高电子迁移率晶体管的单粒子效应和总剂量效应实验研究, 给出了氮化镓器件单粒子效应安全工作区域、总剂量效应敏感参数以及辐射响应规律. 实验发现, p型栅结构氮化镓器件具有较好的抗单粒子和总剂量辐射能力, 其单粒子烧毁阈值大于37 MeV·cm2/mg, 抗总剂量效应水平高于1 Mrad (Si), 而共栅共源级联结构氮化镓器件则对单粒子和总剂量辐照均很敏感, 在线性能量传输值为22 MeV·cm2/mg的重离子和累积总剂量为200 krad (Si)辐照时, 器件的性能和功能出现异常. 利用金相显微镜成像技术和聚焦离子束扫描技术分析氮化镓器件内部电路结构, 揭示了共栅共源级联结构氮化镓器件发生单粒子烧毁现象和对总剂量效应敏感的原因. 结果表明, 单粒子效应诱发内部耗尽型氮化镓器件的栅肖特基势垒发生电子隧穿可能是共栅共源级联结构氮化镓器件发生源漏大电流的内在机制. 同时发现, 金属氧化物半导体场效应晶体管是导致共栅共源级联结构氮化镓器件对总剂量效应敏感的可能原因.
-
关键词:
- 单粒子烧毁效应 /
- 总剂量效应 /
- 重离子 /
- 氮化镓高电子迁移率晶体管
The single event effect (SEE) and the total ionizing dose (TID) effect of a commercial enhancement mode gallium nitride (GaN) high electron nobility transistor (HEMT) with p-type gate structure and cascode structure are studied by using the radiation of heavy ions and 60Co gamma in this paper. The safe operating areas ofSEE, the sensitive parameters degradation of TID effect and the SEE and TID characteristics of GaN HEMT device are respectively presented. The experimental results show that the SEE and TID effect have less influence on the p-type gate GaN device. The linear energy transfer (LET) threshold of the single event Burnout effect (SEB) is higher than 37 MeV·cm2/mg and the failure threshold of TID effect is above 1M rad (Si) for p-type gate GaN device. However, the GaN HEMT device with cascode structure is much more sensitive to SEE and TID effect than p-type gate GaN device. Under heavy ions at LET of 22 MeV·cm2/mg and a cumulative dose of 200 krad (Si), the SEB phenomenon and parameters-degradation of cascode-type GaN HEMT are respectively observed. Besides, the circuit structure of the cascode-type GaN HEMT device is analyzed by using metallographic microscope imaging and focused ions beam technology. It reveals the possible reason why it is sensitive to SEB and TID for cascode-type GaN HEMT. These results show that the extra carriers caused by heavy ion radiation can tunnel the Schottky barrier formed by gate metal and AlGaN layer, leading to a large source-drain current in GaN HEMT device. Meanwhile, it is shown that the metal oxide semiconductor field-effect transistor in cascode circuit for TP90H180PS GaN HEMT may be the main reason why the cascode-type GaN HEMT is sensitive to TID.-
Keywords:
- single event burnout effect /
- total dose effect /
- heavy ion /
- gallium nitride high electron mobility transistor
[1] Scheick L Z 2017 Proceedings of the 19th European Conference on Radiation and Its Effects on Components and Systems Geneva, Switzerland, October 2−6, 2017 pp 1−7
[2] Bazzoli S, Girard S, Ferlet-Cavrois V, Baggio J, Paillet P, Duhamel O 2007 Proceedings of the 9th European Conference on Radiation and Its Effects on Components and Systems Deauville, France, September 10−14, 2007 pp1−5
[3] 郭伟玲, 陈艳芳, 李松宇, 雷亮, 柏常青 2007 发光学报 38 760
Guo W L, Chen Y F, Li S Y, Lei L, Bai C Q 2007 Chinese J. Lumin. 38 760
[4] 何亮, 刘扬 2016 电源学报 14 1
He L, Liu Y 2016 J. Power Supply 14 1
[5] Martinez M J, King M. P, Baca A G, Aller-man A A, Armstrong A A, Klein B A, Douglas E A, Kaplar R J, Swanson S E 2019 IEEE Trans. Nucl. Sci. 66 344Google Scholar
[6] Onoda S, Hasuike A, Nabeshima Y, Sasaki H, Yajima K, Sato S I, Ohshima T 2013 IEEE Trans. Nucl. Sci. 60 4446Google Scholar
[7] Mizuta E, Kuboyama S, Nakada Y, Takeyama A, Ohshima T, Iwata Y, Suzuki K 2018 IEEE Trans. Nucl. Sci. 65 1956Google Scholar
[8] 谷文萍, 张进城, 王冲, 冯倩, 马晓华, 郝跃 2009 物理学报 58 1161Google Scholar
Gu W P, Zhang J C, Wang C, Feng Q, Ma X H, Hao Y 2009 Acta Phys. Sin. 58 1161Google Scholar
[9] Xiao S, Saadat O I, Chen J, Zhang E X, Cui S, Palacios T, Fleetwood D M, Ma T P 2013 IEEE Trans. Nucl. Sci. 60 4074Google Scholar
[10] 董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平 2020 物理学报 69 078501Google Scholar
Dong S J, Guo H X, Ma W Y, Lv L, Peng X Y, Lei Z F, Yue S Z, Hao R J, Ju A A, Zhong X L, Ouyang X P 2020 Acta Phys. Sin. 69 078501Google Scholar
[11] Jiang R, Zhang E X, Mccurdy M W, Wang P, Gong H, Yan D, Schrimpf R D, Fleetwood D M 2019 IEEE Trans. Nucl. Sci. 66 170Google Scholar
[12] Aktas O, Kuliev A, Kumar V, Schwindt R, Toshkov S, Costescu D, Stubbins J, Adesida I 2004 Solid State Electron. 48 471Google Scholar
[13] 张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓辉 2013 物理学报 62 117103Google Scholar
Zhang M L, Yang R X, Li Z X, Cao X Z, Wang B Y, Wang X H 2013 Acta Phys. Sin. 62 117103Google Scholar
[14] Wrobel F, Touboul A D, Pouget V, Dilillo L, Boch J, Saigne F 2017 Microelectron Reliab. 76 644
[15] Rowena I B, Selvaraj S L, Egawa T 2011 IEEE Electron Device Lett. 32 1534Google Scholar
[16] Khachatrian A, Roche N J H, Buchner S P, Koehler A D, Greenlee J D, Anderson T J, Warner J H, McMorrow D 2016 IEEE Trans. Nucl. Sci. 63 1995Google Scholar
[17] Zerarka M, Austin P, Bensoussan A, Morancho F, Durier A 2017 IEEE Trans. Nucl. Sci. 64 2242
[18] Scheick L 2014 IEEE Trans. Nucl. Sci. 61 2881Google Scholar
[19] Oldham T, Mclean F 2003 IEEE Trans. Nucl. Sci. 50 483Google Scholar
[20] Fleetwood D M 2018 IEEE Trans. Nucl. Sci. 65 1465Google Scholar
-
表 1 实验样品的参数
Table 1. Parameters of the tested sample.
型号 类型 结构 额定电
压/V导通电
阻/mΩ生产厂商 GS0650111L 增强型 p型栅 650 150 GaN Systems TP90H180PS 增强型 Cascode 900 205 Transphorm -
[1] Scheick L Z 2017 Proceedings of the 19th European Conference on Radiation and Its Effects on Components and Systems Geneva, Switzerland, October 2−6, 2017 pp 1−7
[2] Bazzoli S, Girard S, Ferlet-Cavrois V, Baggio J, Paillet P, Duhamel O 2007 Proceedings of the 9th European Conference on Radiation and Its Effects on Components and Systems Deauville, France, September 10−14, 2007 pp1−5
[3] 郭伟玲, 陈艳芳, 李松宇, 雷亮, 柏常青 2007 发光学报 38 760
Guo W L, Chen Y F, Li S Y, Lei L, Bai C Q 2007 Chinese J. Lumin. 38 760
[4] 何亮, 刘扬 2016 电源学报 14 1
He L, Liu Y 2016 J. Power Supply 14 1
[5] Martinez M J, King M. P, Baca A G, Aller-man A A, Armstrong A A, Klein B A, Douglas E A, Kaplar R J, Swanson S E 2019 IEEE Trans. Nucl. Sci. 66 344Google Scholar
[6] Onoda S, Hasuike A, Nabeshima Y, Sasaki H, Yajima K, Sato S I, Ohshima T 2013 IEEE Trans. Nucl. Sci. 60 4446Google Scholar
[7] Mizuta E, Kuboyama S, Nakada Y, Takeyama A, Ohshima T, Iwata Y, Suzuki K 2018 IEEE Trans. Nucl. Sci. 65 1956Google Scholar
[8] 谷文萍, 张进城, 王冲, 冯倩, 马晓华, 郝跃 2009 物理学报 58 1161Google Scholar
Gu W P, Zhang J C, Wang C, Feng Q, Ma X H, Hao Y 2009 Acta Phys. Sin. 58 1161Google Scholar
[9] Xiao S, Saadat O I, Chen J, Zhang E X, Cui S, Palacios T, Fleetwood D M, Ma T P 2013 IEEE Trans. Nucl. Sci. 60 4074Google Scholar
[10] 董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平 2020 物理学报 69 078501Google Scholar
Dong S J, Guo H X, Ma W Y, Lv L, Peng X Y, Lei Z F, Yue S Z, Hao R J, Ju A A, Zhong X L, Ouyang X P 2020 Acta Phys. Sin. 69 078501Google Scholar
[11] Jiang R, Zhang E X, Mccurdy M W, Wang P, Gong H, Yan D, Schrimpf R D, Fleetwood D M 2019 IEEE Trans. Nucl. Sci. 66 170Google Scholar
[12] Aktas O, Kuliev A, Kumar V, Schwindt R, Toshkov S, Costescu D, Stubbins J, Adesida I 2004 Solid State Electron. 48 471Google Scholar
[13] 张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓辉 2013 物理学报 62 117103Google Scholar
Zhang M L, Yang R X, Li Z X, Cao X Z, Wang B Y, Wang X H 2013 Acta Phys. Sin. 62 117103Google Scholar
[14] Wrobel F, Touboul A D, Pouget V, Dilillo L, Boch J, Saigne F 2017 Microelectron Reliab. 76 644
[15] Rowena I B, Selvaraj S L, Egawa T 2011 IEEE Electron Device Lett. 32 1534Google Scholar
[16] Khachatrian A, Roche N J H, Buchner S P, Koehler A D, Greenlee J D, Anderson T J, Warner J H, McMorrow D 2016 IEEE Trans. Nucl. Sci. 63 1995Google Scholar
[17] Zerarka M, Austin P, Bensoussan A, Morancho F, Durier A 2017 IEEE Trans. Nucl. Sci. 64 2242
[18] Scheick L 2014 IEEE Trans. Nucl. Sci. 61 2881Google Scholar
[19] Oldham T, Mclean F 2003 IEEE Trans. Nucl. Sci. 50 483Google Scholar
[20] Fleetwood D M 2018 IEEE Trans. Nucl. Sci. 65 1465Google Scholar
计量
- 文章访问数: 8051
- PDF下载量: 294
- 被引次数: 0