搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间用GaN功率器件单粒子烧毁效应激光定量模拟技术研究

崔艺馨 马英起 上官士鹏 康玄武 刘鹏程 韩建伟

引用本文:
Citation:

空间用GaN功率器件单粒子烧毁效应激光定量模拟技术研究

崔艺馨, 马英起, 上官士鹏, 康玄武, 刘鹏程, 韩建伟

Research on Single Event Burnout of GaN power devices with femtosecond pulsed laser

Cui Yi-Xin, Ma Ying-Qi, Shangguan Shi-Peng, Kang Xuan-Wu, Liu Peng-Cheng, Han Jian-Wei
PDF
HTML
导出引用
  • 利用飞秒脉冲激光对氮化镓(GaN)功率器件进行单粒子烧毁效应定量评估技术研究, 针对器件结构建立脉冲激光有效能量传输模型, 理论计算了激光有效能量与重离子线性能量传输(LET)的等效关系并开展了试验验证. 考虑器件材料反射率与吸收系数对激光的影响, 针对介质层界面间的激光多次反射进行参数修正, 减小有源区有效能量计算误差. 选择一款氮化镓高电子迁移率晶体管(GaN HEMT)与一款肖特基势垒二极管(SBD)功率器件作为典型案例, 分别开展飞秒脉冲激光正面与背部辐照试验, 计算诱发单粒子烧毁的有效能量, 并得到不同入射激光波长的烧毁等效LET阈值, 对比了模型理论计算值与实际测量值. 同时, 研究结果对材料参数未知的GaN功率器件, 提供了正面与背部辐照模型的激光试验波长选择参考. 该工作将为激光定量评估空间用GaN等宽禁带半导体器件的单粒子烧毁效应机理研究及加固设计与验证提供技术支撑.
    The femtosecond pulsed laser is used to study the quantitative evaluation technology of the single event burnout (SEB) effect in GaN power devices. In this work, we establish two pulsed-laser effective energy transmission models for different device structures, analyzing and verifying the equivalent relationship between the effective laser energy and the heavy ion linear energy transmission (LET). The critical parameters of models are confirmed, including laser parameters and device parameters. The interface reflectivity between the layers is mainly considered. Meanwhile, the parameters are corrected by the multiple reflections between the interfaces, and the laser energy of the second reflection of the metal layer is considered. These measures can be used to reduce the error of the effective energy in the device active area. In addition, we validate the models experimentally. A gallium nitride high electron mobility transistor (GaN HEMT) and a schottky barrier diode (SBD) power device are used in the experiment on the irradiation by a femtosecond pulse laser. The effective laser energy thresholds and the laser equivalent LET threshold with two incident wavelengths of the SEB are calculated. The theoretical calculation value and the actual measured value are compared. The selcction basis of the laser wavelengths is given by the detailed study. The support for the laser quantitative evaluation and the protection design of the SEB in GaN power devices is provided by this work.
      通信作者: 马英起, myq@nssc.ac.cn
    • 基金项目: 中国科学院青年创新促进会(批准号: 2018179)、广东省重点研发计划(批准号: 2020B010170001)和北京市科学技术委员会项目(批准号: Z201100003520002)资助的课题
      Corresponding author: Ma Ying-Qi, myq@nssc.ac.cn
    • Funds: Project supported by Youth Innovation Promotion Association of Chinese Academy of Sciences, China(Grant No. 2018179), the Key Research and Development Program of Guangdong Province, China(Grant No. 2020B010170001), and the Beijing Municipal Science and Technology Commission, China(Grant No. Z201100003520002).
    [1]

    Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I, Ogura T, Ohashi H 2003 IEEE Trans. Electron Devices. 50 2528Google Scholar

    [2]

    Meneghesso G, Verzellesi G, Danesin F, Rampazzo F, Zanon F, Tazzoli A, Meneghini A, Zanoni E 2008 IEEE Trans. Device Mater. Reliab. 8 332Google Scholar

    [3]

    Millán J, Godignon P, Perpiñà X, Tomás A P, Rebollo J 2014 IEEE Trans. Power Electron. 29 2155Google Scholar

    [4]

    Zerarka M, Crepel O 2018 Microelectron. Reliab. 88 984Google Scholar

    [5]

    Shikhar S, Ashish S, Subhashish B 2015 IEEE Applied Power Electronics Conference and Exposition Charlotte, NC, USA, March 15–19, 2015 p1048

    [6]

    陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏 2021 物理学报 11 116102Google Scholar

    Chen R, Liang Y N, Han J W, Wang X, Yang H, Chen Q, Yuan R J, Ma Y Q, Shangguan S P 2021 Acta Phys. Sin. 11 116102Google Scholar

    [7]

    Zhang F, Wang Y, Wu X, Cao F 2020 IEEE Access 8 12445Google Scholar

    [8]

    Scheick L 2014 IEEE Trans. Nucl. Sci. 61 2881Google Scholar

    [9]

    Cai S J, Tang Y S, Wei Y Y, Wong L, Chen Y L, Wang K L, Chen M, Schrimpf R D, Keay J C, Galloway K F 2000 IEEE Trans. Electron Devices. 47 304Google Scholar

    [10]

    Luo B, Johnson J W, Ren F 2001 Appl. Phys. Let. 79 2196Google Scholar

    [11]

    Kim H Y, Kim J, Liu L, Lo C F, Ren F, Pearton S J 2012 J. Vac. Sci. Technol. 30 012202Google Scholar

    [12]

    Zerarka M, Austin P, Toulon G, Morancho F, Arbess H, Tasselli J 2012 IEEE Trans. Electron Devices. 59 3482Google Scholar

    [13]

    Martinez M J, King M P, Baca A G, Allerman A A, Armstrong A A, Klein B A, Douglas E A, Kaplar R J, Swanson S E 2019 IEEE Trans. Nucl. Sci. 66 344Google Scholar

    [14]

    Luo X, Wang Y, Hao Y, Li X J, Liu C M, Fei X X, Yu C H, Cao F 2019 IEEE Trans. Electron Devices. 66 1118Google Scholar

    [15]

    Buchner S, Howard J, Poivey C, McMorrow D, Pease R 2004 IEEE Trans. Nucl. Sci. 51 3716Google Scholar

    [16]

    韩建伟, 上官士鹏, 马英起, 朱翔, 陈睿, 李赛 2017 深空探测学报 4 577Google Scholar

    Han J W, Shangguan S P, Ma Y Q, Zhu X, Chen R, Li S 2017 J. Deep Space Explor. 4 577Google Scholar

    [17]

    Buchner S, Miller F, Pouget V, McMorrow D 2013 IEEE Trans. Nucl. Sci. 60 1852Google Scholar

    [18]

    Ngom C, Pouget V, Zerarka M, Coccetti F, Crepel O, Touboul A, Matmat M 2021 Microelectron. Reliab. 126 114339

    [19]

    Khachatrian A, Roche N J, Buchner S, Koehler A D, Greenlee J D, Anderson T J, Warner J H, McMorrow D 2016 IEEE Trans. Nucl. Sci. 63 1995Google Scholar

    [20]

    Roche N J, Khachatrian A, King M, Buchner S, Halles J, Kaplar R, Armstrong A, Kizilyalli I C, Cunningham P D, Melinger J S, Warner J H, McMorrow D 2016 16 th European Conference on Radiation and Its Effects on Components and Systems(RADECS) Bremen, Germany, September 19–23, 2016

    [21]

    Khachatrian A, Roche N J, Buchner S, Koehler A D, Anderson T J, Cavrois V F, Muschitiello M, McMorrow D, Weaver B, Hobart K D 2015 IEEE Trans. Nucl. Sci. 62 2743Google Scholar

    [22]

    上官士鹏 2020 博士学位论文 (北京: 中国科学院大学)

    Shangguan S P 2020 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [23]

    Refractive index database, Polyanskiy M N https://refractiveindex.info/ [2021-12-5]

    [24]

    Mizuta E, Kuboyama S, Nakada Y, Takeyama A, Ohshima T, Iwata Y, Suzuki K 2018 IEEE Trans. Nucl. Sci. 65 1956Google Scholar

    [25]

    Sun C K, Liang J C, Wang J C, Kao F J 2000 Appl. Phys. Let. 76 439Google Scholar

    [26]

    Chen H, Huang X, Fu H, Lu Z, Zhang X, Montes J A, Zhao Y 2017 Appl. Phys. Lett. 110 181110Google Scholar

  • 图 1  正面入射的脉冲激光能量传输模型

    Fig. 1.  Pulsed-laser energy transmission model with frontal incidence.

    图 2  背部入射的脉冲激光能量传输模型 (a) 背部开孔的HEMT器件; (b) SBD器件

    Fig. 2.  Pulsed-laser energy transmission model with back incidence: (a) HEMT device with hole on the back; (b) SBD device.

    图 3  不同波长下激光在GaN材料中的穿透深度

    Fig. 3.  Laser penetration depth in GaN materials at different wavelengths.

    图 4  脉冲激光在介质层间多次反射示意图

    Fig. 4.  Schematic diagram of the pulsed laser light reflecting between dielectric layers.

    图 5  不同波长下GaN材料的$ \beta $

    Fig. 5.  $ \beta $ of GaN materials at different wavelengths.

    图 6  飞秒脉冲激光单粒子效应试验装置 (a) 原理图; (b) 实物图

    Fig. 6.  Femtosecond pulsed laser SEE test device: (a) Schematic diagram; (b) physical diagram.

    图 7  验证器件结构参数及激光入射位置 (a) 器件1; (b) 器件2

    Fig. 7.  Device structure parameters and laser incident positions: (a) Device 1; (b) device 2.

    图 8  器件发生SEB后的实物图 (a) 器件1; (b) 器件2

    Fig. 8.  The physical pictures of the devices after SEB: (a) Device 1; (b) device 2.

    图 9  不同波长下器件发生SEB的$ {E}_{\mathrm{e}\mathrm{f}\mathrm{f}}^{2} $与LET关系对比图 (a) 620 nm; (b) 720 nm

    Fig. 9.  Corresponding diagram of the relationship between $ {E}_{\mathrm{e}\mathrm{f}\mathrm{f}}^{2} $ and LET under different wavelengths causing SEB: (a) 620 nm; (b) 720 nm.

    表 1  不同波长的激光在不同厚度的Al0.2Ga0.8N中的吸收系数与光损

    Table 1.  Absorption coefficients and optical losses of different laser wavelengths in different thicknesses of Al0.2Ga0.8N.

    波长/nm600620650700720
    吸收系数/cm–1210190172155143
    30 nm厚光损0.06%0.06%0.05%0.05%0.04%
    50 nm厚光损0.1%0.1%0.09%0.08%0.07%
    70 nm厚光损0.14%0.13%0.12%0.11%0.1%
    下载: 导出CSV

    表 2  不同波长的激光在材料中的空气中反射率与折射率

    Table 2.  The reflectivity and refractive index of different laser wavelengths from air to the material.

    光学参数材料波长/nm
    600620650700720
    空气中
    反射率
    Si3N40.1180.1170.1170.1160.116
    Al0.2Ga0.8N0.140.140.140.140.14
    GaN0.1690.1680.1670.1650.165
    蓝宝石0.080.080.080.080.08
    折射率Si3N42.042.042.042.032.03
    Al0.2Ga0.8N2.182.182.182.172.17
    GaN2.312.312.312.312.31
    蓝宝石1.761.761.761.761.75
    下载: 导出CSV

    表 3  激光试验结果

    Table 3.  Laser test results.

    器件器件工作
    电压/V
    波长/nm诱发SEB的
    激光能量/nJ
    器件15206203.3
    7206
    器件2906203.8
    7204.5
    下载: 导出CSV

    表 4  器件有效能量$ {E}_{\mathrm{e}\mathrm{f}\mathrm{f}} $

    Table 4.  Device effective energy $ {E}_{\mathrm{e}\mathrm{f}\mathrm{f}} $.

    器件入射激光
    波长/nm
    入射激光
    能量/nJ
    有效能
    量$ {E}_{\mathrm{e}\mathrm{f}\mathrm{f}} $/nJ
    器件16203.32.91
    72065.29
    器件26203.83.56
    7204.56.44
    下载: 导出CSV

    表 5  器件重离子SEB结果

    Table 5.  SEB results (Heavy ion) of the device.

    器件毁坏时最低
    工作电压/V
    LET (GaN)/
    (MeV·cm2·mg–1)
    器件152018
    器件29028.5
    下载: 导出CSV

    表 6  激光ELET与重离子LET对比

    Table 6.  Comparison of laser ELET and Heavy ion LET.

    器件毁坏时工作
    电压/V
    入射激光
    波长/nm
    有效能量
    $ {E}_{\mathrm{e}\mathrm{f}\mathrm{f}} $/nJ
    激光ELET/
    (MeV·cm2·mg–1)
    重离子LET (GaN)/
    MeV·cm2/·mg–1)
    器件15206202.9118.9718
    7205.2918.47
    器件2906203.5628.3928.5
    7206.4427.37
    下载: 导出CSV
  • [1]

    Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I, Ogura T, Ohashi H 2003 IEEE Trans. Electron Devices. 50 2528Google Scholar

    [2]

    Meneghesso G, Verzellesi G, Danesin F, Rampazzo F, Zanon F, Tazzoli A, Meneghini A, Zanoni E 2008 IEEE Trans. Device Mater. Reliab. 8 332Google Scholar

    [3]

    Millán J, Godignon P, Perpiñà X, Tomás A P, Rebollo J 2014 IEEE Trans. Power Electron. 29 2155Google Scholar

    [4]

    Zerarka M, Crepel O 2018 Microelectron. Reliab. 88 984Google Scholar

    [5]

    Shikhar S, Ashish S, Subhashish B 2015 IEEE Applied Power Electronics Conference and Exposition Charlotte, NC, USA, March 15–19, 2015 p1048

    [6]

    陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏 2021 物理学报 11 116102Google Scholar

    Chen R, Liang Y N, Han J W, Wang X, Yang H, Chen Q, Yuan R J, Ma Y Q, Shangguan S P 2021 Acta Phys. Sin. 11 116102Google Scholar

    [7]

    Zhang F, Wang Y, Wu X, Cao F 2020 IEEE Access 8 12445Google Scholar

    [8]

    Scheick L 2014 IEEE Trans. Nucl. Sci. 61 2881Google Scholar

    [9]

    Cai S J, Tang Y S, Wei Y Y, Wong L, Chen Y L, Wang K L, Chen M, Schrimpf R D, Keay J C, Galloway K F 2000 IEEE Trans. Electron Devices. 47 304Google Scholar

    [10]

    Luo B, Johnson J W, Ren F 2001 Appl. Phys. Let. 79 2196Google Scholar

    [11]

    Kim H Y, Kim J, Liu L, Lo C F, Ren F, Pearton S J 2012 J. Vac. Sci. Technol. 30 012202Google Scholar

    [12]

    Zerarka M, Austin P, Toulon G, Morancho F, Arbess H, Tasselli J 2012 IEEE Trans. Electron Devices. 59 3482Google Scholar

    [13]

    Martinez M J, King M P, Baca A G, Allerman A A, Armstrong A A, Klein B A, Douglas E A, Kaplar R J, Swanson S E 2019 IEEE Trans. Nucl. Sci. 66 344Google Scholar

    [14]

    Luo X, Wang Y, Hao Y, Li X J, Liu C M, Fei X X, Yu C H, Cao F 2019 IEEE Trans. Electron Devices. 66 1118Google Scholar

    [15]

    Buchner S, Howard J, Poivey C, McMorrow D, Pease R 2004 IEEE Trans. Nucl. Sci. 51 3716Google Scholar

    [16]

    韩建伟, 上官士鹏, 马英起, 朱翔, 陈睿, 李赛 2017 深空探测学报 4 577Google Scholar

    Han J W, Shangguan S P, Ma Y Q, Zhu X, Chen R, Li S 2017 J. Deep Space Explor. 4 577Google Scholar

    [17]

    Buchner S, Miller F, Pouget V, McMorrow D 2013 IEEE Trans. Nucl. Sci. 60 1852Google Scholar

    [18]

    Ngom C, Pouget V, Zerarka M, Coccetti F, Crepel O, Touboul A, Matmat M 2021 Microelectron. Reliab. 126 114339

    [19]

    Khachatrian A, Roche N J, Buchner S, Koehler A D, Greenlee J D, Anderson T J, Warner J H, McMorrow D 2016 IEEE Trans. Nucl. Sci. 63 1995Google Scholar

    [20]

    Roche N J, Khachatrian A, King M, Buchner S, Halles J, Kaplar R, Armstrong A, Kizilyalli I C, Cunningham P D, Melinger J S, Warner J H, McMorrow D 2016 16 th European Conference on Radiation and Its Effects on Components and Systems(RADECS) Bremen, Germany, September 19–23, 2016

    [21]

    Khachatrian A, Roche N J, Buchner S, Koehler A D, Anderson T J, Cavrois V F, Muschitiello M, McMorrow D, Weaver B, Hobart K D 2015 IEEE Trans. Nucl. Sci. 62 2743Google Scholar

    [22]

    上官士鹏 2020 博士学位论文 (北京: 中国科学院大学)

    Shangguan S P 2020 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [23]

    Refractive index database, Polyanskiy M N https://refractiveindex.info/ [2021-12-5]

    [24]

    Mizuta E, Kuboyama S, Nakada Y, Takeyama A, Ohshima T, Iwata Y, Suzuki K 2018 IEEE Trans. Nucl. Sci. 65 1956Google Scholar

    [25]

    Sun C K, Liang J C, Wang J C, Kao F J 2000 Appl. Phys. Let. 76 439Google Scholar

    [26]

    Chen H, Huang X, Fu H, Lu Z, Zhang X, Montes J A, Zhao Y 2017 Appl. Phys. Lett. 110 181110Google Scholar

  • [1] 白如雪, 郭红霞, 张鸿, 王迪, 张凤祁, 潘霄宇, 马武英, 胡嘉文, 刘益维, 杨业, 吕伟, 王忠明. 增强型Cascode结构氮化镓功率器件的高能质子辐射效应研究. 物理学报, 2023, 72(1): 012401. doi: 10.7498/aps.72.20221617
    [2] 陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏. 氮化镓基高电子迁移率晶体管单粒子和总剂量效应的实验研究. 物理学报, 2021, 70(11): 116102. doi: 10.7498/aps.70.20202028
    [3] 窦志远, 张斌, 刘帅林, 侯静. 高功率全光纤1.6微米类噪声方形脉冲激光器. 物理学报, 2020, 69(16): 164202. doi: 10.7498/aps.69.20200245
    [4] 张克瑾, 刘磊, 曾庆伟, 高太长, 胡帅, 陈鸣. 不同散射介质对飞秒脉冲激光传输特性影响研究. 物理学报, 2019, 68(19): 194207. doi: 10.7498/aps.68.20190430
    [5] 项晓, 王少锋, 侯飞雁, 权润爱, 翟艺伟, 王盟盟, 周聪华, 许冠军, 董瑞芳, 刘涛, 张首刚. 利用共振无源腔分析和抑制飞秒脉冲激光噪声的理论和实验研究. 物理学报, 2016, 65(13): 134203. doi: 10.7498/aps.65.134203
    [6] 谢峰, 林万涛, 莫嘉琪. 一类广义飞秒脉冲激光对纳米金属传导模型的同伦解法. 物理学报, 2014, 63(24): 240201. doi: 10.7498/aps.63.240201
    [7] 朱敏, 李晓红, 李国强, 常利阳, 谢长鑫, 邱荣, 李家文, 黄文浩. 飞秒脉冲激光辐照对硅发光性能的影响. 物理学报, 2014, 63(5): 057801. doi: 10.7498/aps.63.057801
    [8] 卓青青, 刘红侠, 王志. 三维H形栅SOINMOS器件总剂量条件下的单粒子效应. 物理学报, 2013, 62(17): 176106. doi: 10.7498/aps.62.176106
    [9] 韩祥临, 赵振江, 程荣军, 莫嘉琪. 飞秒脉冲激光对纳米金属薄膜传导模型的解. 物理学报, 2013, 62(11): 110202. doi: 10.7498/aps.62.110202
    [10] 钟东洲, 佘卫龙. 铌酸锂晶体中飞秒激光脉冲线性电光效应及其色散补偿. 物理学报, 2012, 61(6): 064214. doi: 10.7498/aps.61.064214
    [11] 马维刚, 王海东, 张兴, 王玮. 飞秒脉冲激光加热金属薄膜的理论和实验研究. 物理学报, 2011, 60(6): 064401. doi: 10.7498/aps.60.064401
    [12] 季忠刚, 王占新, 刘建胜, 李儒新. 激光波前相位因子对飞秒脉冲激光成丝动力学的影响. 物理学报, 2010, 59(11): 7885-7891. doi: 10.7498/aps.59.7885
    [13] 左言磊, 曾小明, 黄小军, 赵磊, 王逍, 周凯南, 张颖, 黄征. 大型短脉冲激光装置中脉冲前沿畸变效应的研究. 物理学报, 2009, 58(12): 8264-8270. doi: 10.7498/aps.58.8264
    [14] 贾亚青, 闫培光, 吕可诚, 张铁群, 朱晓农. 高非线性光子晶体光纤中飞秒脉冲的传输特性和超连续谱产生机制的实验研究及模拟分析. 物理学报, 2006, 55(4): 1809-1814. doi: 10.7498/aps.55.1809
    [15] 葛愉成, 李元景, 康克军. 利用超短脉冲激光和光电子能量微分谱直接测量窄带飞秒超紫外线XUV脉冲的时间结构. 物理学报, 2005, 54(6): 2669-2675. doi: 10.7498/aps.54.2669
    [16] 胡明列, 王清月, 栗岩峰, 王 专, 柴 路, 张伟力. 飞秒激光在双折射微结构光纤中模式控制的四波混频效应的实验研究. 物理学报, 2005, 54(9): 4411-4415. doi: 10.7498/aps.54.4411
    [17] 宫玉彬, 张 章, 魏彦玉, 孟凡宝, 范植开, 王文祥. 高功率微波器件中脉冲缩短现象的粒子模拟. 物理学报, 2004, 53(11): 3990-3995. doi: 10.7498/aps.53.3990
    [18] 胡明列, 王清月, 栗岩峰, 王 专, 张志刚, 柴 路, 章若冰. 飞秒激光在光子晶体光纤中产生超连续光谱机制的实验研究. 物理学报, 2004, 53(12): 4243-4247. doi: 10.7498/aps.53.4243
    [19] 王屹山, 陈国夫, 于连君, 赵尚弘, 赵 卫. 高效、高峰值功率蓝光飞秒脉冲产生研究. 物理学报, 2000, 49(12): 2378-2382. doi: 10.7498/aps.49.2378
    [20] 沈宇震, 王清月, 邢歧荣, 石季英. 啁啾脉冲激光放大中的自相位调制效应. 物理学报, 1996, 45(2): 214-221. doi: 10.7498/aps.45.214
计量
  • 文章访问数:  4392
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-13
  • 修回日期:  2022-03-08
  • 上网日期:  2022-06-28
  • 刊出日期:  2022-07-05

/

返回文章
返回