搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同散射介质对飞秒脉冲激光传输特性影响研究

张克瑾 刘磊 曾庆伟 高太长 胡帅 陈鸣

引用本文:
Citation:

不同散射介质对飞秒脉冲激光传输特性影响研究

张克瑾, 刘磊, 曾庆伟, 高太长, 胡帅, 陈鸣

Influence of different scattering medium on propagation characteristics to femtosecond laser pulses

Zhang Ke-Jin, Liu Lei, Zeng Qing-Wei, Gao Tai-Chang, Hu Shuai, Chen Ming
PDF
HTML
导出引用
  • 基于分层传输模型和Mie散射理论, 在粒子散射模型中充分考虑了谱分布特征, 数值模拟了800 nm飞秒激光在冰云、水云、雾、气溶胶和降雨环境中的传输特性. 结果表明, 谱分布和粒子相态对光丝传输特性有较大的影响. 雨滴的粒径较大, 光丝在降雨环境中传输时, 由于散射导致的能量衰减最强, 产生的光丝峰值光强和能量最低. 同时, 光丝能量在空间的分布不均, 产生了明显的多丝结构, 并导致光丝长度缩短. 水云和雾具有类似的谱分布特征, 光丝在水云和雾中的传输特性十分相似. 但由于雾中的粒子尺度更小, 光丝的能量较高, 光丝分布更集中. 气溶胶对光丝的散射最弱, 因此在传输前期没有对光丝的结构产生影响, 并以稳定的单丝结构传输, 光丝的峰值光强和能量最高, 但在距离成丝位置一段距离后光丝结构才逐渐出现扰动. 相同谱分布下, 由于冰粒子的散射能力强于水粒子, 造成光丝在冰云中的能量更低, 光丝分布不集中, 光丝的数量明显增多.
    During recent years, the filamentation of femtosecond laser in the atmosphere has contributed considerable interest to researchers. However, the actual atmosphere can result in different scattering medium, which are adverse to the application of filamentation in the atmosphere. In order to study the propagation of femtosecond laser in real scattering medium, the propagation of 800 nm femtosecond laser in ice cloud, water cloud, fog, aerosol and rainfall is simulated numerically. Combined with the theory of stratified medium model and Mie scattering theory, we constructed a scattering model with a changeable size distribution function in the nonlinear laser model. The results indicated that the different size distribution and phase state of particles have different influence on the propagation properties of the filaments. As the rainfall was dominated by large raindrops, the scattering on filament was the strongest, resulting in the lowest peak intensity and energy. In the case, the distribution of filament energy was extremely inhomogeneous, causing the shortest length of filament and generation of multi-filament. In the image of fluence distribution, a diffraction ring can be observed clearly in the rainfall but was blurred in other medium. The propagation properties of filaments in water cloud and fog were similar because of the same size distribution. However, due to the size of particle in fog was smaller than that in water cloud, the filaments had more higher energy and more concentrated distribution in fog. In addition, the scattering of ice particles was stronger than that of liquid droplets, so the energy of filament in ice cloud was lower than that in water cloud, resulting a reducing of the length and number of filaments in ice cloud. The size of aerosols was the smallest, which had the weakest influence on the filament. Accordingly, in the early of propagation, there had little perturbance on the filament and the beam was transmitting with a stable single filament, and results in the highest peak intensity and energy. With the propagation increasing, the accumulation of scattering attenuation produced the perturbation on filament at a position after the onset of filamentation.
      通信作者: 刘磊, liuleidll@gmail.com
      Corresponding author: Liu Lei, liuleidll@gmail.com
    [1]

    Reintjes J, Carman R L, Shimizu F 1973 Phys. Rev. A 8 1486Google Scholar

    [2]

    Koulouklidis A D, Fedorov V Y, Tzortzakis S 2016 Phys. Rev. A 93 033844Google Scholar

    [3]

    Wei S S, Li S Y, Guo F M, Yang Y J, Wang B B 2013 Phys. Rev. A 87 063418Google Scholar

    [4]

    Rodriguez M, Sauerbrey R, Wille H, Fujii T, André Y B, Mysyrowicz A, Klingbeil L, Rethmeier K, Kalkner W, Kasparian J, Salmon E, Yu J, Wolf J P 2002 Opt. Lett. 27 772Google Scholar

    [5]

    Wang T J, Yuan S, Chen Y P, Chin S L 2013 Chin. Opt. Lett. 11 25

    [6]

    Chin S L, Brodeur A, Petit S, Kosareva O G 1999 J. Nonlinear Opt. Phys. 8 121Google Scholar

    [7]

    Rohwetter P, Kasparian J, Stelmaszczyk K, Hao Z Q, Henin S, Lascoux N, Nakaema W M, Petit Y, Queisser M, Salamé R, Salmon E, Wöste L, Wolf J P 2010 Nat. Photonics 4 451Google Scholar

    [8]

    Courvoisier F, Boutou V, Kasparian J, Salmon E, Méjean G, Yu J, Wolf J P 2003 Appl. Phys. Lett. 83 213Google Scholar

    [9]

    Méchain G, Méjean G, Ackermann R, Rohwetter P, André Y B, Kasparian J, Prade B, Stelmaszczyk K, Yu J, Salmon E, Winn W, Schlie L A, Mysyrowicz A, Sauerbrey R, Wöste L, Wolf J P 2005 Appl. Phys. B 80 785Google Scholar

    [10]

    Zemlyanov A A, Geints Y E 2006 Opt. Commun. 259 799Google Scholar

    [11]

    Militsin V O, Kouzminskii L S, Kandidov V P 2005 Proc. SPIE 5708 277Google Scholar

    [12]

    Jeon C, Harper D, Lim K, Durand M, Chini M, Baudelet M, Richardson M 2015 J. Opt. 17 055502Google Scholar

    [13]

    Matthews M, Pomel F, Wender C, Kiselev A, Duft D, Kasparian J, Wolf J P, Leisner T 2016 Sci. Adv. 2 e1501912Google Scholar

    [14]

    Zemlyanov A A, Geints Y E 2007 Opt. Commun. 270 47Google Scholar

    [15]

    Kandidov V P, Militsin V O 2006 Appl. Phys. B 83 171Google Scholar

    [16]

    付光宇 2013 硕士学位论文(成都: 西南交通大学)

    Fu G Y 2013 M. S. Thesis (Chengdu: Southwest Jiaotong University) (in Chinese)

    [17]

    Silaeva E P, Kandidov V P 2009 Atmos. Ocean. Opt. 22 26Google Scholar

    [18]

    Couairon A, Mysyrowicz A 2007 Phys. Rep. 441 47Google Scholar

    [19]

    Kandidov V P, Shlenov S A, Kosareva O G 2009 Quantum Electron 39 205Google Scholar

    [20]

    Militsin V O, Kachan E P, Kandidov V P 2006 Quantum Electron. 36 1032Google Scholar

    [21]

    Kandidov V P, Militsin V O, Bykov A V, Priezzhev A V 2006 Quantum Electron. 36 1003Google Scholar

    [22]

    廖国男 著(郭彩丽, 周诗健 译) 2004 大气辐射导论: 第2版(北京: 气象出版社)第174−263页

    Lion K N (translated by Guo C L, Zhou S J) 2004 An Introduction to Atmospheric Radiation: Second Edition (Beijing: China Meteorological Press) pp174−263 (in Chinese)

    [23]

    胡帅 2018 博士学位论文(长沙: 国防科技大学)

    Hu S 2018 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [24]

    盛裴轩, 毛节泰, 李建国, 葛正谟, 张霭琛, 桑建国, 潘乃先, 张宏升 2013 大气物理学: 第二版(北京: 北京大学出版社) 第478页

    Sheng P X, Mao J T, Li J G, Ge Z M, Zhang A C, Sang J G, Pan N X, Zhang H S 2013 Atmospheric Physics: Second Edition (Beijing: Peking University Press) p478 (in Chinese)

    [25]

    Zahedpour S, Wahlstrand J K, Milchberg H M 2015 Opt. Lett. 40 5794Google Scholar

  • 图 1  分层传输模式概念图 Δz为屏间距, L为散射屏的宽度

    Fig. 1.  Stratified-medium model. Δz is distance between screens, L is the width of the screen.

    图 2  (a)粒子对激光光场的散射扰动图; (b)利用散射相函数获得不同粒径粒子(100, 15, 10, 5 μm)的前向散射角

    Fig. 2.  (a) Scattering on light field by particles; (b) Use the scattering phase function to obtain forward scattering angle of particles with different sizes.

    图 3  不同散射介质的粒子谱分布图 (a)云; (b)雾; (c)雨; (d)气溶胶

    Fig. 3.  Size distributions of different scattering medium: (a) Cloud; (b) Fog; (c) Rain; (d) Aerosol.

    图 4  (a)不同散射介质内飞秒激光轴上峰值光强随传播距离的变化, I0 = 5.2 × 1012 W/cm2; (b)不同散射介质内激光能量随传输距离的变化

    Fig. 4.  (a) The peak intensity on axis as a function of the propagation distance in different scattering medium, I0 = 5.2 × 1012 W/cm2; (b) The laser energy as a function of the propagation distance in different scattering medium.

    图 5  不同散射场中光丝的截面能流随传播距离的变化 (a)降雨; (b)冰云; (c)水云; (d)雾; (e)气溶胶; (f)干净空气; F0 = 0.592 J/cm2

    Fig. 5.  Fluence distribution F/F0 as a function of the propagation distance in different scattering medium: (a) Rain; (b) Ice-cloud; (c) Water-cloud; (d) Fog; (e) Aerosol; (f) Clear air. F0 = 0.592 J/cm2.

    表 1  粒子谱函数参数

    Table 1.  Size distributions parameters.

    CloudFogRainAerosol
    a1.80782.37305.3333 × 1054.000 × 105
    b0.36103/28.944320
    μ2612
    ν111/21
    下载: 导出CSV
  • [1]

    Reintjes J, Carman R L, Shimizu F 1973 Phys. Rev. A 8 1486Google Scholar

    [2]

    Koulouklidis A D, Fedorov V Y, Tzortzakis S 2016 Phys. Rev. A 93 033844Google Scholar

    [3]

    Wei S S, Li S Y, Guo F M, Yang Y J, Wang B B 2013 Phys. Rev. A 87 063418Google Scholar

    [4]

    Rodriguez M, Sauerbrey R, Wille H, Fujii T, André Y B, Mysyrowicz A, Klingbeil L, Rethmeier K, Kalkner W, Kasparian J, Salmon E, Yu J, Wolf J P 2002 Opt. Lett. 27 772Google Scholar

    [5]

    Wang T J, Yuan S, Chen Y P, Chin S L 2013 Chin. Opt. Lett. 11 25

    [6]

    Chin S L, Brodeur A, Petit S, Kosareva O G 1999 J. Nonlinear Opt. Phys. 8 121Google Scholar

    [7]

    Rohwetter P, Kasparian J, Stelmaszczyk K, Hao Z Q, Henin S, Lascoux N, Nakaema W M, Petit Y, Queisser M, Salamé R, Salmon E, Wöste L, Wolf J P 2010 Nat. Photonics 4 451Google Scholar

    [8]

    Courvoisier F, Boutou V, Kasparian J, Salmon E, Méjean G, Yu J, Wolf J P 2003 Appl. Phys. Lett. 83 213Google Scholar

    [9]

    Méchain G, Méjean G, Ackermann R, Rohwetter P, André Y B, Kasparian J, Prade B, Stelmaszczyk K, Yu J, Salmon E, Winn W, Schlie L A, Mysyrowicz A, Sauerbrey R, Wöste L, Wolf J P 2005 Appl. Phys. B 80 785Google Scholar

    [10]

    Zemlyanov A A, Geints Y E 2006 Opt. Commun. 259 799Google Scholar

    [11]

    Militsin V O, Kouzminskii L S, Kandidov V P 2005 Proc. SPIE 5708 277Google Scholar

    [12]

    Jeon C, Harper D, Lim K, Durand M, Chini M, Baudelet M, Richardson M 2015 J. Opt. 17 055502Google Scholar

    [13]

    Matthews M, Pomel F, Wender C, Kiselev A, Duft D, Kasparian J, Wolf J P, Leisner T 2016 Sci. Adv. 2 e1501912Google Scholar

    [14]

    Zemlyanov A A, Geints Y E 2007 Opt. Commun. 270 47Google Scholar

    [15]

    Kandidov V P, Militsin V O 2006 Appl. Phys. B 83 171Google Scholar

    [16]

    付光宇 2013 硕士学位论文(成都: 西南交通大学)

    Fu G Y 2013 M. S. Thesis (Chengdu: Southwest Jiaotong University) (in Chinese)

    [17]

    Silaeva E P, Kandidov V P 2009 Atmos. Ocean. Opt. 22 26Google Scholar

    [18]

    Couairon A, Mysyrowicz A 2007 Phys. Rep. 441 47Google Scholar

    [19]

    Kandidov V P, Shlenov S A, Kosareva O G 2009 Quantum Electron 39 205Google Scholar

    [20]

    Militsin V O, Kachan E P, Kandidov V P 2006 Quantum Electron. 36 1032Google Scholar

    [21]

    Kandidov V P, Militsin V O, Bykov A V, Priezzhev A V 2006 Quantum Electron. 36 1003Google Scholar

    [22]

    廖国男 著(郭彩丽, 周诗健 译) 2004 大气辐射导论: 第2版(北京: 气象出版社)第174−263页

    Lion K N (translated by Guo C L, Zhou S J) 2004 An Introduction to Atmospheric Radiation: Second Edition (Beijing: China Meteorological Press) pp174−263 (in Chinese)

    [23]

    胡帅 2018 博士学位论文(长沙: 国防科技大学)

    Hu S 2018 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [24]

    盛裴轩, 毛节泰, 李建国, 葛正谟, 张霭琛, 桑建国, 潘乃先, 张宏升 2013 大气物理学: 第二版(北京: 北京大学出版社) 第478页

    Sheng P X, Mao J T, Li J G, Ge Z M, Zhang A C, Sang J G, Pan N X, Zhang H S 2013 Atmospheric Physics: Second Edition (Beijing: Peking University Press) p478 (in Chinese)

    [25]

    Zahedpour S, Wahlstrand J K, Milchberg H M 2015 Opt. Lett. 40 5794Google Scholar

  • [1] 段美刚, 赵映, 左浩毅. 基于迭代算法的不同状态散射光场聚焦. 物理学报, 2024, 73(12): 124203. doi: 10.7498/aps.73.20231991
    [2] 廖涌泉, 张晓雪, 刘卉, 朱香渝, 陈旭东, 林志立. 基于数字微镜器件超像素法实现散射介质传输矩阵的自参考干涉测量. 物理学报, 2023, 72(22): 224201. doi: 10.7498/aps.72.20230660
    [3] 李帅瑶, 张大源, 高强, 李博, 何勇, 王智化. 基于飞秒激光成丝测量燃烧场温度. 物理学报, 2020, 69(23): 234207. doi: 10.7498/aps.69.20200939
    [4] 张熙程, 方龙杰, 庞霖. 强散射过程中基于奇异值分解的光学传输矩阵优化方法. 物理学报, 2018, 67(10): 104202. doi: 10.7498/aps.67.20172688
    [5] 张洪波, 张希仁. 用于实现散射介质中时间反演的数字相位共轭的相干性. 物理学报, 2018, 67(5): 054201. doi: 10.7498/aps.67.20172308
    [6] 李贺, 陈安民, 于丹, 李苏宇, 金明星. 温度对飞秒激光脉冲在NaCl溶液中成丝产生的超连续谱的影响. 物理学报, 2018, 67(18): 184206. doi: 10.7498/aps.67.20180686
    [7] 张诚, 方龙杰, 朱建华, 左浩毅, 高福华, 庞霖. 四元裂解位相调制实现相干光通过散射介质聚焦. 物理学报, 2017, 66(11): 114202. doi: 10.7498/aps.66.114202
    [8] 周飞, 丁天怀. 散射介质中层间杂质检测效率的影响因素及分析. 物理学报, 2010, 59(12): 8451-8458. doi: 10.7498/aps.59.8451
    [9] 季忠刚, 王占新, 刘建胜, 李儒新. 激光波前相位因子对飞秒脉冲激光成丝动力学的影响. 物理学报, 2010, 59(11): 7885-7891. doi: 10.7498/aps.59.7885
    [10] 王鹿霞, 樊飞. 飞秒激光作用下异质结的线性吸收谱研究. 物理学报, 2009, 58(2): 1326-1331. doi: 10.7498/aps.58.1326
    [11] 曹士英, 宋振明, 秦瑀, 王清月, 张志刚. 飞秒激光在不同位置温度梯度的惰性气体中成丝及光谱展宽的差异. 物理学报, 2009, 58(6): 3971-3976. doi: 10.7498/aps.58.3971
    [12] 徐兰青, 李 晖, 肖郑颖. 基于蒙特卡罗模拟的散射介质中后向光散射模型及分析应用. 物理学报, 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [13] 蔡达锋, 谷渝秋, 郑志坚, 周维民, 焦春晔, 温天舒, 淳于书泰. 飞秒激光-金属薄膜靶相互作用中靶前后超热电子能谱的比较. 物理学报, 2007, 56(1): 346-352. doi: 10.7498/aps.56.346
    [14] 曹士英, 张志刚, 柴 路, 王清月, 杨建军, 朱晓农. 利用空心光纤探测飞秒脉冲在氩气中成丝过程中的光谱演变. 物理学报, 2007, 56(5): 2765-2768. doi: 10.7498/aps.56.2765
    [15] 曹士英, 张志刚, 柴 路, 王清月, 杨建军, 朱晓农. 束缚高压强气体中成丝的空心毛细管芯径对光谱展宽的影响. 物理学报, 2006, 55(10): 5294-5297. doi: 10.7498/aps.55.5294
    [16] 曹士英, 王 颖, 张志刚, 柴 路, 王清月, 杨建军, 朱晓农. 空心毛细管束缚高压气体成丝的光谱演变. 物理学报, 2006, 55(9): 4734-4738. doi: 10.7498/aps.55.4734
    [17] 孔伟金, 刘世杰, 沈 健, 沈自才, 邵建达, 范正修. 飞秒激光用多层介质膜脉宽压缩光栅的设计. 物理学报, 2006, 55(3): 1143-1147. doi: 10.7498/aps.55.1143
    [18] 谷渝秋, 蔡达锋, 郑志坚, 杨向东, 周维民, 焦春晔, 陈 豪, 温天舒, 淳于书泰. 飞秒激光-固体靶相互作用中超热电子能量分布的实验研究. 物理学报, 2005, 54(1): 186-191. doi: 10.7498/aps.54.186
    [19] 何 峰, 余 玮, 陆培祥. 飞秒强激光作用下线性等离子体层中光场和电子密度的自洽分布. 物理学报, 2003, 52(8): 1965-1969. doi: 10.7498/aps.52.1965
    [20] 文双春, 范滇元. 增益(损耗)介质中高功率激光束的小尺度自聚焦理论研究. 物理学报, 2000, 49(7): 1282-1286. doi: 10.7498/aps.49.1282
计量
  • 文章访问数:  7603
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-27
  • 修回日期:  2019-08-12
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-05

/

返回文章
返回