搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应遗传算法的背向散射光场调控

段美刚 张晨龙 赵映 王建敏 左浩毅

引用本文:
Citation:

基于自适应遗传算法的背向散射光场调控

段美刚, 张晨龙, 赵映, 王建敏, 左浩毅

Backscattered light field control based on self-adaption genetic algorithm

Duan Meigang, Zhang Chenlong, Zhao Ying, Wang Jianmin, Zuo Haoyi
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 调控经散射介质散射后的光场在生物组织成像、军事反恐和光信息传输等领域具有潜在的应用价值。然而,经散射介质反射后的光子传播方向变得无序,导致携带光信息的波前被扰乱。将一种新的波前振幅调制方法——自适应遗传算法(self-adaption genetic algorithm,SAGA)引入到背向散射光场调控中。根据环境变化,种群自适应的选择基因的突变或交叉,极大提高了寻找最优解的收敛速度。通过实验研究验证了SAGA在背向散射光场调控方面的有效性,并表明相较于遗传算法(genetic algorithm,GA),SAGA在调控速度和抗噪声方面都存在明显优势。研究结果表明SAGA在较少的迭代次数内即可获得高对比度的光聚焦和图像投影,并收敛于最优解。相较于GA,其在进行散射聚焦和图像投影时的调控速度分别快8.3倍和14.38倍。这种快速的散射光场调控技术为光信息传输领域的研究提供了新思路,具有广泛的应用潜力。
    Modulating the light field scattered by scattering media has potential application value in biological tissue imaging, military anti-terrorism and optical information transmission. However, light reflected by complex scattering media, such as biological tissues, clouds and fog, multi-mode fiber, white paper and so on, will produce disorderly scattering, and then disturb the wavefront of incident light. It has always been the main obstacle to optical imaging and effective information transmission. Therefore, the control of backscattered light field is also a research field worthy of attention, which is of great significance to non-line-of-sight optical information transmission. It is also very important to find an efficient control method of backscattered light field for the breakthrough of related applications. Researchers have found that iterative wavefront shaping technology is an effective solution, which gradually modulates the amplitude or phase distribution of wavefront according to the feedback of the light intensity distribution in the target area of CCD. An improved genetic algorithm, self-adaptation genetic algorithm (SAGA), is proposed, which can be used to modulate the backscattered light field quickly. The amplitude distribution of wavefront is controlled, which make it form the required pattern at the target position through the interference of light. During the implementation of the algorithm, SAGA performs gene crossover and mutation separately, and selects gene crossover and mutation operations according to the number of iterations. At the beginning of evolution, the probability of selecting gene mutation is higher because the population needs to adapt to the environment, and at the end of evolution, it is lower because it gradually adapts to the environment. In the experimental measurement, the effective modulation area of DMD is 1024×1024, which is divided into 64×64 modulation segments by pixel merging. Each segment number is assigned a value of 0 or 1. Focusing and image projection performance of scattered light field are evaluated based on Peak-to-Background Ratio (PBR) and Pearson Correlation Coefficient (COR) respectively. Comparing the scattered light focusing and image projection by SAGA and GA, it is found that SAGA can precisely control the backscattered light field and converge to the optimal value in a few iterations. While the GA still has obvious speckle background after 1000 iterations. With the increase of iteration times, GA will also show bright focus and clear projection image. Compared with the modulation speed of GA, SAGA in light focusing and image projection is 8.3 times and 14.38 times faster respectively, which greatly improves the modulation speed of scattered light field. The fast control technology of scattered light field can develop many new applications of optical communication and provide new ideas for the research in the fields of optics and information.
  • [1]

    Yaqoob Z, Psaltis D, Feld M S, Yang C 2008Nat. Photonics 2110.

    [2]

    Ni F, Liu H, Zheng Y, Chen X 2023Advanced Photonics 5 046010.

    [3]

    Bian Y, Wang F, Wang Y, Fu Z, Liu H, Yuan H, Situ G 2024Photonics Res. 12 134.

    [4]

    Duan M G, Zhao Y, Zuo H Y 2024Acta Phys. Sin. 73124203(in Chinese) [段美刚, 赵映, 左浩毅2024物理学报73 124203].

    [5]

    Zhang X, Gao J, Gan Y, Song C, Zhang D, Zhuang S, Han S, Lai P, Liu H 2023PhotoniX 4 10.

    [6]

    Mclntosh R, Goetschy A, Bender N, Yamilov A, Hsu C, Yılmaz H, Cao H 2024Nat. Photonics 18 744.

    [7]

    Wu C, Liu J, Huang X, Li Z P, Yu C, Ye J T, Zhang J, Zhang Q, Dou X, Goyal V K, Xu F, Pan J W 2021Nat. Photonics 118 e2024468118.

    [8]

    Sun X Y, Liu F, Duan J B, Niu G T, Shao X P 2021Acta Phys. Sin. 70224203(in Chinese) [孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏2021物理学报70224203].

    [9]

    Zhang X C, Fang L J, Pang L 2018Acta Phys. Sin. 67104202(in Chinese) [张熙程, 方龙杰, 庞霖2018物理学报67104202].

    [10]

    Ding C, Shao R, Qu Y, He Q, Liu L, Yang J 2023Laser Photonics Rev. 17 2300104.

    [11]

    Xiang M, He P, Wang T Y, Yuan L, Deng K, Liu F, Shao X P 2024Acta Phys. Sin. 73124202(in Chinese) [相萌, 何飘, 王天宇,袁琳,邓凯,刘飞,邵晓鹏2024物理学报73124202].

    [12]

    Shi A, Wang Z, Duan C, Wang Z, Zhang W 2024Chin. Phys. B 33 104202.

    [13]

    Shen Y C, Luo J W, Zhang Z L, Zhang S A 2024 Acta Opt. Sin. 441000001(in Chinese) [沈乐成, 罗嘉伟, 张志凌, 张诗按2024光学学报44 1000001].

    [14]

    Zhu L, Shao X P 2020Acta Opt. Sin. 400111005(in Chinese) [朱磊, 邵晓鹏2020光学学报400111005].

    [15]

    Cao Z Z, Zhang X B, Osnabrugge G, Li J H, Vellekoop I M, Koonen, A. M 2019Light: Science & Applications 8 69.

    [16]

    Tzang O, Caravaca-Aguirre A M, Wagner K, Piestun R 2018Nat. Photonics 12 368-374.

    [17]

    Teğin U, Rahmani B, Kakkava E, Borhani N, Moser C, Psaltis D 2020APL Photo. 5 030804.

    [18]

    Qiao Y Q, Peng Y J, Zheng Y L, Ye F, Chen X 2018Opt. Lett. 43 787-790.

    [19]

    Ni F C, Liu H G, Chen X F 2024 Acta Opt. Sin. 441026006(in Chinese) [倪枫超,刘海港, 陈险峰2024光学学报44 1026006].

    [20]

    Vellekoop I M, Mosk A P 2007Opt. Lett. 322309.

    [21]

    Liu J, Feng Y, Li W, Xiang M, Xi T, Liu F, Li G, Shao X 2023Opt. Lett. 48 4077.

    [22]

    Wan L, Chen Z, Huang H, Pu J 2016Appl. Phys. B 122 204.

    [23]

    Peng T, Li R, An S, Yu X, Zhou M, Bai C, Liang Y, Lei M, Zhang G, Yao B, Zhang P 2019Opt. Express 27 4858.

    [24]

    Yang J, He Q, Liu L, Qu Y, Shao R, Song B, Zhao Y 2021Light Sci. Appl. 10 149.

    [25]

    Wang X, Zhao W, Zhai A, Wang D 2023Opt. Express 31 32287.

    [26]

    Zhang C, Yao Z, Liu T, Sui X, Chen Q, Xie Z, Liu G 2024Opt. Laser Technol. 169 110018.

    [27]

    Woo C M, Zhao Q, Zhong T, Li H, Yu Z, Lai P 2022APL Photon. 7 046109.

    [28]

    Li W, He W, Dai Y, Zuo H, Pang L 2024Opt. Laser Technol. 175 110740.

    [29]

    Zhao Y, He Q, Li S, Yang J 2021Opt. Lett. 461518.

    [30]

    Li H H, Woo C M, Zhong T T, Yu Z P, Luo Y Q, Zheng Y J, Yang X, Hui H, Lai P X 2021Photonics Res. 9 202-212.

    [31]

    Yu H, Yao Z, Sui X B, Gu G H, Chen Q 2022Optik 261 169129.

    [32]

    Deb K, Beyer H G 2001Evolutionary computation 9197-221.

    [33]

    Kivijärvi J, Fränti P, Nevalainen O 2003Journal of Heuristics 9 113-129.

    [34]

    Hinterding R, Michalewicz Z, Peachey T C 1996International Conference on Evolutionary Computation—The 4th International Conference on Parallel Problem Solving from Nature, Berlin Germany, September 22-26, 1996 p 420-429.

  • [1] 段美刚, 赵映, 左浩毅. 基于迭代算法的不同状态散射光场聚焦. 物理学报, doi: 10.7498/aps.73.20231991
    [2] 廖涌泉, 张晓雪, 刘卉, 朱香渝, 陈旭东, 林志立. 基于数字微镜器件超像素法实现散射介质传输矩阵的自参考干涉测量. 物理学报, doi: 10.7498/aps.72.20230660
    [3] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, doi: 10.7498/aps.71.20211596
    [4] 刘康, 何韬, 刘涛, 李国卿, 田博, 王佳怡, 杨树明. 激光照明条件对超振荡平面透镜聚焦性能的影响. 物理学报, doi: 10.7498/aps.69.20200577
    [5] 张克瑾, 刘磊, 曾庆伟, 高太长, 胡帅, 陈鸣. 不同散射介质对飞秒脉冲激光传输特性影响研究. 物理学报, doi: 10.7498/aps.68.20190430
    [6] 张熙程, 方龙杰, 庞霖. 强散射过程中基于奇异值分解的光学传输矩阵优化方法. 物理学报, doi: 10.7498/aps.67.20172688
    [7] 张洪波, 张希仁. 用于实现散射介质中时间反演的数字相位共轭的相干性. 物理学报, doi: 10.7498/aps.67.20172308
    [8] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计. 物理学报, doi: 10.7498/aps.66.064102
    [9] 张诚, 方龙杰, 朱建华, 左浩毅, 高福华, 庞霖. 四元裂解位相调制实现相干光通过散射介质聚焦. 物理学报, doi: 10.7498/aps.66.114202
    [10] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用. 物理学报, doi: 10.7498/aps.65.027701
    [11] 谷文浩, 常胜江, 范飞, 张选洲. 基于锑化铟亚波长阵列结构的太赫兹聚焦器件. 物理学报, doi: 10.7498/aps.65.010701
    [12] 蒋忠君, 刘建军. 超振荡及其远场聚焦成像研究进展. 物理学报, doi: 10.7498/aps.65.234203
    [13] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦. 物理学报, doi: 10.7498/aps.64.194201
    [14] 陈直, 许良, 陈荣昌, 杜国浩, 邓彪, 谢红兰, 肖体乔. Kinoform单透镜的硬X射线聚焦性能. 物理学报, doi: 10.7498/aps.64.164104
    [15] 王铮, 高春清, 辛璟焘. 高阶矢量光束高数值孔径聚焦特性的研究. 物理学报, doi: 10.7498/aps.61.124209
    [16] 孙芳, 曾周末, 王晓媛, 靳世久, 詹湘琳. 界面条件下线型超声相控阵声场特性研究. 物理学报, doi: 10.7498/aps.60.094301
    [17] 于永江, 陈建农, 闫金良, 王菲菲. 聚焦径向调制Bessel-Gaussian光束实现亚波长尺寸纵向偏振光束. 物理学报, doi: 10.7498/aps.60.044205
    [18] 李敏, 张志友, 石莎, 杜惊雷. 亚波长金属聚焦透镜结构参数的优化与分析. 物理学报, doi: 10.7498/aps.59.958
    [19] 周飞, 丁天怀. 散射介质中层间杂质检测效率的影响因素及分析. 物理学报, doi: 10.7498/aps.59.8451
    [20] 徐兰青, 李 晖, 肖郑颖. 基于蒙特卡罗模拟的散射介质中后向光散射模型及分析应用. 物理学报, doi: 10.7498/aps.57.6030
计量
  • 文章访问数:  40
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-18

/

返回文章
返回