搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于锑化铟亚波长阵列结构的太赫兹聚焦器件

谷文浩 常胜江 范飞 张选洲

引用本文:
Citation:

基于锑化铟亚波长阵列结构的太赫兹聚焦器件

谷文浩, 常胜江, 范飞, 张选洲

InSb based subwavelength array for terahertz wave focusing

Gu Wen-Hao, Chang Sheng-Jiang, Fan Fei, Zhang Xuan-Zhou
PDF
导出引用
  • 基于锑化铟材料在太赫兹波段的横向磁光效应, 提出了一种金属-空气-锑化铟-金属非对称周期性亚波长线栅阵列结构的表面等离子体器件, 研究了外加磁场和温度对不同频率透射波聚焦特性的影响. 结果表明, 在外加磁场强度B=0.6 T、温度T=172 K时, 可实现0.8 THz 透射光束的聚焦, 焦点处能流密度透过率比没有外加磁场时增强28倍. 对于不同频率入射波, 通过主动调节磁场强度和温度, 能实现从0.40.8 THz宽频带的聚焦, 而且焦点处的透过率相比于无外加磁场时的普通狭缝聚焦透过率增强20倍以上, 该器件是太赫兹波段理想的可调谐、宽频段、高透过率的聚焦器件.
    With the continuous development of terahertz (THz) technology in recent years, many kinds of THz functional devices including switchers, filters, modulators, isolator and polarizers have been demonstrated. However, researches of the focusing devices in the terahertz frequency range are rarely reported. In this paper, we propose a subwavelength metal-air-InSb-metal periodic array structure to perform terahertz wave focusing. The dependence of permittivity of InSb in the THz regime on external magnetic field and temperature is calculated theoretically. Based on the magneto-optical effect of the semiconductor material InSb and asymmetrical waveguide structure, the influences of external magnetic field and temperature on the focusing and transmittance characteristics of the device are studied in detail. Numerically simulated results show that the structure proposed above can not only improve the transmittance greatly but also perform focusing perfectly. Calculations on the transmission properties show that in a certain range of temperature, the power flow transmittance at the focus point increases with the increase of temperature. In the meantime, for a certain temperature, with increasing the external magnetic field, the power flow continuously increases as well and reaches a maximum value at a certain magnetic field. For example, for a temperature of 172 K and a magnetic field of 0.6 T, the maximum power flow transmitted at the focus point is 10200 W/m2 at 0.8 THz, which is about 28 times larger than that without magnetic field at the same temperature. In addition, the simulation results also show that when the temperature and external magnetic field are fixed at 172 K and 0.5 T, respectively, the power flow transmittances for the incident waves at different frequencies are different. There is a peak value of the transmittance appearing at a specific frequency of 0.8 THz. Moreover, when the incident wave frequency is far from 0.8 THz, the transmittance decreases dramatically. It is worth noting that by choosing different temperatures and external magnetic fields, the structure proposed can not only enhance the transmittance over 20 times at the focus point, but also manipulate effectively the THz wave in a broad operating bandwidth of 400 GHz from 0.4 THz to 0.8 THz. These properties indicate that the proposed structure can act as an ideal tunable, broadband, and high transmittance focusing device in the terahertz regime.
      通信作者: 常胜江, sjchang@nankai.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2014CB339800)、国家自然科学基金(批准号: 61171027, 61505088)、天津市自然科学基金(批准号: 15JCQNJC02100)和天津市科技计划项目(批准号: 13RCGFGX01127)资助的课题.
      Corresponding author: Chang Sheng-Jiang, sjchang@nankai.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2014CB339800), the National Natural Science Foundation of China (Grant Nos. 61171027, 61505088), the Natural Science Foundation of Tianjin, China (Grant No. 15JCQNJC02100), and the Project of Science and Technology Program of Tianjin, China (Grant No. 13RCGFGX01127).
    [1]

    Leitenstorfer A, Hunsche S, Shah J, Nuss M C, Knox W H 1999 Appl. Phys. Lett. 74 1516

    [2]

    Carr G L, Martin M C, McKinney W R, Jordan K, Neil G R, Williams G P 2002 Nature 420 153

    [3]

    Rochat M, Ajili L, Willenberg H, Faist J, Beere H, Davies G, Linfield E, Ritchie D 2002 Appl. Phys. Lett. 81 1381

    [4]

    Hu M, Zhang Y X, Yan Y, Zhong R B, Liu S G 2009 Chin. Phys. B 18 3877

    [5]

    Deng X H, Yuan J R, Liu J T, Wang T B 2015 Acta Phys. Sin. 64 074101 (in Chinese) [邓新华, 袁吉仁, 刘江涛, 王同标 2015 物理学报 64 074101]

    [6]

    Withayachumnankul W, Abbott D 2009 IEEE Photon. J. 1 99

    [7]

    Wang Y, Wang X, He X J, Mei J S, Chen M H, Yin J H, Lei Q Q 2012 Acta Phys. Sin. 61 137301 (in Chinese) [王玥, 王暄, 贺训军, 梅金硕, 陈明华, 殷景华, 雷清泉 2012 物理学报 61 137301]

    [8]

    Mao Q, Wen Q Y, Tian W, Wen T L, Chen, Z, Yang Q H, Zhang H W 2014 Opt. Lett. 39 5649

    [9]

    He J L, Liu P G, He Y L, Hong Z 2012 Appl. Opt. 51 776

    [10]

    Huang Z, Parrott E P J, Park H, Chan H P, Pickwell-MacPherson E 2014 Opt. Lett. 39 793

    [11]

    Chen S, Fan F, Wang X H, Wu P F, Zhang H, Chang S J 2015 Opt. Express 23 1015

    [12]

    Miyamaru F, Hayashi S, Otani C, Kawase K, Ogawa Y, Yoshida H, Kato E 2006 Opt. Lett. 31 1118

    [13]

    Xiao X A, Wu J B, Miyamaru F, Zhang M Y, Li S B, Takeda M W, Wen W J, Sheng P 2011 Appl. Phys. Lett. 98 011911

    [14]

    Sasaki T, Noda K, Kawatsuki N, Ono H 2015 Opt. Lett. 40 1544

    [15]

    Arikawa T, Wang X F, Belyanin A A, Kono J 2012 Opt. Express 20 19484

    [16]

    Kim S, Lim Y, Kim H, Park J, Lee B 2008 Appl. Phys. Lett. 92 013103

    [17]

    Shi H F, Wang C T, Du C L, Luo X G, Dong X C, Gao H T 2005 Opt. Express 13 6815

    [18]

    Meng Q D, Gui L, Zhang X L, Zhang L W, Geng D F, L Y Q 2014 Acta Phys. Sin. 63 118503 (in Chinese) [孟庆端, 贵磊, 张晓玲, 张立文, 耿东峰, 吕衍秋 2014 物理学报 63 118503]

    [19]

    Guo N, Hu W D, Chen X S, Meng C, L Y Q, Lu W 2011 J. Electron. Mater. 40 1647

    [20]

    Bai J, Hu W D, Guo N, Lei W, L Y Q, Zhang X L, Si J J, Chen X S, Lu W 2014 J. Electron. Mater. 43 2795

    [21]

    Zhu F M, Li X E, Shen L F 2014 Appl. Opt. 53 5896

    [22]

    Li W, Kuang D F, Fan F, Chang S J, Lin L 2012 Appl. Opt. 51 7098

    [23]

    Hu B, Wang Q J, Kok S W, Zhang Y 2012 Plasmonics 7 191

    [24]

    Fan F, Chen S, Wang X H, Chang S J 2013 Opt. Express 21 8614

    [25]

    Hu B, Wang Q J, Zhang Y 2012 Opt. Lett. 37 1895

    [26]

    Halevi P, Ramos-Mendieta F 2000 Phys. Rev. Lett. 85 1875

  • [1]

    Leitenstorfer A, Hunsche S, Shah J, Nuss M C, Knox W H 1999 Appl. Phys. Lett. 74 1516

    [2]

    Carr G L, Martin M C, McKinney W R, Jordan K, Neil G R, Williams G P 2002 Nature 420 153

    [3]

    Rochat M, Ajili L, Willenberg H, Faist J, Beere H, Davies G, Linfield E, Ritchie D 2002 Appl. Phys. Lett. 81 1381

    [4]

    Hu M, Zhang Y X, Yan Y, Zhong R B, Liu S G 2009 Chin. Phys. B 18 3877

    [5]

    Deng X H, Yuan J R, Liu J T, Wang T B 2015 Acta Phys. Sin. 64 074101 (in Chinese) [邓新华, 袁吉仁, 刘江涛, 王同标 2015 物理学报 64 074101]

    [6]

    Withayachumnankul W, Abbott D 2009 IEEE Photon. J. 1 99

    [7]

    Wang Y, Wang X, He X J, Mei J S, Chen M H, Yin J H, Lei Q Q 2012 Acta Phys. Sin. 61 137301 (in Chinese) [王玥, 王暄, 贺训军, 梅金硕, 陈明华, 殷景华, 雷清泉 2012 物理学报 61 137301]

    [8]

    Mao Q, Wen Q Y, Tian W, Wen T L, Chen, Z, Yang Q H, Zhang H W 2014 Opt. Lett. 39 5649

    [9]

    He J L, Liu P G, He Y L, Hong Z 2012 Appl. Opt. 51 776

    [10]

    Huang Z, Parrott E P J, Park H, Chan H P, Pickwell-MacPherson E 2014 Opt. Lett. 39 793

    [11]

    Chen S, Fan F, Wang X H, Wu P F, Zhang H, Chang S J 2015 Opt. Express 23 1015

    [12]

    Miyamaru F, Hayashi S, Otani C, Kawase K, Ogawa Y, Yoshida H, Kato E 2006 Opt. Lett. 31 1118

    [13]

    Xiao X A, Wu J B, Miyamaru F, Zhang M Y, Li S B, Takeda M W, Wen W J, Sheng P 2011 Appl. Phys. Lett. 98 011911

    [14]

    Sasaki T, Noda K, Kawatsuki N, Ono H 2015 Opt. Lett. 40 1544

    [15]

    Arikawa T, Wang X F, Belyanin A A, Kono J 2012 Opt. Express 20 19484

    [16]

    Kim S, Lim Y, Kim H, Park J, Lee B 2008 Appl. Phys. Lett. 92 013103

    [17]

    Shi H F, Wang C T, Du C L, Luo X G, Dong X C, Gao H T 2005 Opt. Express 13 6815

    [18]

    Meng Q D, Gui L, Zhang X L, Zhang L W, Geng D F, L Y Q 2014 Acta Phys. Sin. 63 118503 (in Chinese) [孟庆端, 贵磊, 张晓玲, 张立文, 耿东峰, 吕衍秋 2014 物理学报 63 118503]

    [19]

    Guo N, Hu W D, Chen X S, Meng C, L Y Q, Lu W 2011 J. Electron. Mater. 40 1647

    [20]

    Bai J, Hu W D, Guo N, Lei W, L Y Q, Zhang X L, Si J J, Chen X S, Lu W 2014 J. Electron. Mater. 43 2795

    [21]

    Zhu F M, Li X E, Shen L F 2014 Appl. Opt. 53 5896

    [22]

    Li W, Kuang D F, Fan F, Chang S J, Lin L 2012 Appl. Opt. 51 7098

    [23]

    Hu B, Wang Q J, Kok S W, Zhang Y 2012 Plasmonics 7 191

    [24]

    Fan F, Chen S, Wang X H, Chang S J 2013 Opt. Express 21 8614

    [25]

    Hu B, Wang Q J, Zhang Y 2012 Opt. Lett. 37 1895

    [26]

    Halevi P, Ramos-Mendieta F 2000 Phys. Rev. Lett. 85 1875

  • [1] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面. 物理学报, 2023, 0(0): . doi: 10.7498/aps.72.20221962
    [2] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [3] 王健, 张超越, 姚昭宇, 张弛, 许锋, 阳媛. 基于石墨烯的太赫兹漫反射表面快速设计方法. 物理学报, 2021, 70(3): 034102. doi: 10.7498/aps.70.20201034
    [4] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [5] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211596
    [6] 王晓雷, 赵洁惠, 李淼, 姜光科, 胡晓雪, 张楠, 翟宏琛, 刘伟伟. 基于人工表面等离激元探针实现太赫兹波的紧聚焦和场增强. 物理学报, 2020, 69(5): 054201. doi: 10.7498/aps.69.20191531
    [7] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [8] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [9] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计. 物理学报, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [10] 李丹, 刘勇, 王怀兴, 肖龙胜, 凌福日, 姚建铨. 太赫兹波段石墨烯等离子体的增益特性. 物理学报, 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [11] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [12] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用. 物理学报, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [13] 陈再高, 王建国, 王玥, 张殿辉, 乔海亮. 欧姆损耗对太赫兹频段同轴表面波振荡器的影响. 物理学报, 2015, 64(7): 070703. doi: 10.7498/aps.64.070703
    [14] 江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强. 粗糙表面涂覆目标的太赫兹波散射特性研究. 物理学报, 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [15] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦. 物理学报, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [16] 陈再高, 王建国, 王光强, 李爽, 王玥, 张殿辉, 乔海亮. 0.14太赫兹同轴表面波振荡器研究. 物理学报, 2014, 63(11): 110703. doi: 10.7498/aps.63.110703
    [17] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究. 物理学报, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [18] 范飞, 郭展, 白晋军, 王湘晖, 常胜江. 多功能磁光子晶体太赫兹可调偏振控制器件. 物理学报, 2011, 60(8): 084219. doi: 10.7498/aps.60.084219
    [19] 胡海峰, 蔡利康, 白文理, 张晶, 王立娜, 宋国峰. 基于表面等离子体的太赫兹光束方向调控的模拟研究. 物理学报, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [20] 黎华, 韩英军, 谭智勇, 张戎, 曹俊诚. 半绝缘等离子体波导太赫兹量子级联激光器工艺研究. 物理学报, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
计量
  • 文章访问数:  4558
  • PDF下载量:  254
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-24
  • 修回日期:  2015-09-24
  • 刊出日期:  2016-01-05

基于锑化铟亚波长阵列结构的太赫兹聚焦器件

    基金项目: 国家重点基础研究发展计划(批准号: 2014CB339800)、国家自然科学基金(批准号: 61171027, 61505088)、天津市自然科学基金(批准号: 15JCQNJC02100)和天津市科技计划项目(批准号: 13RCGFGX01127)资助的课题.

摘要: 基于锑化铟材料在太赫兹波段的横向磁光效应, 提出了一种金属-空气-锑化铟-金属非对称周期性亚波长线栅阵列结构的表面等离子体器件, 研究了外加磁场和温度对不同频率透射波聚焦特性的影响. 结果表明, 在外加磁场强度B=0.6 T、温度T=172 K时, 可实现0.8 THz 透射光束的聚焦, 焦点处能流密度透过率比没有外加磁场时增强28倍. 对于不同频率入射波, 通过主动调节磁场强度和温度, 能实现从0.40.8 THz宽频带的聚焦, 而且焦点处的透过率相比于无外加磁场时的普通狭缝聚焦透过率增强20倍以上, 该器件是太赫兹波段理想的可调谐、宽频段、高透过率的聚焦器件.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回