-
Most of reported coding metasurfaces only use phase encoding or amplitude encoding to regulate electromagnetic waves, which limits the flexibility of terahertz wave regulation. In this work, a metasurface element structure is proposed. The metasurface element is composed of three layers, i.e. metal pattern structure layer, intermediate medium layer, and metal base layer. According to the geometric phase principle, the phase coverage in the 2π range can be achieved by rotating the metal pattern structure layer under the incidence of the circular-polarized terahertz wave. The metasurface element structure is arranged reasonably by using the phase coding, and the 1-bit and 2-bit phase coding metasurface are designed. First of all, the coding metasurface with interlacing “0” and “1” is designed to generate a double beam reflection under the vertical incidence of circular polarized terahertz waves, while the two-dimensional checkerboard coding metasurface with “0” and “1” generates a symmetrical four-beam reflection. In addition, the metasurface is designed to deflect the reflected beam, and the coding period is changed to design the metasurface to deflect the reflected beam to the specified angle, showing good flexibility. Finally, the convolutional operation is introduced to flexibly regulate the circular polarized beam, and the functions of beam splitting and reflection beam deflection are obtained. The amplitude coded metasurface is designed under theincidence of the online polarized terahertz wave, and the near-field imaging effect can be realized by the amplitude differentiation of polarization reflection. The designed amplitude coded metasurface realizes the function of imaging in space, presenting the designed “CJLU” pattern, which has different imaging effects at different observation locations. When the observation plane distance is 80 μm at the observation frequency of 1.22 THz, the near-field imaging effect is best. In conclusion, we propose a terahertz multibeam modulation reflection-coded metasurface, which combines geometric phase and amplitude variation to achieve different terahertz wave modulation functions under different polarization incident terahertz waves. The results from the simulated near-field radiation model and the far-field radiation model are both in agreement with the theoretical calculation predictions. The designed metasurface provides a degree of freedom method for terahertz wave polarization and phase manipulation, which greatly improves the efficiency of terahertz wave manipulation and has potential applications in terahertz systems.
-
Keywords:
- terahertz /
- terahertz beam splitting /
- beam deflection /
- terahertz imaging
[1] Zhang C, Deng L, Wang L, Chen X, Li S 2021 Appl. Sci. 11 7128Google Scholar
[2] Huang J, Yin X, Xu M, Liu M, Zhang Y, Zhang H 2022 Res. Phys. 33 105204Google Scholar
[3] Sun X, Xu M, Wang G, Song Q, Li Y, Gao X 2022 Appl. Opt. 61 34Google Scholar
[4] Xu Z, Sheng H, Wang Q, Zhou L, Shen Y 2021 SN Appl. Sci. 3 1Google Scholar
[5] Dash S, Liaskos C, Akyildiz IF, Pitsillides A 2020 Mater. Sci. Forum 1009 63Google Scholar
[6] Wang L, Lan F, Zeng H, et al. 2021 IEEE. 1 93Google Scholar
[7] Gong Y, Quan B, Hu F, Wang H, Zhang L, Jiang M 2022 E Low dimens. Syst. Nanostruct. 143 115334Google Scholar
[8] Niu J, Li C, Mo W, Yao Q, Zhu A 2022 J. Phys. D-Appl. Phys. 55 395105Google Scholar
[9] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 218Google Scholar
[10] Li Z, Wang W, Deng S, Qu J, Li Y, Lü B 2022 Opt. Lett. 47 441Google Scholar
[11] Yang D, Wang W, Lü E, Wang H, Liu B, Hou Y 2022 Iscience 25 104824Google Scholar
[12] He C, Song Z 2022 Opt. Express 30 25498Google Scholar
[13] Liu C X, Yang F, Fu X J, Wu J W, Zhang L, Yang J 2021 Adv. Opt. Mater. 9 2100932Google Scholar
[14] Pan W M, Li J S 2021 Opt. Express 29 12918Google Scholar
[15] Zhao D, Tan Z, Zhao H, Fan F, Chang S 2022 Opt. Lett. 47 818Google Scholar
[16] Zheng S, Li C, Fang G 2021 Opt. Express 29 43403Google Scholar
[17] Wang T, Chen B, Wu J, Yang S, Shen Z, Cai J 2021 Appl. Phys. Lett. 118 081101Google Scholar
[18] Li W, Hu X, Wu J, Fan K, Chen B, Zhang C 2022 Light Sci. Appl. 11 1Google Scholar
[19] Lin Q W, Wong H, Huitema L, Crunteanu A 2022 Adv. Opt. Mater. 10 2101699Google Scholar
[20] Ren B, Feng Y, Tang S, Wu J L, Liu B, Song J 2022 Opt. Express 30 16229Google Scholar
[21] Ren B, Feng Y, Tang S, Wang L, Jiang H, Jiang Y 2021 Opt. Express 29 17258Google Scholar
[22] Li J, Cheng Y, Fan J, Chen F, Luo H, Li X 2022 Phys. Lett. 428 127932Google Scholar
[23] Wei J, Qi Y, Zhang B, Ding J, Liu W, Wang X 2022 Opt. Commun. 502 127425Google Scholar
[24] Zang X, Yao B, Chen L, Xie J, Guo X 2021 Light: Adv. Manuf. 2 148Google Scholar
[25] Liu S, Ouyang C, Yao Z, Zhao J, Li Y, Feng L 2022 Opt. Express 30 28158Google Scholar
[26] Qi Y, Zhang B, Ding J, Zhang T, Wang X, Yi Z 2021 Chin. Phys. B. 30 024211Google Scholar
[27] He J, Chen R, Li Y, Chen S, Liu Z, Zhang Q 2021 Appl. Opt. 60 5752Google Scholar
[28] Zhong M, Li J S 2022 Opt. Commun. 511 127997Google Scholar
[29] Kou W, Shi W, Zhang Y, Yang Z, Chen T, Gu J 2021 IEEE. 12 13Google Scholar
[30] Chen D C, Zhu X F, Wei Q, Yao J, Wu D J 2020 J. Phys. D Appl. Phys 53 255501Google Scholar
[31] Saifullah Y, Yang G, Feng X U 2021 J. Radars 10 382Google Scholar
[32] Li S, Li Z, Han B, Huang G, Liu X, Yang H 2022 Front Mater 9 854062Google Scholar
-
图 5 编码超表面卷积过程示意图 (a)—(c) S1, S2和S3的超表面单元排布示意图; (d)—(f) 0.48 THz处左圆偏振入射时, S1, S2和S3的3D远场散射图; (g)—(i) 0.48 THz处左圆偏振入射时, S1, S2和S3的2D散射图
Fig. 5. Convolution process schematic diagram of the coding metasurface: (a)–(c) Layout diagram of S1, S2 and S3 metasurfaces; (d)–(f) 3D far-field scattering diagram of S1, S2 and S3 under left circularly polarized incidence at 0.48 THz; (g)–(i) 2D scattering diagram of S1, S2 and S3 under left circularly polarized incident at 0.48 THz.
图 6 2-bit反射编码超表面(“00-01-10-11···”) (a) 超表面排布示意图; (b) 超表面结构; (c) 三维远场散射图; (d) 归一化反射振幅图
Fig. 6. 2-bit reflected coding metasurface (“00-01-10-11···”): (a) Layout diagram of coding metasurface; (b) metasurface structure; (c) three-dimensional far field scattering diagram; (d) normalized reflection amplitude diagram.
图 7 2-bit反射编码超表面(“0000-0101-1010-1111”) (a) 超表面排布示意图; (b) 超表面结构; (c) 三维远场散射图; (d) 归一化反射振幅图
Fig. 7. 2-bit reflection encoding metasurface (“0000-0101-1010-1111”): (a) Layout diagram of coding metasurface; (b) metasurface structure; (c) three-dimensional far field scattering diagram; (d) normalized reflection amplitude diagram.
表 1 编码超表面单元
Table 1. Unit cell of the proposed coding metasurface.
1-bit相位编码 0 1 2-bit相位编码 00 01 10 11 旋转角度/(°) 0 45 90 135 相位/(°) –137.21 –49.09 43.99 131.99 俯视图 -
[1] Zhang C, Deng L, Wang L, Chen X, Li S 2021 Appl. Sci. 11 7128Google Scholar
[2] Huang J, Yin X, Xu M, Liu M, Zhang Y, Zhang H 2022 Res. Phys. 33 105204Google Scholar
[3] Sun X, Xu M, Wang G, Song Q, Li Y, Gao X 2022 Appl. Opt. 61 34Google Scholar
[4] Xu Z, Sheng H, Wang Q, Zhou L, Shen Y 2021 SN Appl. Sci. 3 1Google Scholar
[5] Dash S, Liaskos C, Akyildiz IF, Pitsillides A 2020 Mater. Sci. Forum 1009 63Google Scholar
[6] Wang L, Lan F, Zeng H, et al. 2021 IEEE. 1 93Google Scholar
[7] Gong Y, Quan B, Hu F, Wang H, Zhang L, Jiang M 2022 E Low dimens. Syst. Nanostruct. 143 115334Google Scholar
[8] Niu J, Li C, Mo W, Yao Q, Zhu A 2022 J. Phys. D-Appl. Phys. 55 395105Google Scholar
[9] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 218Google Scholar
[10] Li Z, Wang W, Deng S, Qu J, Li Y, Lü B 2022 Opt. Lett. 47 441Google Scholar
[11] Yang D, Wang W, Lü E, Wang H, Liu B, Hou Y 2022 Iscience 25 104824Google Scholar
[12] He C, Song Z 2022 Opt. Express 30 25498Google Scholar
[13] Liu C X, Yang F, Fu X J, Wu J W, Zhang L, Yang J 2021 Adv. Opt. Mater. 9 2100932Google Scholar
[14] Pan W M, Li J S 2021 Opt. Express 29 12918Google Scholar
[15] Zhao D, Tan Z, Zhao H, Fan F, Chang S 2022 Opt. Lett. 47 818Google Scholar
[16] Zheng S, Li C, Fang G 2021 Opt. Express 29 43403Google Scholar
[17] Wang T, Chen B, Wu J, Yang S, Shen Z, Cai J 2021 Appl. Phys. Lett. 118 081101Google Scholar
[18] Li W, Hu X, Wu J, Fan K, Chen B, Zhang C 2022 Light Sci. Appl. 11 1Google Scholar
[19] Lin Q W, Wong H, Huitema L, Crunteanu A 2022 Adv. Opt. Mater. 10 2101699Google Scholar
[20] Ren B, Feng Y, Tang S, Wu J L, Liu B, Song J 2022 Opt. Express 30 16229Google Scholar
[21] Ren B, Feng Y, Tang S, Wang L, Jiang H, Jiang Y 2021 Opt. Express 29 17258Google Scholar
[22] Li J, Cheng Y, Fan J, Chen F, Luo H, Li X 2022 Phys. Lett. 428 127932Google Scholar
[23] Wei J, Qi Y, Zhang B, Ding J, Liu W, Wang X 2022 Opt. Commun. 502 127425Google Scholar
[24] Zang X, Yao B, Chen L, Xie J, Guo X 2021 Light: Adv. Manuf. 2 148Google Scholar
[25] Liu S, Ouyang C, Yao Z, Zhao J, Li Y, Feng L 2022 Opt. Express 30 28158Google Scholar
[26] Qi Y, Zhang B, Ding J, Zhang T, Wang X, Yi Z 2021 Chin. Phys. B. 30 024211Google Scholar
[27] He J, Chen R, Li Y, Chen S, Liu Z, Zhang Q 2021 Appl. Opt. 60 5752Google Scholar
[28] Zhong M, Li J S 2022 Opt. Commun. 511 127997Google Scholar
[29] Kou W, Shi W, Zhang Y, Yang Z, Chen T, Gu J 2021 IEEE. 12 13Google Scholar
[30] Chen D C, Zhu X F, Wei Q, Yao J, Wu D J 2020 J. Phys. D Appl. Phys 53 255501Google Scholar
[31] Saifullah Y, Yang G, Feng X U 2021 J. Radars 10 382Google Scholar
[32] Li S, Li Z, Han B, Huang G, Liu X, Yang H 2022 Front Mater 9 854062Google Scholar
计量
- 文章访问数: 6374
- PDF下载量: 221
- 被引次数: 0