搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速太赫兹探测器

张真真 黎华 曹俊诚

引用本文:
Citation:

高速太赫兹探测器

张真真, 黎华, 曹俊诚

Ultrafast terahertz detectors

Zhang Zhen-Zhen, Li Hua, Cao Jun-Cheng
PDF
导出引用
  • 太赫兹(terahertz,THz)技术在高速空间通信、外差探测、生物医学、无损检测和国家安全等领域具有广阔的应用前景.能响应1 GHz调制速率以上THz光的高速THz探测器是快速成像、THz高速空间通信、超快光谱学应用技术和THz外差探测等领域的核心器件.传统的THz热探测器难以实现高速工作,而基于半导体的THz探测器在理论上可实现高速工作.光导天线具有超快的响应速度,可实现常温和宽谱探测;肖特基势垒二极管混频器、超导-绝缘体-超导混频器和超导热电子混频器具有转换效率高、噪声低等优点,可用于高速THz空间外差和直接探测;基于高迁移率二维电子气的天线耦合场效应晶体管灵敏度高、阻抗低,可实现常温高速THz探测;THz量子阱探测器是一种基于子带间跃迁原理的单极器件,非常适合高频和高速探测应用,亚波长金属微腔耦合机理可显著提高器件的工作温度及光子吸收效率.本文对上述几种高速THz探测器进行了综述并分析了各种探测器的优缺点.
    Terahertz (THz) technologies have broad application prospects in ultrafast space communication, heterodyne detection, biological detection, non-destructive testing and national security. Ultrafast THz detectors, which can respond to the THz light with modulation rate larger than 1 GHz, are the key component of fast imaging, space communication, ultrafast spectroscopy and THz heterodyne applications. Theoretically, the traditional THz detectors based on heat effects are difficult to meet the requirements for fast detections, while the semiconductor based THz detectors can work under the condition of ultrafast detection. Photoconductive antennas with ultrafast response time are suitable for room-temperature broad-spectrum THz detections. Schottky barrier diodes, superconductor-insulator-superconductor mixers and hot electron bolometers are promising candidates for high-speed THz spatial heterodyne and direct detections attributable to their high conversion efficiency and low noise. High-mobility field effect transistors based on two-dimensional graphene material have the advantages of high sensitivity and low impedance, which make this kind of device have great potential applications in room-temperature high-speed detections. THz quantum well detectors (THz QWPs) based on inter-subband transitions are very suitable for the applications in high-frequency and high-speed detections because of the advantages of high responsivity, small value and integrated packaging. Recently, we have demonstrated 6.2 GHz bandwidth modulation by using THz QWPs, the fast THz receiving device. On the other hand, low working temperature and low coupling efficiency are the main factors that restrict the applications of THz QWPs. From the Brewster angle, 45 polished facet coupling structure, to one-or two-dimensional metal grating and surface Plasmon polariton coupling configuration, researchers often explore the appropriate coupling mechanism which can not only couple the normal incidence THz light, but also improve the coupling efficiency substantially. The sub-wavelength double-metal micro-cavity array coupling structure has two advantages which make THz QWPs a key candidate for fast imaging and detection in THz band:firstly, the patch antennas on the device surface can effectively increase the light absorption region, and the periodic structure can make the normal incidence THz light fulfill the rule of intersubband transition. Secondly, the sub-wavelength size double metal structure can restrict the light within a very small volume, and the electric current will be enhanced by the resonance effect when the cavity mode is equal to the peak response frequency, which can suppress the dark current and improve the optical coupling efficiency of the device. In this paper, several ultrafast THz detectors are reviewed and the advantages and disadvantages of various detectors are also analyzed.
      通信作者: 黎华, hua.li@mail.sim.ac.cn;jccao@mail.sim.ac.cn ; 曹俊诚, hua.li@mail.sim.ac.cn;jccao@mail.sim.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2014CB339803)、国家重点研发计划(2017YFF0106302)、国家自然科学基金(批准号:61575214,61405233,61404150)和中国科学院百人计划资助的课题.
      Corresponding author: Li Hua, hua.li@mail.sim.ac.cn;jccao@mail.sim.ac.cn ; Cao Jun-Cheng, hua.li@mail.sim.ac.cn;jccao@mail.sim.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2014CB339803), the National Key RD Program of China (Grant No. 2017YFF0106302), the National Natural Science Foundation of China (Grant Nos. 61575214, 61405233, 61404150), and the Hundred Talents Program of Chinese Academy of Sciences.
    [1]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26

    [2]

    Cao J C 2012 Semiconductor Terahertz Sources, Detectors and Applications (Beijing: Science Press) pp1-7 (in Chinese) [曹俊诚 2012 半导体太赫兹源、探测器与应用(北京: 科学出版社)第17页]

    [3]

    Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D 2005 Semicond. Sci. Technol. 20 S266

    [4]

    Zheng X, Wu Z M, Gou J, Liu Z J, Wang J, Zheng J, Luo Z F, Chen W Q, Que L C, Jiang Y D 2016 J. Infrared Millim. Terahertz Waves 37 965

    [5]

    Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N, Zhang X 2004 Science 303 1494

    [6]

    Padilla W J, Taylor A J, Highstrete C, Lee M, Averitt R D 2006 Phys. Rev. Lett. 96 107401

    [7]

    Azad A K, Dai J M, Zhang W L 2006 Opt. Lett. 31 634

    [8]

    Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597

    [9]

    Gol'tsman G N 1999 Infrared Phys. Technol. 40 199

    [10]

    Qin H, Huang Y D, Sun J D, Zhang Z P, Yu Y, Li X, Sun Y F 2017 Chin. Opt. 10 51 (in Chinese) [秦华, 黄永丹, 孙建东, 张志鹏, 余耀, 李想, 孙云飞 2017 中国光学 10 51]

    [11]

    Vicarelli L, Vitiello M S, Coquillat D, Lombardo A, Ferrari A C, Knap W, Polini M, Pellegrini V, Tredicucci A 2012 Nat. Mater. 11 865

    [12]

    Sun J D, Qin H, Lwis R A, Sun Y F, Zhang X Y, Cai Y, Wu D M, Zhang B S 2012 Appl. Phys. Lett. 100 173513

    [13]

    Liu H C, Song C Y, SpringThorpe A J, Cao J C 2004 Appl. Phys. Lett. 84 4068

    [14]

    Liu H C, Luo H, Song C Y, Wasilewski Z R, SpringThorpe A J, Cao J C 2008 IEEE J. Sel. Top. Quantum Electron. 14 374

    [15]

    Guo X G, Cao J C, Zhang R, Tan Z Y, Liu H C 2013 IEEE J. Sel. Top. Quantum Electron. 19 8500508

    [16]

    Zhang R, Guo X G, Cao J C, Liu H C 2011 J. Appl. Phys. 109 073110

    [17]

    Guo X G, Zhang R, Cao J C, Liu H C 2012 IEEE J. Quantum Electron. 48 1113

    [18]

    Schneider H, Liu H C 2006 Quantum Well Infrared Photodetectors: Physics and Applications (Berlin: Spinger) pp67-69

    [19]

    Wu W, Bonakdar A, Mohseni H 2010 Appl. Phys. Lett. 96 161107

    [20]

    Liu H C, Capasso F 2000 Intersubband Transition in Quantum Wells: Physics and Device Applications I (San Diego: Academic Press)

    [21]

    Auston D H 1975 Appl. Phys. Lett. 26 101

    [22]

    Lefur P, Auston D H 1976 Appl. Phys. Lett. 28 21

    [23]

    Valdmanis J A, Mourou G, Gabel C W 1982 Appl. Phys. Lett. 41 211

    [24]

    Jepsen P U, Jacobsen R H, Keiding S R 1996 J. Opt. Soc. Am. B 13 2424

    [25]

    Shi W, Hou L, Wang X M 2011 J. Appl. Phys. 110 023111

    [26]

    Chen S G, Shi W, Hou L, Lwis R A 2017 IEEE J. Sel. Top. Quantum Electron. 23 8400406

    [27]

    Tani M, Hirota Y, Que C T, Tanaka S, Hattori R, Yamaguchi M, Nishizawa S, Hangyo M 2006 Int. J. Infrared Millim. Waves 27 531

    [28]

    Grischkowsky D, Keiding S, Vanexter M, Fattinger C 1990 J. Opt. Soc. Am. B 7 2006

    [29]

    Hu B B, Nuss M C 1995 Opt. Lett. 20 1716

    [30]

    Beard M C, Turner G M, Schmuttenmaer C A 2002 J. Phys. Chem. B 106 7146

    [31]

    Xu L, Zhang X C, Auston D H 1992 Appl. Phys. Lett. 61 1784

    [32]

    Hu Y, Huang P, Guo L T, Wang X H, Zhang C L 2006 Phys. Lett. A 359 728

    [33]

    Hubers H W 2008 IEEE J. Sel. Top. Quantum Electron. 14 378

    [34]

    Rogalski A, Sizov F 2011 Opto-Electron. Rev. 19 346

    [35]

    McIntosh K A, Brown E R, Nichols K B, McMahon O B, DiNatale W F, Lyszczarz T M 1995 Appl. Phys. Lett. 67 3844

    [36]

    Peytavit E, Coinon C, Lampin J F 2011 J. Appl. Phys. 109 016101

    [37]

    Peytavit E, Lampin J F, Hindle F, Yang C, Mouret G 2009 Appl. Phys. Lett. 95 161102

    [38]

    Englert C R, Schimpf B, Birk M, Schreier F, Krocka M, Nitsche R G, Titz R U, Summers M E 2000 J. Geophys. Res. Atmos. 105 22211

    [39]

    Pickett H M 2006 IEEE Trans. Geosci. Remote Sensing 44 1122

    [40]

    Gulkis S, Allen M, Backus C, Beaudin G, Biver N, Bockelee-Morvan D, Crovisier J, Despois D, Encrenaz P, Frerking M, Hofstadter M, Hartogh P, Ip W, Janssen M, Kamp L, Koch T, Lellouch E, Mann I, Muhleman D, Rauer H, Schloerb P, Spilker T 2007 Planet Space Sci. 55 1050

    [41]

    Siegel P H, Dengler R J 2006 Int. J. Infrared Millim. Waves 27 465

    [42]

    Crowe T W, Mattauch R J, Roser H P, Bishop W L, Peatman W C B, Liu X L 1992 Proc. IEEE 80 1827

    [43]

    Zmuidzinas J, Richards P L 2004 Proc. IEEE 92 1597

    [44]

    Bozhkov V G 2003 Radiophys. Quant. Electron. 46 631

    [45]

    Champlin K S, Eisenstein G 1978 IEEE Trans. Microw. Theory 26 31

    [46]

    Hubers H W, Schwaab G W, Roser H P 1994 J. Appl. Phys. 75 4243

    [47]

    Crowe T W, Porterfield D W, Hesler J L, Bishop W L, Kurtz D S, Hui K (Hwu R J, Woolard D L Rosker M J ed.) 2005 Terahertz for Military and Security Applications Ⅲ (Vol. 5790) (Bellingham: Spie-Int Soc Optical Engineering) pp271-280

    [48]

    Young D T, Irvin J C 1965 Proc. IEEE 53 2130

    [49]

    Ishi T, Fujikata J, Makita K, Baba T, Ohashi K 2005 Jpn. J. Appl. Phys. 44 L364

    [50]

    Tien P K, Gordon J P 1963 Phys. Rev. 129 647

    [51]

    Uzawa Y, Wang Z, Kawakami A 1998 Appl. Phys. Lett. 73 680

    [52]

    Karpov A, Miller D, Rice F, Stern J A, Bumble B, Leduc H G, Zmuidzinas J 2007 IEEE Trans. Appl. Supercon. 17 343

    [53]

    Gaidis M C, Leduc H G, Mei B, Miller D 1996 IEEE Trans. Microwave Theory Tech. 44 1130

    [54]

    Kawamura J, Miller D, Chen J, Zmuidzinas J, Bumble B, Leduc H G, Stern J A 2000 Appl. Phys. Lett. 76 2119

    [55]

    Phillips T G, Jefferts K B 1973 Rev Sci. Instrum. 44 1009

    [56]

    Ren Y A, Miao W, Yao Q J, Zhang W, Shi S C 2011 Chin. Phys. Lett. 28 010702

    [57]

    Richards P L 1994 J. Appl. Phys. 76 1

    [58]

    Qin H, Sun J D, Liang S X, Li X, Yang X X, He Z H, Yu C, Feng Z H 2017 Carbon 116 760

    [59]

    Qin H, Sun J D, He Z Z, Li X X, Li X, Liang S X, Yu C, Feng Z H, Tu X C, Jin B B, Chen J, Wu P H 2017 Carbon 121 235

    [60]

    Cao J C 2006 Physics 35 953 (in Chinese) [曹俊诚 2006 物理 35 953]

    [61]

    Zhang S, Wang T M, Hao M R, Yang Y, Zhang Y H, Shen W Z, Liu H C 2013 J. Appl. Phys. 114 194507

    [62]

    Guo X G, Tan Z Y, Cao J C, Liu H C 2009 Appl. Phys. Lett. 94 201101

    [63]

    Gu L L, Guo X G, Fu Z L, Wan W J, Zhang R, Tan Z Y, Cao J C 2015 Appl. Phys. Lett. 106 111107

    [64]

    Ferre S, Razavipour S G, Ban D Y 2013 Appl. Phys. Lett. 103 081105

    [65]

    Gomez A, Berger V, Pere-Laperne N, de Vaulchier L A 2008 Appl. Phys. Lett. 92 202110

    [66]

    Delga A, Doyennette L, Buffaz A, Berger V, Jasnot F R, de Vaulchier L A, Pere-Laperne N, Liu H C 2011 J. Appl. Phys. 110 013714

    [67]

    Guo X G, Zhang R, Liu H C, SpringThorpe A J, Cao J C 2010 Appl. Phys. Lett. 97 021114

    [68]

    Kippenberg T J, Vahala K J 2007 Opt. Express 15 17172

    [69]

    Benz A, Krall M, Schwarz S, Dietze D, Detz H, Andrews A M, Schrenk W, Strasser G, Unterrainer K 2014 Sci. Rep. 4 4269

    [70]

    Giannini V, Berrier A, Maier S A, Sanchez-Gil J A, Rivas J G 2010 Opt. Express 18 2797

    [71]

    Harrer A, Schwarz B, Gansch R, Reininger P, Detz H, Zederbauer T, Andrews A M, Schrenk W, Strasser G 2014 Appl. Phys. Lett. 105 171112

    [72]

    Degl'Innocenti R, Xiao L, Jessop D S, Kindness S J, Ren Y, Lin H Y, Zeitler J A, Alexander-Webber J A, Joyce H J, Braeuninger-Weimer P, Hofmann S, Beere H E, Ritchie D A 2016 ACS Photon. 3 1747

    [73]

    Zhang Z Z, Fu Z L, Guo X G, Cao J C 2018 Chin. Phys. B 27 030701

    [74]

    Zhang R, Fu Z L, Gu L L, Guo X G, Cao J C 2015 Appl. Phys. Lett. 106 029902

    [75]

    Gu L, Tan Z Y, Cao J C 2013 Physics 42 695 (in Chinese) [顾立, 谭智勇, 曹俊诚 2013 物理 42 695]

    [76]

    Grant P D, Dudek R, Buchanan M, Wolfson L, Liu H C 2005 Infrared Phys. Technol. 47 144

    [77]

    Chen Z, Tan Z Y, Han Y J, Zhang R, Guo X G, Li H, Cao J C, Liu H C 2011 Electron. Lett. 47 1002

    [78]

    Li H, Wan W J, Tan Z Y, Fu Z L, Wang H X, Zhou T, Li Z P, Wang C, Guo X G, Cao J C 2017 Sci. Rep. 7 3452

    [79]

    Zhou T, Li H, Wan W J, Fu Z L, Cao J C 2017 AIP Adv. 7 105215

    [80]

    Vahala K J 2003 Nature 424 839

    [81]

    Shackleford J A, Grote R, Currie M, Spanier J E, Nabet B 2009 Appl. Phys. Lett. 94 083501

    [82]

    Strupiechonski E, Xu G, Brekenfeld M, Todorov Y, Isac N, Andrews A M, Klang P, Sirtori C, Strasser G, Degiron A, Colombelli R 2012 Appl. Phys. Lett. 100 131113

    [83]

    Feuillet-Palma C, Todorov Y, Steed R, Vasanelli A, Biasiol G, Sorba L, Sirtori C 2012 Opt. Express 20 29121

    [84]

    Todorov Y, Minot C 2007 J. Opt. Soc. Am. A 24 3100

    [85]

    Todorov Y, Tosetto L, Teissier J, Andrews A M, Klang P, Colombelli R, Sagnes I, Strasser G, Sirtori C 2010 Opt. Express 18 13886

    [86]

    Collin S, Pardo F, Pelouard J L 2003 Appl. Phys. Lett. 83 1521

    [87]

    Collin S, Pardo F, Teissier R, Pelouard J L 2004 Appl. Phys. Lett. 85 194

    [88]

    Paulillo B, Pirotta S, Nong H, Crozat P, Guilet S, Xu G, Dhillon S, Li L H, Davies A G, Linfield E H, Colombelli R 2017 Optica 4 1451

    [89]

    Feuillet-Palma C, Todorov Y, Vasanelli A, Sirtori C 2013 Sci. Rep. 3 1361

    [90]

    Palaferri D, Todorov Y, Chen Y N, Madeo J, Vasanelli A, Li L H, Davies A G, Linfield E H, Sirtori C 2015 Appl. Phys. Lett. 106 161102

    [91]

    Palaferri D, Todorov Y, Mottaghizadeh A, Frucci G, Biasiol G, Sirtori C 2016 New J. Phys. 18 113016

    [92]

    Chen Y N, Todorov Y, Askenazi B, Vasanelli A, Biasiol G, Colombelli R, Sirtori C 2014 Appl. Phys. Lett. 104 031113

    [93]

    Palaferri D, Todorov Y, Bigioli A, Mottaghizadeh A, Djamal G, Calabrese A, Vasanelli A, Li L, Giles Davies A, Linfield E, Kapsalidis F, Beck M, Faist J, Sirtori C 2017 arXiv: 1709.01898 [physics.app-ph]

  • [1]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26

    [2]

    Cao J C 2012 Semiconductor Terahertz Sources, Detectors and Applications (Beijing: Science Press) pp1-7 (in Chinese) [曹俊诚 2012 半导体太赫兹源、探测器与应用(北京: 科学出版社)第17页]

    [3]

    Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D 2005 Semicond. Sci. Technol. 20 S266

    [4]

    Zheng X, Wu Z M, Gou J, Liu Z J, Wang J, Zheng J, Luo Z F, Chen W Q, Que L C, Jiang Y D 2016 J. Infrared Millim. Terahertz Waves 37 965

    [5]

    Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N, Zhang X 2004 Science 303 1494

    [6]

    Padilla W J, Taylor A J, Highstrete C, Lee M, Averitt R D 2006 Phys. Rev. Lett. 96 107401

    [7]

    Azad A K, Dai J M, Zhang W L 2006 Opt. Lett. 31 634

    [8]

    Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597

    [9]

    Gol'tsman G N 1999 Infrared Phys. Technol. 40 199

    [10]

    Qin H, Huang Y D, Sun J D, Zhang Z P, Yu Y, Li X, Sun Y F 2017 Chin. Opt. 10 51 (in Chinese) [秦华, 黄永丹, 孙建东, 张志鹏, 余耀, 李想, 孙云飞 2017 中国光学 10 51]

    [11]

    Vicarelli L, Vitiello M S, Coquillat D, Lombardo A, Ferrari A C, Knap W, Polini M, Pellegrini V, Tredicucci A 2012 Nat. Mater. 11 865

    [12]

    Sun J D, Qin H, Lwis R A, Sun Y F, Zhang X Y, Cai Y, Wu D M, Zhang B S 2012 Appl. Phys. Lett. 100 173513

    [13]

    Liu H C, Song C Y, SpringThorpe A J, Cao J C 2004 Appl. Phys. Lett. 84 4068

    [14]

    Liu H C, Luo H, Song C Y, Wasilewski Z R, SpringThorpe A J, Cao J C 2008 IEEE J. Sel. Top. Quantum Electron. 14 374

    [15]

    Guo X G, Cao J C, Zhang R, Tan Z Y, Liu H C 2013 IEEE J. Sel. Top. Quantum Electron. 19 8500508

    [16]

    Zhang R, Guo X G, Cao J C, Liu H C 2011 J. Appl. Phys. 109 073110

    [17]

    Guo X G, Zhang R, Cao J C, Liu H C 2012 IEEE J. Quantum Electron. 48 1113

    [18]

    Schneider H, Liu H C 2006 Quantum Well Infrared Photodetectors: Physics and Applications (Berlin: Spinger) pp67-69

    [19]

    Wu W, Bonakdar A, Mohseni H 2010 Appl. Phys. Lett. 96 161107

    [20]

    Liu H C, Capasso F 2000 Intersubband Transition in Quantum Wells: Physics and Device Applications I (San Diego: Academic Press)

    [21]

    Auston D H 1975 Appl. Phys. Lett. 26 101

    [22]

    Lefur P, Auston D H 1976 Appl. Phys. Lett. 28 21

    [23]

    Valdmanis J A, Mourou G, Gabel C W 1982 Appl. Phys. Lett. 41 211

    [24]

    Jepsen P U, Jacobsen R H, Keiding S R 1996 J. Opt. Soc. Am. B 13 2424

    [25]

    Shi W, Hou L, Wang X M 2011 J. Appl. Phys. 110 023111

    [26]

    Chen S G, Shi W, Hou L, Lwis R A 2017 IEEE J. Sel. Top. Quantum Electron. 23 8400406

    [27]

    Tani M, Hirota Y, Que C T, Tanaka S, Hattori R, Yamaguchi M, Nishizawa S, Hangyo M 2006 Int. J. Infrared Millim. Waves 27 531

    [28]

    Grischkowsky D, Keiding S, Vanexter M, Fattinger C 1990 J. Opt. Soc. Am. B 7 2006

    [29]

    Hu B B, Nuss M C 1995 Opt. Lett. 20 1716

    [30]

    Beard M C, Turner G M, Schmuttenmaer C A 2002 J. Phys. Chem. B 106 7146

    [31]

    Xu L, Zhang X C, Auston D H 1992 Appl. Phys. Lett. 61 1784

    [32]

    Hu Y, Huang P, Guo L T, Wang X H, Zhang C L 2006 Phys. Lett. A 359 728

    [33]

    Hubers H W 2008 IEEE J. Sel. Top. Quantum Electron. 14 378

    [34]

    Rogalski A, Sizov F 2011 Opto-Electron. Rev. 19 346

    [35]

    McIntosh K A, Brown E R, Nichols K B, McMahon O B, DiNatale W F, Lyszczarz T M 1995 Appl. Phys. Lett. 67 3844

    [36]

    Peytavit E, Coinon C, Lampin J F 2011 J. Appl. Phys. 109 016101

    [37]

    Peytavit E, Lampin J F, Hindle F, Yang C, Mouret G 2009 Appl. Phys. Lett. 95 161102

    [38]

    Englert C R, Schimpf B, Birk M, Schreier F, Krocka M, Nitsche R G, Titz R U, Summers M E 2000 J. Geophys. Res. Atmos. 105 22211

    [39]

    Pickett H M 2006 IEEE Trans. Geosci. Remote Sensing 44 1122

    [40]

    Gulkis S, Allen M, Backus C, Beaudin G, Biver N, Bockelee-Morvan D, Crovisier J, Despois D, Encrenaz P, Frerking M, Hofstadter M, Hartogh P, Ip W, Janssen M, Kamp L, Koch T, Lellouch E, Mann I, Muhleman D, Rauer H, Schloerb P, Spilker T 2007 Planet Space Sci. 55 1050

    [41]

    Siegel P H, Dengler R J 2006 Int. J. Infrared Millim. Waves 27 465

    [42]

    Crowe T W, Mattauch R J, Roser H P, Bishop W L, Peatman W C B, Liu X L 1992 Proc. IEEE 80 1827

    [43]

    Zmuidzinas J, Richards P L 2004 Proc. IEEE 92 1597

    [44]

    Bozhkov V G 2003 Radiophys. Quant. Electron. 46 631

    [45]

    Champlin K S, Eisenstein G 1978 IEEE Trans. Microw. Theory 26 31

    [46]

    Hubers H W, Schwaab G W, Roser H P 1994 J. Appl. Phys. 75 4243

    [47]

    Crowe T W, Porterfield D W, Hesler J L, Bishop W L, Kurtz D S, Hui K (Hwu R J, Woolard D L Rosker M J ed.) 2005 Terahertz for Military and Security Applications Ⅲ (Vol. 5790) (Bellingham: Spie-Int Soc Optical Engineering) pp271-280

    [48]

    Young D T, Irvin J C 1965 Proc. IEEE 53 2130

    [49]

    Ishi T, Fujikata J, Makita K, Baba T, Ohashi K 2005 Jpn. J. Appl. Phys. 44 L364

    [50]

    Tien P K, Gordon J P 1963 Phys. Rev. 129 647

    [51]

    Uzawa Y, Wang Z, Kawakami A 1998 Appl. Phys. Lett. 73 680

    [52]

    Karpov A, Miller D, Rice F, Stern J A, Bumble B, Leduc H G, Zmuidzinas J 2007 IEEE Trans. Appl. Supercon. 17 343

    [53]

    Gaidis M C, Leduc H G, Mei B, Miller D 1996 IEEE Trans. Microwave Theory Tech. 44 1130

    [54]

    Kawamura J, Miller D, Chen J, Zmuidzinas J, Bumble B, Leduc H G, Stern J A 2000 Appl. Phys. Lett. 76 2119

    [55]

    Phillips T G, Jefferts K B 1973 Rev Sci. Instrum. 44 1009

    [56]

    Ren Y A, Miao W, Yao Q J, Zhang W, Shi S C 2011 Chin. Phys. Lett. 28 010702

    [57]

    Richards P L 1994 J. Appl. Phys. 76 1

    [58]

    Qin H, Sun J D, Liang S X, Li X, Yang X X, He Z H, Yu C, Feng Z H 2017 Carbon 116 760

    [59]

    Qin H, Sun J D, He Z Z, Li X X, Li X, Liang S X, Yu C, Feng Z H, Tu X C, Jin B B, Chen J, Wu P H 2017 Carbon 121 235

    [60]

    Cao J C 2006 Physics 35 953 (in Chinese) [曹俊诚 2006 物理 35 953]

    [61]

    Zhang S, Wang T M, Hao M R, Yang Y, Zhang Y H, Shen W Z, Liu H C 2013 J. Appl. Phys. 114 194507

    [62]

    Guo X G, Tan Z Y, Cao J C, Liu H C 2009 Appl. Phys. Lett. 94 201101

    [63]

    Gu L L, Guo X G, Fu Z L, Wan W J, Zhang R, Tan Z Y, Cao J C 2015 Appl. Phys. Lett. 106 111107

    [64]

    Ferre S, Razavipour S G, Ban D Y 2013 Appl. Phys. Lett. 103 081105

    [65]

    Gomez A, Berger V, Pere-Laperne N, de Vaulchier L A 2008 Appl. Phys. Lett. 92 202110

    [66]

    Delga A, Doyennette L, Buffaz A, Berger V, Jasnot F R, de Vaulchier L A, Pere-Laperne N, Liu H C 2011 J. Appl. Phys. 110 013714

    [67]

    Guo X G, Zhang R, Liu H C, SpringThorpe A J, Cao J C 2010 Appl. Phys. Lett. 97 021114

    [68]

    Kippenberg T J, Vahala K J 2007 Opt. Express 15 17172

    [69]

    Benz A, Krall M, Schwarz S, Dietze D, Detz H, Andrews A M, Schrenk W, Strasser G, Unterrainer K 2014 Sci. Rep. 4 4269

    [70]

    Giannini V, Berrier A, Maier S A, Sanchez-Gil J A, Rivas J G 2010 Opt. Express 18 2797

    [71]

    Harrer A, Schwarz B, Gansch R, Reininger P, Detz H, Zederbauer T, Andrews A M, Schrenk W, Strasser G 2014 Appl. Phys. Lett. 105 171112

    [72]

    Degl'Innocenti R, Xiao L, Jessop D S, Kindness S J, Ren Y, Lin H Y, Zeitler J A, Alexander-Webber J A, Joyce H J, Braeuninger-Weimer P, Hofmann S, Beere H E, Ritchie D A 2016 ACS Photon. 3 1747

    [73]

    Zhang Z Z, Fu Z L, Guo X G, Cao J C 2018 Chin. Phys. B 27 030701

    [74]

    Zhang R, Fu Z L, Gu L L, Guo X G, Cao J C 2015 Appl. Phys. Lett. 106 029902

    [75]

    Gu L, Tan Z Y, Cao J C 2013 Physics 42 695 (in Chinese) [顾立, 谭智勇, 曹俊诚 2013 物理 42 695]

    [76]

    Grant P D, Dudek R, Buchanan M, Wolfson L, Liu H C 2005 Infrared Phys. Technol. 47 144

    [77]

    Chen Z, Tan Z Y, Han Y J, Zhang R, Guo X G, Li H, Cao J C, Liu H C 2011 Electron. Lett. 47 1002

    [78]

    Li H, Wan W J, Tan Z Y, Fu Z L, Wang H X, Zhou T, Li Z P, Wang C, Guo X G, Cao J C 2017 Sci. Rep. 7 3452

    [79]

    Zhou T, Li H, Wan W J, Fu Z L, Cao J C 2017 AIP Adv. 7 105215

    [80]

    Vahala K J 2003 Nature 424 839

    [81]

    Shackleford J A, Grote R, Currie M, Spanier J E, Nabet B 2009 Appl. Phys. Lett. 94 083501

    [82]

    Strupiechonski E, Xu G, Brekenfeld M, Todorov Y, Isac N, Andrews A M, Klang P, Sirtori C, Strasser G, Degiron A, Colombelli R 2012 Appl. Phys. Lett. 100 131113

    [83]

    Feuillet-Palma C, Todorov Y, Steed R, Vasanelli A, Biasiol G, Sorba L, Sirtori C 2012 Opt. Express 20 29121

    [84]

    Todorov Y, Minot C 2007 J. Opt. Soc. Am. A 24 3100

    [85]

    Todorov Y, Tosetto L, Teissier J, Andrews A M, Klang P, Colombelli R, Sagnes I, Strasser G, Sirtori C 2010 Opt. Express 18 13886

    [86]

    Collin S, Pardo F, Pelouard J L 2003 Appl. Phys. Lett. 83 1521

    [87]

    Collin S, Pardo F, Teissier R, Pelouard J L 2004 Appl. Phys. Lett. 85 194

    [88]

    Paulillo B, Pirotta S, Nong H, Crozat P, Guilet S, Xu G, Dhillon S, Li L H, Davies A G, Linfield E H, Colombelli R 2017 Optica 4 1451

    [89]

    Feuillet-Palma C, Todorov Y, Vasanelli A, Sirtori C 2013 Sci. Rep. 3 1361

    [90]

    Palaferri D, Todorov Y, Chen Y N, Madeo J, Vasanelli A, Li L H, Davies A G, Linfield E H, Sirtori C 2015 Appl. Phys. Lett. 106 161102

    [91]

    Palaferri D, Todorov Y, Mottaghizadeh A, Frucci G, Biasiol G, Sirtori C 2016 New J. Phys. 18 113016

    [92]

    Chen Y N, Todorov Y, Askenazi B, Vasanelli A, Biasiol G, Colombelli R, Sirtori C 2014 Appl. Phys. Lett. 104 031113

    [93]

    Palaferri D, Todorov Y, Bigioli A, Mottaghizadeh A, Djamal G, Calabrese A, Vasanelli A, Li L, Giles Davies A, Linfield E, Kapsalidis F, Beck M, Faist J, Sirtori C 2017 arXiv: 1709.01898 [physics.app-ph]

  • [1] 惠战强, 高黎明, 刘瑞华, 韩冬冬, 汪伟. 低损耗大带宽双芯负曲率太赫兹光纤偏振分束器. 物理学报, 2022, 71(4): 048702. doi: 10.7498/aps.71.20211650
    [2] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器. 物理学报, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [3] 李杭, 陈萍, 田进寿, 薛彦华, 王俊锋, 缑永胜, 张敏睿, 何凯, 徐向晏, 赛小锋, 李亚晖, 刘百玉, 王向林, 辛丽伟, 高贵龙, 汪韬, 王兴, 赵卫. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器. 物理学报, 2022, 71(2): 028501. doi: 10.7498/aps.71.20210871
    [4] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性. 物理学报, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [5] 惠战强. 低损耗大带宽双芯负曲率太赫兹光纤偏振分束器. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211650
    [6] 李杭, 陈萍, 田进寿. 基于太赫兹脉冲加速及扫描电子束的高时间分辨探测器研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210871
    [7] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散. 物理学报, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [8] 汪静丽, 刘洋, 钟凯. 基于领结型多孔光纤的双芯太赫兹偏振分束器. 物理学报, 2017, 66(2): 024209. doi: 10.7498/aps.66.024209
    [9] 张镜水, 孔令琴, 董立泉, 刘明, 左剑, 张存林, 赵跃进. 太赫兹互补金属氧化物半导体场效应管探测器理论模型中扩散效应研究. 物理学报, 2017, 66(12): 127302. doi: 10.7498/aps.66.127302
    [10] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [11] 陈再高, 王建国, 王玥, 张殿辉, 乔海亮. 欧姆损耗对太赫兹频段同轴表面波振荡器的影响. 物理学报, 2015, 64(7): 070703. doi: 10.7498/aps.64.070703
    [12] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器. 物理学报, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [13] 陈再高, 王建国, 王光强, 李爽, 王玥, 张殿辉, 乔海亮. 0.14太赫兹同轴表面波振荡器研究. 物理学报, 2014, 63(11): 110703. doi: 10.7498/aps.63.110703
    [14] 李珊珊, 常胜江, 张昊, 白晋军, 刘伟伟. 基于悬浮式双芯多孔光纤的太赫兹偏振分离器. 物理学报, 2014, 63(11): 110706. doi: 10.7498/aps.63.110706
    [15] 姜子伟, 白晋军, 侯宇, 王湘晖, 常胜江. 太赫兹双空芯光纤定向耦合器. 物理学报, 2013, 62(2): 028702. doi: 10.7498/aps.62.028702
    [16] 白晋军, 王昌辉, 侯宇, 范飞, 常胜江. 太赫兹双芯光子带隙光纤定向耦合器. 物理学报, 2012, 61(10): 108701. doi: 10.7498/aps.61.108701
    [17] 谭智勇, 陈镇, 韩英军, 张戎, 黎华, 郭旭光, 曹俊诚. 基于太赫兹量子级联激光器的无线信号传输的实现. 物理学报, 2012, 61(9): 098701. doi: 10.7498/aps.61.098701
    [18] 张戎, 郭旭光, 曹俊诚. 太赫兹量子阱光电探测器光栅耦合的模拟与优化. 物理学报, 2011, 60(5): 050705. doi: 10.7498/aps.60.050705
    [19] 黎华, 韩英军, 谭智勇, 张戎, 曹俊诚. 半绝缘等离子体波导太赫兹量子级联激光器工艺研究. 物理学报, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
    [20] 马士华, 施宇蕾, 徐新龙, 严 伟, 杨玉平, 汪 力. 用太赫兹时域光谱技术探测天冬酰胺的低频集体吸收频谱. 物理学报, 2006, 55(8): 4091-4095. doi: 10.7498/aps.55.4091
计量
  • 文章访问数:  8179
  • PDF下载量:  780
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-30
  • 修回日期:  2018-03-07
  • 刊出日期:  2018-05-05

高速太赫兹探测器

    基金项目: 国家重点基础研究发展计划(批准号:2014CB339803)、国家重点研发计划(2017YFF0106302)、国家自然科学基金(批准号:61575214,61405233,61404150)和中国科学院百人计划资助的课题.

摘要: 太赫兹(terahertz,THz)技术在高速空间通信、外差探测、生物医学、无损检测和国家安全等领域具有广阔的应用前景.能响应1 GHz调制速率以上THz光的高速THz探测器是快速成像、THz高速空间通信、超快光谱学应用技术和THz外差探测等领域的核心器件.传统的THz热探测器难以实现高速工作,而基于半导体的THz探测器在理论上可实现高速工作.光导天线具有超快的响应速度,可实现常温和宽谱探测;肖特基势垒二极管混频器、超导-绝缘体-超导混频器和超导热电子混频器具有转换效率高、噪声低等优点,可用于高速THz空间外差和直接探测;基于高迁移率二维电子气的天线耦合场效应晶体管灵敏度高、阻抗低,可实现常温高速THz探测;THz量子阱探测器是一种基于子带间跃迁原理的单极器件,非常适合高频和高速探测应用,亚波长金属微腔耦合机理可显著提高器件的工作温度及光子吸收效率.本文对上述几种高速THz探测器进行了综述并分析了各种探测器的优缺点.

English Abstract

参考文献 (93)

目录

    /

    返回文章
    返回