搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹量子级联激光器频率梳的色散

周康 黎华 万文坚 李子平 曹俊诚

引用本文:
Citation:

太赫兹量子级联激光器频率梳的色散

周康, 黎华, 万文坚, 李子平, 曹俊诚

Group velocity dispersion analysis of terahertz quantum cascade laser frequency comb

Zhou Kang, Li Hua, Wan Wen-Jian, Li Zi-Ping, Cao Jun-Cheng
PDF
HTML
导出引用
  • 群速度色散会限制太赫兹量子级联激光器频率梳的稳定以及频谱宽度. 对于太赫兹量子级联激光器频率梳, 其色散主要由器件增益、波导损耗、材料损耗引起. 研究基于4.2 THz量子级联激光器双面金属波导结构, 通过建立德鲁德模型, 利用有限元法计算了激光器的波导损耗; 器件未钳制的增益由费米黄金定则计算得到, 结合增益钳制效应, 计算了器件子带电子跃迁吸收以及镜面损耗, 得到了器件钳制后的增益; 利用Kramers-Kronig关系得到了器件的增益、波导损耗、材料损耗引起的色散, 结果表明器件的激射区域存在非常严重的色散(–8 × 105—8 × 105 fs2/mm). 同时, 计算了一种基于Gires-Tournois干涉仪结构的色散, 结果表明, 该结构的色散具有周期性, 可以用于太赫兹量子级联激光器的色散补偿.
    The frequency comb which is characterized by equally-spaced frequency lines with high mode coherence has received much attention since its first demonstration in near-infrared and optical frequency range. In the terahertz frequency range, the electrically-pumped terahertz quantum cascade laser (THz QCL) based on semiconductors is an ideal candidate for achieving frequency comb operation in a frequency range between 1 THz and 5 THz. The group velocity dispersion (GVD) is a key factor for the frequency comb. A higher GVD can pull the frequencies from their equidistant values and limit the comb bandwidth. Therefore the laser dispersion needs to be compensated for in order to make the total GVD sufficiently low and flat, such as using a Gires-Tournois interferometer (GTI) or the double chirped mirror (DCM). However, a successful design still depends on the knowledge of the total GVD in the laser. In this paper, we show how to calculate the GVD in metal-metal waveguide THz QCLs by taking into account the dispersions from the GaAs material, the waveguide, and the laser gain, which conduces to the understanding of the frequency comb behavior. The waveguide loss is modelled by the finite element method. The loss due to intersubband absorption is calculated by Fermi's gold rule. All the losses, i.e., waveguide loss, mirror loss, and intersubband absorption loss, are summed up to calculate the clamped gain. The material loss can be calculated by using the reststrahlen band model. Because of these losses and gain, the refractive index needs to be replaced by a complex refractive index. The real part of the complex refractive index is the refractive index, which can be calculated from the Kramers-Kronig relationship that connects the loss or gain with the refractive index. Then the GVD introduced by the material loss, waveguide loss, and clamped gain can be finally calculated. The results show that the total GVD of THz QCL is approximately –8 × 105~8 × 105 fs2/mm which is strongly determined by the clamped gain. Finally, the developed numerical model is employed to study the dispersion compensation effect of a GTI mirror which is coupled into a QCL gain cavity. The design of the THz QCL based on GTI structure is more flexible and feasible than that of the DCM. The result shows that by carefully designing the geometry of GTI, the dispersion of a THz QCL can be compensated for, thus achieving the broadband terahertz frequency combs.
      通信作者: 黎华, hua.li@mail.sim.ac.cn
    • 基金项目: 中国科学院“百人计划”、国家自然科学基金(批准号: 61875220, 61575214, 61404150, 61405233, 61704181)、国家重点研发计划(批准号: 2017YFF0106302, 2017YFA0701005)和上海市科学技术委员会(批准号: 17YF1430000)资助的课题.
      Corresponding author: Li Hua, hua.li@mail.sim.ac.cn
    • Funds: Project supported by the “Hundred-Talent" Program of Chinese Academy of Sciences, the National Natural Science Foundation of China (Grant Nos. 61875220, 61575214, 61404150, 61405233, 61704181), the National Key R&D Program of China (Grant Nos. 2017YFF0106302, 2017YFA0701005), and Shanghai Municipal Commission of Science and Technology, China (Grant No. 17YF1430000).
    [1]

    Udem T, Holzwarth R, Hansch T W 2002 Nature 416 233Google Scholar

    [2]

    Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994 Science 264 553Google Scholar

    [3]

    Williams B S 2007 Nature Photon. 1 517Google Scholar

    [4]

    Diddams S A 2010 J. Opt. Soc. Am. B-Opt. Phys. 27 B51Google Scholar

    [5]

    Siegel P H 2002 IEEE Trans. Microw. Theory Tech. 50 Pii s0018-9480(02)01958-0 910

    [6]

    Villares G F F 2016 Ph. D. Dissertation (Zurich: Swiss Federal Institute of Technology Zurich)

    [7]

    Hugi A, Villares G, Blaser S, Liu H C, Faist J 2012 Nature 492 229Google Scholar

    [8]

    Vitiello M S, Scalari G, Williams B, De Natale P 2015 Opt. Express 23 5167Google Scholar

    [9]

    Tzenov P, Burghoff D, Hu Q, Jirauschek C 2017 IEEE T. Thz. Sci. Techn. 7 351Google Scholar

    [10]

    Bachmann D, Rosch M, Scalari G, Beck M, Faist J, Unterrainer K, Darmo J 2016 Appl. Phys. Lett. 109 221107Google Scholar

    [11]

    Treacy E B 1969 IEEE J. Quantum Electron. QE 5 454

    [12]

    Bonod N, Neauport J 2016 Adv. Opt. Photonics 8 156Google Scholar

    [13]

    Fork R L, Martinez O E, Gordon J P 1984 Opt. Lett. 9 150Google Scholar

    [14]

    Kane S, Squier J 1997 J. Opt. Soc. Am. B-Opt. Phys. 14 661Google Scholar

    [15]

    Matuschek N, Kartner F X, Keller U 1998 IEEE J. Sel. Top. Quantum Electron. 4 197Google Scholar

    [16]

    Tempea G, Krausz F, Spielmann C, Ferencz K 1998 IEEE J. Sel. Top. Quantum Electron. 4 193Google Scholar

    [17]

    Kartner F X, Morgner U, Ell R, Schibli T, Fujimoto J G, Ippen E P, Scheuer V, Angelow G, Tschudi T 2001 J. Opt. Soc. Am. B-Opt. Phys. 18 882Google Scholar

    [18]

    Rösch M, Scalari G, Villares G, Bosco L, Beck M, Faist J 2016 Appl. Phys. Lett. 108 171104Google Scholar

    [19]

    Faist J, Villares G, Scalari G, Rösch M, Bonzon C, Hugi A, Beck M 2016 Nanophotonics 5 272

    [20]

    Wang F, Nong H, Fobbe T, Pistore V, Houver S, Markmann S, Jukam N, Amanti M, Sirtori C, Moumdji S, Colombelli R, Li L, Linfield E, Davies G, Mangeney J, Tignon J, Dhillon S 2017 Laser Photonics Rev. 11 1700013Google Scholar

    [21]

    Burghoff D, Kao T Y, Han N, Chan C W I, Cai X, Yang Y, Hayton D J, Gao J R, Reno J L, Hu Q 2014 Nature Photon. 8 462Google Scholar

    [22]

    Li H, Laffaille P, Gacemi D, Apfel M, Sirtori C, Leonardon J, Santarelli G, Rosch M, Scalari G, Beck M, Faist J, Hansel W, Holzwarth R, Barbieri S 2015 Opt. Express 23 33270Google Scholar

    [23]

    Wan W J, Li H, Zhou T, Cao J C 2017 Sci. Rep. 7 44109Google Scholar

    [24]

    Rösch M, Scalari G, Beck M, Faist J 2014 Nature Photon. 9 42

    [25]

    Bidaux Y, Sergachev I, Wuester W, Maulini R, Gresch T, Bismuto A, Blaser S, Muller A, Faist J 2017 Opt. Lett. 42 1604Google Scholar

    [26]

    朱永浩, 黎华, 万文坚, 周涛, 曹俊诚 2017 物理学报 66 099501Google Scholar

    Zhu Y H, Li H, Wan W J, Zhou T, Cao J C 2017 Acta Phys. Sin. 66 099501Google Scholar

    [27]

    Weber E R, Willardson R K, Liu H, Capasso F 1999 Intersubband Transitions in Quantum Wells: Physics and Device Applications (Vol. 62) (Beijing: Academic Press)

    [28]

    Li H, Cao J C, Lue J T 2008 J. Appl. Phys. 103 103113Google Scholar

    [29]

    Adachi S 1994 GaAs and Related Materials: Bulk Semiconducting and Superlattice Properties (Beijing: World Scientific Press)

    [30]

    Gires F, Tournois P 1964 Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences 258 6112

    [31]

    Lu Q Y, Manna S, Wu D H, Slivken S, Razeghi M 2018 Appl. Phys. Lett. 112 141104Google Scholar

  • 图 1  由于GVD引起的频率偏移Δ与模式数目m的关系

    Fig. 1.  The relation between frequency offset Δ and mode numbers m.

    图 2  复折射率随频率变化的关系

    Fig. 2.  The relation between complex refractive index and frequency.

    图 3  (a)计算得到的波导损耗${\alpha _{\rm{W}}}$与频率的关系; (b)等效折射率与频率的关系

    Fig. 3.  (a) Simulated the relationship between waveguide loss ${\alpha _{\rm{W}}}$ and frequency; (b) the relation between the effective refractive index and frequency.

    图 4  器件增益与频率的关系

    Fig. 4.  The relation between the gain and frequency.

    图 5  子带电子吸收随频率变化的关系

    Fig. 5.  The relation between intersubband absorption and frequency.

    图 6  材料折射率与频率的关系

    Fig. 6.  The relation between the material refractive index and frequency.

    图 7  器件的色散与频率的关系

    Fig. 7.  The relation between GVD and frequency.

    图 8  (a)基于GTI结构THz QCL色散补偿的三维示意图; (b)不同前端面反射系数下的群延迟色散与频率的关系

    Fig. 8.  (a) Three-dimensional schematic of the THz QCL based on GTI structure for dispersion compensations; (b) calculated group delay dispersions as a function of frequency for different reflection coefficients.

  • [1]

    Udem T, Holzwarth R, Hansch T W 2002 Nature 416 233Google Scholar

    [2]

    Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994 Science 264 553Google Scholar

    [3]

    Williams B S 2007 Nature Photon. 1 517Google Scholar

    [4]

    Diddams S A 2010 J. Opt. Soc. Am. B-Opt. Phys. 27 B51Google Scholar

    [5]

    Siegel P H 2002 IEEE Trans. Microw. Theory Tech. 50 Pii s0018-9480(02)01958-0 910

    [6]

    Villares G F F 2016 Ph. D. Dissertation (Zurich: Swiss Federal Institute of Technology Zurich)

    [7]

    Hugi A, Villares G, Blaser S, Liu H C, Faist J 2012 Nature 492 229Google Scholar

    [8]

    Vitiello M S, Scalari G, Williams B, De Natale P 2015 Opt. Express 23 5167Google Scholar

    [9]

    Tzenov P, Burghoff D, Hu Q, Jirauschek C 2017 IEEE T. Thz. Sci. Techn. 7 351Google Scholar

    [10]

    Bachmann D, Rosch M, Scalari G, Beck M, Faist J, Unterrainer K, Darmo J 2016 Appl. Phys. Lett. 109 221107Google Scholar

    [11]

    Treacy E B 1969 IEEE J. Quantum Electron. QE 5 454

    [12]

    Bonod N, Neauport J 2016 Adv. Opt. Photonics 8 156Google Scholar

    [13]

    Fork R L, Martinez O E, Gordon J P 1984 Opt. Lett. 9 150Google Scholar

    [14]

    Kane S, Squier J 1997 J. Opt. Soc. Am. B-Opt. Phys. 14 661Google Scholar

    [15]

    Matuschek N, Kartner F X, Keller U 1998 IEEE J. Sel. Top. Quantum Electron. 4 197Google Scholar

    [16]

    Tempea G, Krausz F, Spielmann C, Ferencz K 1998 IEEE J. Sel. Top. Quantum Electron. 4 193Google Scholar

    [17]

    Kartner F X, Morgner U, Ell R, Schibli T, Fujimoto J G, Ippen E P, Scheuer V, Angelow G, Tschudi T 2001 J. Opt. Soc. Am. B-Opt. Phys. 18 882Google Scholar

    [18]

    Rösch M, Scalari G, Villares G, Bosco L, Beck M, Faist J 2016 Appl. Phys. Lett. 108 171104Google Scholar

    [19]

    Faist J, Villares G, Scalari G, Rösch M, Bonzon C, Hugi A, Beck M 2016 Nanophotonics 5 272

    [20]

    Wang F, Nong H, Fobbe T, Pistore V, Houver S, Markmann S, Jukam N, Amanti M, Sirtori C, Moumdji S, Colombelli R, Li L, Linfield E, Davies G, Mangeney J, Tignon J, Dhillon S 2017 Laser Photonics Rev. 11 1700013Google Scholar

    [21]

    Burghoff D, Kao T Y, Han N, Chan C W I, Cai X, Yang Y, Hayton D J, Gao J R, Reno J L, Hu Q 2014 Nature Photon. 8 462Google Scholar

    [22]

    Li H, Laffaille P, Gacemi D, Apfel M, Sirtori C, Leonardon J, Santarelli G, Rosch M, Scalari G, Beck M, Faist J, Hansel W, Holzwarth R, Barbieri S 2015 Opt. Express 23 33270Google Scholar

    [23]

    Wan W J, Li H, Zhou T, Cao J C 2017 Sci. Rep. 7 44109Google Scholar

    [24]

    Rösch M, Scalari G, Beck M, Faist J 2014 Nature Photon. 9 42

    [25]

    Bidaux Y, Sergachev I, Wuester W, Maulini R, Gresch T, Bismuto A, Blaser S, Muller A, Faist J 2017 Opt. Lett. 42 1604Google Scholar

    [26]

    朱永浩, 黎华, 万文坚, 周涛, 曹俊诚 2017 物理学报 66 099501Google Scholar

    Zhu Y H, Li H, Wan W J, Zhou T, Cao J C 2017 Acta Phys. Sin. 66 099501Google Scholar

    [27]

    Weber E R, Willardson R K, Liu H, Capasso F 1999 Intersubband Transitions in Quantum Wells: Physics and Device Applications (Vol. 62) (Beijing: Academic Press)

    [28]

    Li H, Cao J C, Lue J T 2008 J. Appl. Phys. 103 103113Google Scholar

    [29]

    Adachi S 1994 GaAs and Related Materials: Bulk Semiconducting and Superlattice Properties (Beijing: World Scientific Press)

    [30]

    Gires F, Tournois P 1964 Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences 258 6112

    [31]

    Lu Q Y, Manna S, Wu D H, Slivken S, Razeghi M 2018 Appl. Phys. Lett. 112 141104Google Scholar

  • [1] 高健, 焦康, 赵刚, 尹润涛, 杨家琪, 闫晓娟, 陈宛宁, 马维光, 贾锁堂. 结合光学反馈以及光学锁相环的量子级联激光器线宽压窄和频率控制技术研究. 物理学报, 2025, 74(1): . doi: 10.7498/aps.74.20241414
    [2] 廖小瑜, 曹俊诚, 黎华. 太赫兹半导体激光光频梳研究进展. 物理学报, 2020, 69(18): 189501. doi: 10.7498/aps.69.20200399
    [3] 李金锋, 万婷, 王腾飞, 周文辉, 莘杰, 陈长水. 太赫兹量子级联激光器中有源区上激发态电子向高能级泄漏的研究. 物理学报, 2019, 68(2): 021101. doi: 10.7498/aps.68.20181882
    [4] 魏相飞, 何锐, 张刚, 刘向远. InAs/GaSb量子阱中太赫兹光电导特性. 物理学报, 2018, 67(18): 187301. doi: 10.7498/aps.67.20180769
    [5] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器. 物理学报, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [6] 牟媛, 吴振森, 张耿, 高艳卿, 阳志强. 基于Kramers-Kronig关系建立金属太赫兹色散模型. 物理学报, 2017, 66(12): 120202. doi: 10.7498/aps.66.120202
    [7] 朱永浩, 黎华, 万文坚, 周涛, 曹俊诚. 三阶分布反馈太赫兹量子级联激光器的远场分布特性. 物理学报, 2017, 66(9): 099501. doi: 10.7498/aps.66.099501
    [8] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [9] 廖磊, 易旺民, 杨再华, 吴冠豪. 基于合成波长法的飞秒激光外差干涉测距方法. 物理学报, 2016, 65(14): 140601. doi: 10.7498/aps.65.140601
    [10] 李娜, 白亚, 刘鹏. 激光等离子体太赫兹辐射源的频率控制. 物理学报, 2016, 65(11): 110701. doi: 10.7498/aps.65.110701
    [11] 孙青, 杨奕, 邓玉强, 孟飞, 赵昆. 利用非锁定飞秒激光实现太赫兹频率的精密测量. 物理学报, 2016, 65(15): 150601. doi: 10.7498/aps.65.150601
    [12] 刘海文, 占昕, 任宝平. 射电天文用太赫兹三通带频率选择表面设计. 物理学报, 2015, 64(17): 174103. doi: 10.7498/aps.64.174103
    [13] 张会云, 刘蒙, 张玉萍, 何志红, 申端龙, 吴志心, 尹贻恒, 李德华. 基于振动弛豫理论提高光抽运太赫兹激光器输出功率的研究. 物理学报, 2014, 63(1): 010702. doi: 10.7498/aps.63.010702
    [14] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构. 物理学报, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [15] 万文坚, 尹嵘, 谭智勇, 王丰, 韩英军, 曹俊诚. 2.9THz束缚态向连续态跃迁量子级联激光器研制. 物理学报, 2013, 62(21): 210701. doi: 10.7498/aps.62.210701
    [16] 吕金光, 梁静秋, 梁中翥. 空间调制傅里叶变换光谱仪分束器色散特性研究. 物理学报, 2012, 61(14): 140702. doi: 10.7498/aps.61.140702
    [17] 谭智勇, 陈镇, 韩英军, 张戎, 黎华, 郭旭光, 曹俊诚. 基于太赫兹量子级联激光器的无线信号传输的实现. 物理学报, 2012, 61(9): 098701. doi: 10.7498/aps.61.098701
    [18] 黄小东, 张小民, 王建军, 许党朋, 张锐, 林宏焕, 邓颖, 耿远超, 余晓秋. 色散对高能激光光纤前端FM-AM效应的影响. 物理学报, 2010, 59(3): 1857-1862. doi: 10.7498/aps.59.1857
    [19] 黎华, 韩英军, 谭智勇, 张戎, 曹俊诚. 半绝缘等离子体波导太赫兹量子级联激光器工艺研究. 物理学报, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
    [20] 常俊, 黎华, 韩英军, 谭智勇, 曹俊诚. 太赫兹量子级联激光器材料生长及表征. 物理学报, 2009, 58(10): 7083-7087. doi: 10.7498/aps.58.7083
计量
  • 文章访问数:  8313
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-19
  • 修回日期:  2019-03-12
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-20

/

返回文章
返回