搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合光学反馈以及光学锁相环的量子级联激光器线宽压窄和频率控制技术研究

高健 焦康 赵刚 尹润涛 杨家琪 闫晓娟 陈宛宁 马维光 贾锁堂

引用本文:
Citation:

结合光学反馈以及光学锁相环的量子级联激光器线宽压窄和频率控制技术研究

高健, 焦康, 赵刚, 尹润涛, 杨家琪, 闫晓娟, 陈宛宁, 马维光, 贾锁堂
cstr: 32037.14.aps.74.20241414

Research on linewidth narrowing and frequency control technology of quantum cascade lasers based on optical feedback and optical phase-locked loops

GAO Jian, JIAO Kang, ZHAO Gang, YIN Runtao, YANG Jiaqi, YAN Xiaojuan, CHEN Wanning, MA Weiguang, JIA Suotang
cstr: 32037.14.aps.74.20241414
PDF
HTML
导出引用
  • 中红外波段缺乏窄线宽、可精确调谐的激光源, 限制了中红外精密光谱的发展. 本文介绍了一种结合强光学反馈和光学锁相环技术的量子级联激光器(QCL)频率控制技术, 通过强光学反馈先抑制QCL频率噪声中的高频成分, 再使用光学锁相环将激光频率偏频锁定到另外一个超稳中红外激光源上. 通过相位超前电路拓展锁定带宽, 系统锁定后, 将功率谱中心窄拍频信号提高66 dBm, 低频区域相位噪声抑制到–81 dBc/Hz@2 kHz, 高频区域相位噪声抑制到101 dBc/Hz@2 MHz, 激光器线宽从3.8 MHz被压窄到3 Hz. 最终, 利用该激光器进行腔衰荡光谱信号的测量, 相较于未锁定激光, 信号的信噪比提升了5倍.
    The mid-infrared (MIR) spectral region, which corresponds to molecular vibrational and rotational energy level transitions, contains a wealth of molecular energy level information. By employing techniques such as cavity ring-down spectroscopy (CRDS), the MIR spectra can be precisely measured, thereby validating fundamental physical laws, the inversion of fundamental physical constants, and the detection of trace gases. However, technical noise from temperature fluctuations, mechanical vibrations, and current noise causes free-running quantum cascade laser (QCL) to suffer high-frequency noise, typically broadening the linewidth to the MHz range, thus reducing spectral resolution. Moreover, long-term drift in the laser frequency due to temperature and current fluctuations hinders high-precision spectroscopy, particularly for narrow-linewidth nonlinear spectroscopy, such as saturated absorption and multiphoton absorption spectroscopy. This work presents a method of combining optical feedback with an optical phase-locked loop (OPLL) for offset frequency locking, aiming to generate a mid-infrared (MIR) laser with excellent frequency characteristics. Strong optical feedback is employed to narrow the linewidth of the quantum cascade laser (QCL) acting as a slave laser, thereby alleviating the challenges associated with phase locking. The OPLL uses frequency-offset to lock the slave laser to the ultra-narrow laser. By adjusting the offset frequency, fine control of the slave laser is achieved. To ensure tight phase locking, the OPLL is based on the ADF4007, and combines a phase lead circuit to compensate for phase lag, effectively expanding the loop bandwidth of the system. In this work, the fundamental principles of the optical phase-locked loop are theoretically analyzed, and a basic model is established. The influence of loop bandwidth on locking performance is also investigated. Upon achieving phase locking using the combined optical feedback and OPLL system, the magnitude of the beat note of the two lasers is improved by 66 dBm, with phase noise suppressed to –81 dBc/Hz@2 kHz in the low-frequency region and -101 dBc/Hz@2MHz in the high-frequency region. The frequency noise power spectral density of both the master laser and slave laser is obtained via the error signal in the closed-loop system. Significant suppression of frequency noise is observed for the slave laser across both low- and high-frequency region, with suppression ratio reaching 86 dB at 100 Hz and 55 dB at 400 kHz. The frequency noise of the slave laser in the low-frequency domain is found to be comparable to that of the master laser. Based on the white noise response region in the frequency noise spectrum (from 200 Hz to 400 kHz), the locked slave laser linewidth is determined to be approximately 3 Hz, narrowing the initial MHz-level linewidth to match the Hz-level linewidth of the master laser. Finally, the locked laser is used to conduct cavity ring-down spectroscopy, achieving an improvement factor of 5 in the signal-to-noise ratio of the ringdown signal. This frequency-stabilized laser will be applied to high-precision spectroscopy for detecting radiocarbon isotopes in future.
      通信作者: 赵刚, gangzhao@sxu.edu.cn ; 马维光, mwg@sxu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2023YFF0614000, 2022YFC3703900)、国家自然科学基金(批准号: 62327813, 62175139, 62375161, 61975103)、山西省留学人员科技活动择优资助项目(批准号: 20220001)和江淮前沿技术协同创新中心追梦基金(批准号: 2023-ZM01C007) 资助的课题.
      Corresponding author: ZHAO Gang, gangzhao@sxu.edu.cn ; MA Weiguang, mwg@sxu.edu.cn
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 2023YFF0614000, 2022YFC3703900), the National Natural Science Foundation of China (Grant Nos. 62327813, 62175139, 62375161, 61975103), the Science and Technology Activities for Returned Overseas Researcher of Shanxi Province, China (Grant No. 20220001), and the Dreams Foundation of Jianghuai Advance Technology Center, China (Grant No. 2023-ZM01C007).
    [1]

    Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994 Science 264 553Google Scholar

    [2]

    Yao Y, Hoffman A J, Gmachl C F 2012 Nat. Photonics 6 432Google Scholar

    [3]

    Hvozdara L, Pennington N, Kraft M, Karlowatz M, Mizaikoff B 2002 Vib. Spectrosc. 30 53Google Scholar

    [4]

    Bartalini S, Borri S, Cancio P, Castrillo A, Galli I, Giusfredi G, Mazzotti D, Gianfrani L, De Natale P 2010 Phys. Rev. Lett. 104 083904Google Scholar

    [5]

    Bartalini S, Borri S, Galli I, Giusfredi G, Mazzotti D, Edamura T, Akikusa N, Yamanishi M, De Natale P 2011 Opt. Express 19 17996Google Scholar

    [6]

    Genov G, Lellinger T E, Halfmann T, Peters T 2017 J. Opt. Soc. Am. B 34 2018Google Scholar

    [7]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97Google Scholar

    [8]

    Pound R V 1946 Rev. Sci. Instum. 17 490Google Scholar

    [9]

    Black E D 2001 Am. J. Phys. 69 79Google Scholar

    [10]

    Zhao G, Tian J F, Hodges J T, Fleisher A J 2021 Opt. Lett. 46 3057Google Scholar

    [11]

    Fasci E, Coluccelli N, Cassinerio M, Gambetta A, Hilico L, Gianfrani L, Laporta P, Castrillo A, Galzerano G 2014 Opt. Lett. 39 4946Google Scholar

    [12]

    Maisons G, Carbajo P G, Carras M, Romanini D 2010 Opt. Lett. 35 3607Google Scholar

    [13]

    Remillard J, Uy D, Weber W, Capasso F, Gmachl C, Hutchinson A, Sivco D, Baillargeon J, Cho A 2000 Opt. Express 7 243Google Scholar

    [14]

    杨家齐, 赵刚, 焦康, 高健, 闫晓娟, 赵延霆, 马维光, 贾锁堂 2024 物理学报 73 014205Google Scholar

    Yang J Q, Zhao G, Jiao K, Gao J, Yan X J, Zhao Y T, Ma W G, Jia S T 2024 Acta Phys. Sin. 73 014205Google Scholar

    [15]

    Bordonalli A C, Walton C, Seeds A J 1999 J. Light. Technol. 17 328Google Scholar

    [16]

    Satyan N, Liang W, Yariv A 2009 IEEE J. Quantum Electron. 45 755Google Scholar

    [17]

    Steed R J, Pozzi F, Fice M J, Renaud C C, Rogers D C, Lealman I F, Moodie D G, Cannard P J, Lynch C, Johnston L, Robertson M J, Cronin R, Pavlovic L, Naglic L, Vidmar M, Seeds A J 2011 Opt. Express 19 20048Google Scholar

    [18]

    王建, 陈迪俊, 蔡海文, 冯俊波, 郭进 2018 中国激光 45 0401001Google Scholar

    Wang J, Chen D J, Cai H W, Feng J B, Guo J 2018 Chin. J. Lasers 45 0401001Google Scholar

    [19]

    Wang F D, Ma W X, Mei F, Ji Z H, Su D Q, Zhao Y T, Xiao L T, Jia S T 2023 Appl. Opt. 62 7169Google Scholar

    [20]

    Qin J, Zhou Q, Xie W L, Xu Y, Yu S G, Liu Z W Y, Tong Y T, Dong Y, Hu W S 2015 Opt. Lett. 40 4500Google Scholar

    [21]

    Satyan N, Vasilyev A, Liang W, Rakuljic G, Yariv A 2009 Opt. Lett. 34 3256Google Scholar

    [22]

    Zhao B B, Wang X G, Wang C 2020 ACS Photonics 7 1255Google Scholar

    [23]

    Lang R, Kobayashi K 1980 IEEE J. Quantum Electron. 16 347Google Scholar

    [24]

    Wang X G, Zhao B B, Grillot F, Wang C 2020 J. Appl. Phys. 127 073104Google Scholar

    [25]

    Domenico G D, Schilt S, Thomann P 2010 Appl. Opt. 49 4801Google Scholar

    [26]

    Fox R W, Oates C W, Hollberg L W 2003 Experimental Methods in the Physical Sciences (Vol. 40) (Amsterdam: Academic Press) pp1–46

    [27]

    Kikuchi K 2012 Opt. Express 20 5291Google Scholar

  • 图 1  光学锁相环原理图

    Fig. 1.  Schematic diagram of optical phase-locked loop.

    图 2  实验装置图

    Fig. 2.  Diagram of experimental setup.

    图 3  QCL传递函数

    Fig. 3.  Transfer function of the QCL.

    图 4  (a)锁相环电路; (b)无源相位超前电路传递函数

    Fig. 4.  (a) Phase-locked loop circuit; (b) transfer function of the passive phase lead circuit.

    图 5  不同反馈率下的相位噪声

    Fig. 5.  Phase noise of different feedback rates.

    图 6  (a)不同锁定拍频功率谱; (b)拍频中心1 kHz范围功率谱

    Fig. 6.  (a) Power spectral of beat frequencies under different conditions; (b) power spectral in the 1 kHz range at the center of beat frequencies.

    图 7  拍频相位噪声

    Fig. 7.  Phase noise of the beat frequency.

    图 8  主、从激光器频率噪声功率谱密度

    Fig. 8.  Power spectral density of frequency noise of the master and slave laser.

    图 9  (a)未锁定透射腔模; (b)锁定透射腔模

    Fig. 9.  (a) Transmission cavity mode without locking; (b) transmission cavity mode without and with locking.

    图 10  (a)空腔衰荡信号和拟合结果; (b)拟合残差

    Fig. 10.  (a) Cavity ring-down signal and fitting result; (b) fitting residual.

  • [1]

    Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L, Cho A Y 1994 Science 264 553Google Scholar

    [2]

    Yao Y, Hoffman A J, Gmachl C F 2012 Nat. Photonics 6 432Google Scholar

    [3]

    Hvozdara L, Pennington N, Kraft M, Karlowatz M, Mizaikoff B 2002 Vib. Spectrosc. 30 53Google Scholar

    [4]

    Bartalini S, Borri S, Cancio P, Castrillo A, Galli I, Giusfredi G, Mazzotti D, Gianfrani L, De Natale P 2010 Phys. Rev. Lett. 104 083904Google Scholar

    [5]

    Bartalini S, Borri S, Galli I, Giusfredi G, Mazzotti D, Edamura T, Akikusa N, Yamanishi M, De Natale P 2011 Opt. Express 19 17996Google Scholar

    [6]

    Genov G, Lellinger T E, Halfmann T, Peters T 2017 J. Opt. Soc. Am. B 34 2018Google Scholar

    [7]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97Google Scholar

    [8]

    Pound R V 1946 Rev. Sci. Instum. 17 490Google Scholar

    [9]

    Black E D 2001 Am. J. Phys. 69 79Google Scholar

    [10]

    Zhao G, Tian J F, Hodges J T, Fleisher A J 2021 Opt. Lett. 46 3057Google Scholar

    [11]

    Fasci E, Coluccelli N, Cassinerio M, Gambetta A, Hilico L, Gianfrani L, Laporta P, Castrillo A, Galzerano G 2014 Opt. Lett. 39 4946Google Scholar

    [12]

    Maisons G, Carbajo P G, Carras M, Romanini D 2010 Opt. Lett. 35 3607Google Scholar

    [13]

    Remillard J, Uy D, Weber W, Capasso F, Gmachl C, Hutchinson A, Sivco D, Baillargeon J, Cho A 2000 Opt. Express 7 243Google Scholar

    [14]

    杨家齐, 赵刚, 焦康, 高健, 闫晓娟, 赵延霆, 马维光, 贾锁堂 2024 物理学报 73 014205Google Scholar

    Yang J Q, Zhao G, Jiao K, Gao J, Yan X J, Zhao Y T, Ma W G, Jia S T 2024 Acta Phys. Sin. 73 014205Google Scholar

    [15]

    Bordonalli A C, Walton C, Seeds A J 1999 J. Light. Technol. 17 328Google Scholar

    [16]

    Satyan N, Liang W, Yariv A 2009 IEEE J. Quantum Electron. 45 755Google Scholar

    [17]

    Steed R J, Pozzi F, Fice M J, Renaud C C, Rogers D C, Lealman I F, Moodie D G, Cannard P J, Lynch C, Johnston L, Robertson M J, Cronin R, Pavlovic L, Naglic L, Vidmar M, Seeds A J 2011 Opt. Express 19 20048Google Scholar

    [18]

    王建, 陈迪俊, 蔡海文, 冯俊波, 郭进 2018 中国激光 45 0401001Google Scholar

    Wang J, Chen D J, Cai H W, Feng J B, Guo J 2018 Chin. J. Lasers 45 0401001Google Scholar

    [19]

    Wang F D, Ma W X, Mei F, Ji Z H, Su D Q, Zhao Y T, Xiao L T, Jia S T 2023 Appl. Opt. 62 7169Google Scholar

    [20]

    Qin J, Zhou Q, Xie W L, Xu Y, Yu S G, Liu Z W Y, Tong Y T, Dong Y, Hu W S 2015 Opt. Lett. 40 4500Google Scholar

    [21]

    Satyan N, Vasilyev A, Liang W, Rakuljic G, Yariv A 2009 Opt. Lett. 34 3256Google Scholar

    [22]

    Zhao B B, Wang X G, Wang C 2020 ACS Photonics 7 1255Google Scholar

    [23]

    Lang R, Kobayashi K 1980 IEEE J. Quantum Electron. 16 347Google Scholar

    [24]

    Wang X G, Zhao B B, Grillot F, Wang C 2020 J. Appl. Phys. 127 073104Google Scholar

    [25]

    Domenico G D, Schilt S, Thomann P 2010 Appl. Opt. 49 4801Google Scholar

    [26]

    Fox R W, Oates C W, Hollberg L W 2003 Experimental Methods in the Physical Sciences (Vol. 40) (Amsterdam: Academic Press) pp1–46

    [27]

    Kikuchi K 2012 Opt. Express 20 5291Google Scholar

  • [1] 杨家齐, 赵刚, 焦康, 高健, 闫晓娟, 赵延霆, 马维光, 贾锁堂. 基于光学反馈频率锁定的窄线宽稳定中红外激光产生技术研究. 物理学报, 2024, 73(1): 014205. doi: 10.7498/aps.73.20231049
    [2] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性. 物理学报, 2022, 71(12): 124201. doi: 10.7498/aps.70.20220186
    [3] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220186
    [4] 李梦琪, 张玉钧, 何莹, 尤坤, 范博强, 余冬琪, 谢皓, 雷博恩, 李潇毅, 刘建国, 刘文清. 基于连续量子级联激光器的1103.4 cm–1处NH3混叠吸收光谱特性研究. 物理学报, 2020, 69(7): 074201. doi: 10.7498/aps.69.20191832
    [5] 管林强, 邓昊, 姚路, 聂伟, 许振宇, 李想, 臧益鹏, 胡迈, 范雪丽, 杨晨光, 阚瑞峰. 基于可调谐激光吸收光谱技术的二硫化碳中红外光谱参数测量. 物理学报, 2019, 68(8): 084204. doi: 10.7498/aps.68.20182140
    [6] 李金锋, 万婷, 王腾飞, 周文辉, 莘杰, 陈长水. 太赫兹量子级联激光器中有源区上激发态电子向高能级泄漏的研究. 物理学报, 2019, 68(2): 021101. doi: 10.7498/aps.68.20181882
    [7] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散. 物理学报, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [8] 周彧, 曹渊, 朱公栋, 刘锟, 谈图, 王利军, 高晓明. 基于7.6 m量子级联激光的光声光谱探测N2O气体. 物理学报, 2018, 67(8): 084201. doi: 10.7498/aps.67.20172696
    [9] 周超, 张磊, 李劲松. 基于单个量子级联激光器的大气多组分测量方法. 物理学报, 2017, 66(9): 094203. doi: 10.7498/aps.66.094203
    [10] 朱永浩, 黎华, 万文坚, 周涛, 曹俊诚. 三阶分布反馈太赫兹量子级联激光器的远场分布特性. 物理学报, 2017, 66(9): 099501. doi: 10.7498/aps.66.099501
    [11] 柴路, 牛跃, 栗岩锋, 胡明列, 王清月. 差频可调谐太赫兹技术的新进展. 物理学报, 2016, 65(7): 070702. doi: 10.7498/aps.65.070702
    [12] 马欲飞, 何应, 于欣, 于光, 张静波, 孙锐. 基于中红外量子级联激光器和石英增强光声光谱的CO超高灵敏度检测研究. 物理学报, 2016, 65(6): 060701. doi: 10.7498/aps.65.060701
    [13] 孟增明, 黄良辉, 彭鹏, 陈良超, 樊浩, 王鹏军, 张靖. 光学相位锁定激光在原子玻色-爱因斯坦凝聚中实现拉曼耦合. 物理学报, 2015, 64(24): 243202. doi: 10.7498/aps.64.243202
    [14] 万文坚, 尹嵘, 谭智勇, 王丰, 韩英军, 曹俊诚. 2.9THz束缚态向连续态跃迁量子级联激光器研制. 物理学报, 2013, 62(21): 210701. doi: 10.7498/aps.62.210701
    [15] 谭智勇, 陈镇, 韩英军, 张戎, 黎华, 郭旭光, 曹俊诚. 基于太赫兹量子级联激光器的无线信号传输的实现. 物理学报, 2012, 61(9): 098701. doi: 10.7498/aps.61.098701
    [16] 汤媛媛, 刘文清, 阚瑞峰, 张玉钧, 刘建国, 许振宇, 束小文, 张帅, 何莹, 耿辉, 崔益本. 基于室温脉冲量子级联激光器的NO气体检测中的光谱处理方法研究. 物理学报, 2010, 59(4): 2364-2368. doi: 10.7498/aps.59.2364
    [17] 黎华, 韩英军, 谭智勇, 张戎, 曹俊诚. 半绝缘等离子体波导太赫兹量子级联激光器工艺研究. 物理学报, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
    [18] 常俊, 黎华, 韩英军, 谭智勇, 曹俊诚. 太赫兹量子级联激光器材料生长及表征. 物理学报, 2009, 58(10): 7083-7087. doi: 10.7498/aps.58.7083
    [19] 徐刚毅, 李爱珍. 量子级联激光器有源核中界面声子的特性研究. 物理学报, 2007, 56(1): 500-506. doi: 10.7498/aps.56.500
    [20] 林桂江, 周志文, 赖虹凯, 李 成, 陈松岩, 余金中. Si/SiGe量子级联激光器的能带设计. 物理学报, 2007, 56(7): 4137-4142. doi: 10.7498/aps.56.4137
计量
  • 文章访问数:  595
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-09
  • 修回日期:  2024-11-05
  • 上网日期:  2024-11-28
  • 刊出日期:  2025-01-05

/

返回文章
返回