搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于7.6 m量子级联激光的光声光谱探测N2O气体

周彧 曹渊 朱公栋 刘锟 谈图 王利军 高晓明

引用本文:
Citation:

基于7.6 m量子级联激光的光声光谱探测N2O气体

周彧, 曹渊, 朱公栋, 刘锟, 谈图, 王利军, 高晓明

Detection of nitrous oxide by resonant photoacoustic spectroscopy based on mid infrared quantum cascade laser

Zhou Yu, Cao Yuan, Zhu Gong-Dong, Liu Kun, Tan Tu, Wang Li-Jun, Gao Xiao-Ming
PDF
导出引用
  • 近年来,气候变化对地球的生态环境产生严重影响,而大气温室气体在气候变化中具有重要的作用.一氧化二氮(N2O)作为一种重要的温室气体,其浓度变化对大气环境产生重要影响,因此对其浓度的探测在大气环境研究中具有重要意义.本文开展了基于中国自主研发的7.6 m中红外量子级联激光的共振型光声光谱探测N2O的研究,建立了N2O光声光谱传感实验系统.此系统在传统的光声光谱探测的基础上优化改进,采用双光束增强的方式,增加了有效光功率,进一步提高了系统的探测灵敏度.探测系统以1307.66 cm-1处的N2O吸收谱线作为探测对象,结合波长调制技术对N2O气体进行探测研究.通过对一定浓度的N2O气体在不同调制频率和调制振幅的光声信号的探测,确定了系统的最佳调制频率和调制振幅分别为800 Hz和90 mV.在最优实验条件下对不同浓度的N2O气体进行了测量,获得了系统的信号浓度定标曲线.实验表明,在锁相积分时间为30 ms时,系统的浓度探测极限为15010-9.通过100次平均后,系统噪声进一步降低,实现了大气N2O的探测,浓度探测极限达到了3710-9.
    Atmospheric greenhouse gases have great influence on the climate forcing, which is important to human being and also for natural systems. Nitrous oxide (N2O), such as carbon dioxide and methane, is an important greenhouse gas. It plays an important role in the atmospheric environment. Therefore, sensitive measurement of N2O concentration is of significance for studying the atmospheric environment. In this paper, a photoacoustic spectroscopy (PAS) system based on 7.6 m mid infrared quantum cascade laser combined with resonant PAS technique is established for the sensitive detection of N2O concentration. The PAS has been regarded as a highly sensitive and selective technique to measure trace gases. Compared with laser absorption spectroscopy, the PAS offers several intrinsic attractive features including ultra-compact size and no cross-response of light scattering. In addition, the signal of PAS is recorded with low-cost wavelength-independent acoustic transducer. The performance of the developed system is optimized and improved based on the traditional photoacoustic spectroscopic detection. Dual beam enhancement method is used to increase the effective optical power which effectively improves the detection sensitivity of the system. The N2O absorption line at 1307.66 cm-1 is chosen as the target line, and an operation pressure of 50 kPa is selected for reducing cross-talking from H2O absorption line. By detecting the photoacoustic signals of a certain concentration of N2O at different modulation frequencies and modulation amplitudes, the optimal modulation frequency and modulation amplitude of the system are determined to be 800 Hz and 90 mV, respectively. Different concentrations of N2O gas are detected under the optimized parameters, and calibration curve of the system, that is, the curve of photoacoustic signal versus concentration of N2O is obtained, which shows good linearity. The experimental results show that the minimum detection limit of the system is 150 ppb at a pressure of 50 kPa with an integration time of 30 ms. The system noise can be further reduced by increasing the averaging time. A minimum detection limit of 37 ppb is achieved by averaging signals 100 times, and the signal of N2O in the atmosphere is obtained.
      通信作者: 刘锟, liukun@aiofm.ac.cn;xmgao@aiofm.ac.cn ; 高晓明, liukun@aiofm.ac.cn;xmgao@aiofm.ac.cn
    • 基金项目: 国家重点研发计划(批准号:2017YFC0209700)和国家自然科学基金(批准号:41730103,41475023,41575030,61734006)资助的课题.
      Corresponding author: Liu Kun, liukun@aiofm.ac.cn;xmgao@aiofm.ac.cn ; Gao Xiao-Ming, liukun@aiofm.ac.cn;xmgao@aiofm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program, China (Grant No. 2017YFC0209700) and the National Natural Science Foundation of China (Grant Nos. 41730103, 41475023, 41575030, 61734006).
    [1]

    Montzka S A, Dlugokencky E J, Butler J H 2011 Nature 476 43

    [2]

    Ravishankara A R, Daniel J S, Portmann R W 2009 Science 326 123

    [3]

    Grossel A, Zeninari V, Parvitte B, Joly L, Courtois D 2007 Appl. Phys. B 88 483

    [4]

    Solomon S, Qing D H, Manning M, Marquis M, Averyt K, Tignor M, Miller H L, Chen Z L 2007 Climate Change 2007:The Physical Science Basis (Cambridge:Cambridge University Press) pp128-130

    [5]

    Bozki Z, Pogany A, Szabo G 2011 Appl. Spectrosc. Rev. 46 1

    [6]

    Meyer P L, Sigrist M W 1990 Rev. Sci. Instrum. 61 1779

    [7]

    Narasimhan L R, Goodman W, Patel C K N 2001 Proc. Natl. Acad. Sci. USA 98 4617

    [8]

    Kerr E L, Atwood J G 1968 Appl. Opt. 7 915

    [9]

    Kreuzer L B 1971 J. Appl. Phys. 42 2934

    [10]

    Wynn C M, Palmacci S T, Clark M L, Kunz R R 2014 Opt. Eng. 53 021103

    [11]

    Curl R F, Tittel F K 2002 Annu. Rep. Prog. Chem. C:Phys. Chem. 98 219

    [12]

    Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902

    [13]

    Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594

    [14]

    Liu K, Mei J X, Zhang W J, Chen W D, Gao X M 2017 Sensor Actuat B:Chem. 251 632

    [15]

    Liu Q, Wang G S, Liu K, Chen W D, Zhu W Y, Huang Y B, Gao X M 2014 Infrared Laser Eng. 43 3010 (in Chinese)[刘强, 王贵师, 刘锟, 陈卫东, 朱文越, 黄印博, 高晓明 2014 红外与激光工程 43 3010]

    [16]

    Liu K, Yi H M, Kosterev A A, Chen W D, Dong L, Wang L, Tan T, Zhang W J, Tittel F K, Gao X M 2010 Rev. Sci. Instrum. 81 103103.

    [17]

    Wu H P, Dong L, Zheng H D, Liu X L, Yin X K, Ma W G, Zhang L, Yin W B, Jia S T, Tittel F K 2015 Sensor Actuat B:Chem. 221 666

    [18]

    Zha S L, Liu K, Zhu G D, Tan T, Wang L, Wang G S, Mei J X, Gao X M 2017 Spectrosc. Spect. Anal. 37 2673 (in Chinese)[査申龙, 刘锟, 朱公栋, 谈图, 汪磊, 王贵师, 梅教旭, 高晓明 2017 光谱学与光谱分析 37 2673]

    [19]

    Nelson D D, McManus B, Urbanski S 2004 Spectrochim. Acta A 60 3325

    [20]

    Yu Y J, Sanchez N P, Griffin R J, Tittel F K 2016 Opt. Express 24 10391

    [21]

    Tan T, Liu K, Wang G S, Wang L, Chen W D, Gao X M 2015 Acta Opt. Sin. 35 0230005 (in Chinese)[谈图, 刘锟, 王贵师, 汪磊, 陈卫东, 高晓明 2015 光学学报 35 0230005]

    [22]

    Rothman L S, Jacaquemart D, Barbe A, Chris Benner D, Birk M, Brown L R, Carleer M R, Charkerian C, Chance K, Coudert L H, Dana V, Devi M V, Flaud J M, Gamache R R, Goldman A, Hartmann J M, Jucks K W, Maki A G, Mandin J Y, Massie S T, Orphal J, Perrin A, Rinsland C P, Smith M A H, Tennyson J, Tolchenov R N, Toth R A, Auwera J V, Varanasi P, Wagner G 2005 J. Quant. Spectrosc. Ra. 96 139

    [23]

    Zhang J C, Wang L J, Tan S, Chen J Y, Zhai S Q, Liu J Q, Liu F Q, Wang Z G 2012 IEEE Photon. Tech. L. 24 1100

  • [1]

    Montzka S A, Dlugokencky E J, Butler J H 2011 Nature 476 43

    [2]

    Ravishankara A R, Daniel J S, Portmann R W 2009 Science 326 123

    [3]

    Grossel A, Zeninari V, Parvitte B, Joly L, Courtois D 2007 Appl. Phys. B 88 483

    [4]

    Solomon S, Qing D H, Manning M, Marquis M, Averyt K, Tignor M, Miller H L, Chen Z L 2007 Climate Change 2007:The Physical Science Basis (Cambridge:Cambridge University Press) pp128-130

    [5]

    Bozki Z, Pogany A, Szabo G 2011 Appl. Spectrosc. Rev. 46 1

    [6]

    Meyer P L, Sigrist M W 1990 Rev. Sci. Instrum. 61 1779

    [7]

    Narasimhan L R, Goodman W, Patel C K N 2001 Proc. Natl. Acad. Sci. USA 98 4617

    [8]

    Kerr E L, Atwood J G 1968 Appl. Opt. 7 915

    [9]

    Kreuzer L B 1971 J. Appl. Phys. 42 2934

    [10]

    Wynn C M, Palmacci S T, Clark M L, Kunz R R 2014 Opt. Eng. 53 021103

    [11]

    Curl R F, Tittel F K 2002 Annu. Rep. Prog. Chem. C:Phys. Chem. 98 219

    [12]

    Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902

    [13]

    Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594

    [14]

    Liu K, Mei J X, Zhang W J, Chen W D, Gao X M 2017 Sensor Actuat B:Chem. 251 632

    [15]

    Liu Q, Wang G S, Liu K, Chen W D, Zhu W Y, Huang Y B, Gao X M 2014 Infrared Laser Eng. 43 3010 (in Chinese)[刘强, 王贵师, 刘锟, 陈卫东, 朱文越, 黄印博, 高晓明 2014 红外与激光工程 43 3010]

    [16]

    Liu K, Yi H M, Kosterev A A, Chen W D, Dong L, Wang L, Tan T, Zhang W J, Tittel F K, Gao X M 2010 Rev. Sci. Instrum. 81 103103.

    [17]

    Wu H P, Dong L, Zheng H D, Liu X L, Yin X K, Ma W G, Zhang L, Yin W B, Jia S T, Tittel F K 2015 Sensor Actuat B:Chem. 221 666

    [18]

    Zha S L, Liu K, Zhu G D, Tan T, Wang L, Wang G S, Mei J X, Gao X M 2017 Spectrosc. Spect. Anal. 37 2673 (in Chinese)[査申龙, 刘锟, 朱公栋, 谈图, 汪磊, 王贵师, 梅教旭, 高晓明 2017 光谱学与光谱分析 37 2673]

    [19]

    Nelson D D, McManus B, Urbanski S 2004 Spectrochim. Acta A 60 3325

    [20]

    Yu Y J, Sanchez N P, Griffin R J, Tittel F K 2016 Opt. Express 24 10391

    [21]

    Tan T, Liu K, Wang G S, Wang L, Chen W D, Gao X M 2015 Acta Opt. Sin. 35 0230005 (in Chinese)[谈图, 刘锟, 王贵师, 汪磊, 陈卫东, 高晓明 2015 光学学报 35 0230005]

    [22]

    Rothman L S, Jacaquemart D, Barbe A, Chris Benner D, Birk M, Brown L R, Carleer M R, Charkerian C, Chance K, Coudert L H, Dana V, Devi M V, Flaud J M, Gamache R R, Goldman A, Hartmann J M, Jucks K W, Maki A G, Mandin J Y, Massie S T, Orphal J, Perrin A, Rinsland C P, Smith M A H, Tennyson J, Tolchenov R N, Toth R A, Auwera J V, Varanasi P, Wagner G 2005 J. Quant. Spectrosc. Ra. 96 139

    [23]

    Zhang J C, Wang L J, Tan S, Chen J Y, Zhai S Q, Liu J Q, Liu F Q, Wang Z G 2012 IEEE Photon. Tech. L. 24 1100

  • [1] 刘丽娴, 陈柏松, 张乐, 章学仕, 宦惠庭, 尹旭坤, 邵晓鹏, 马欲飞, MandelisAndreas. 面向工业园区的多组分痕量气体光声光谱同时检测. 物理学报, 2022, 71(17): 170701. doi: 10.7498/aps.71.20220613
    [2] 尹旭坤, 董磊, 武红鹏, 刘丽娴, 邵晓鹏. 面向SF6气体绝缘设备故障检测的光声CO气体传感器设计和优化. 物理学报, 2021, 70(17): 170701. doi: 10.7498/aps.70.20210532
    [3] 李梦琪, 张玉钧, 何莹, 尤坤, 范博强, 余冬琪, 谢皓, 雷博恩, 李潇毅, 刘建国, 刘文清. 基于连续量子级联激光器的1103.4 cm–1处NH3混叠吸收光谱特性研究. 物理学报, 2020, 69(7): 074201. doi: 10.7498/aps.69.20191832
    [4] 程刚, 曹渊, 刘锟, 曹亚南, 陈家金, 高晓明. 光声光谱检测装置中光声池的数值计算及优化. 物理学报, 2019, 68(7): 074202. doi: 10.7498/aps.68.20182084
    [5] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散. 物理学报, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [6] 管林强, 邓昊, 姚路, 聂伟, 许振宇, 李想, 臧益鹏, 胡迈, 范雪丽, 杨晨光, 阚瑞峰. 基于可调谐激光吸收光谱技术的二硫化碳中红外光谱参数测量. 物理学报, 2019, 68(8): 084204. doi: 10.7498/aps.68.20182140
    [7] 靳华伟, 胡仁志, 谢品华, 陈浩, 李治艳, 王凤阳, 王怡慧, 林川. 适用于ppb量级NO2检测的低功率蓝光二极管光声技术研究. 物理学报, 2019, 68(7): 070703. doi: 10.7498/aps.68.20182262
    [8] 周超, 张磊, 李劲松. 基于单个量子级联激光器的大气多组分测量方法. 物理学报, 2017, 66(9): 094203. doi: 10.7498/aps.66.094203
    [9] 林莹莹, 李葵英, 单青松, 尹华, 朱瑞苹. ZnSe/ZnS/L-Cys核壳结构量子点光声与表面光伏特性. 物理学报, 2016, 65(3): 038101. doi: 10.7498/aps.65.038101
    [10] 马欲飞, 何应, 于欣, 于光, 张静波, 孙锐. 基于中红外量子级联激光器和石英增强光声光谱的CO超高灵敏度检测研究. 物理学报, 2016, 65(6): 060701. doi: 10.7498/aps.65.060701
    [11] 万文坚, 尹嵘, 谭智勇, 王丰, 韩英军, 曹俊诚. 2.9THz束缚态向连续态跃迁量子级联激光器研制. 物理学报, 2013, 62(21): 210701. doi: 10.7498/aps.62.210701
    [12] 余荣, 江月松, 余兰, 欧军. 利用散射光增强弱吸收固体混合物中主要光吸收物质的光声光谱特征. 物理学报, 2013, 62(8): 087802. doi: 10.7498/aps.62.087802
    [13] 许雪梅, 李奔荣, 杨兵初, 蒋礼, 尹林子, 丁一鹏, 曹粲. 基于光声光谱技术的NO,NO2气体分析仪研究. 物理学报, 2013, 62(20): 200704. doi: 10.7498/aps.62.200704
    [14] 谭智勇, 陈镇, 韩英军, 张戎, 黎华, 郭旭光, 曹俊诚. 基于太赫兹量子级联激光器的无线信号传输的实现. 物理学报, 2012, 61(9): 098701. doi: 10.7498/aps.61.098701
    [15] 董美丽, 赵卫雄, 程跃, 胡长进, 顾学军, 张为俊. 宽带腔增强吸收光谱技术应用于痕量气体探测及气溶胶消光系数测量. 物理学报, 2012, 61(6): 060702. doi: 10.7498/aps.61.060702
    [16] 黎华, 韩英军, 谭智勇, 张戎, 曹俊诚. 半绝缘等离子体波导太赫兹量子级联激光器工艺研究. 物理学报, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
    [17] 袁长迎, 炎正馨, 蒙瑰, 李智慧, 尚丽平. 高浓度气体共振光声光谱信号饱和特性研究. 物理学报, 2010, 59(10): 6908-6913. doi: 10.7498/aps.59.6908
    [18] 汤媛媛, 刘文清, 阚瑞峰, 张玉钧, 刘建国, 许振宇, 束小文, 张帅, 何莹, 耿辉, 崔益本. 基于室温脉冲量子级联激光器的NO气体检测中的光谱处理方法研究. 物理学报, 2010, 59(4): 2364-2368. doi: 10.7498/aps.59.2364
    [19] 徐刚毅, 李爱珍. 量子级联激光器有源核中界面声子的特性研究. 物理学报, 2007, 56(1): 500-506. doi: 10.7498/aps.56.500
    [20] 林桂江, 周志文, 赖虹凯, 李 成, 陈松岩, 余金中. Si/SiGe量子级联激光器的能带设计. 物理学报, 2007, 56(7): 4137-4142. doi: 10.7498/aps.56.4137
计量
  • 文章访问数:  7701
  • PDF下载量:  287
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-20
  • 修回日期:  2018-01-08
  • 刊出日期:  2019-04-20

/

返回文章
返回