搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于3D打印技术的结构型宽频吸波超材料

熊益军 王岩 王强 王春齐 黄小忠 张芬 周丁

引用本文:
Citation:

一种基于3D打印技术的结构型宽频吸波超材料

熊益军, 王岩, 王强, 王春齐, 黄小忠, 张芬, 周丁

Structural broadband absorbing metamaterial based on three-dimensional printing technology

Xiong Yi-Jun, Wang Yan, Wang Qiang, Wang Chun-Qi, Huang Xiao-Zhong, Zhang Fen, Zhou Ding
PDF
导出引用
  • 设计了一种三层宽频吸波超材料,其表层和中间层为单元尺寸不同的周期阵列结构,底层为吸波平板结构,优化后的总厚度仅为4.7 mm,并采用三维(3D)打印技术成功制备了该吸波超材料.吸波体反射率测试结果表明,在电磁波垂直入射条件下,宽频吸收峰分别出现在5.3和14.1 GHz,两峰叠加使得其在418 GHz频率范围内反射损耗均小于-10 dB.采用S参数反演法计算了每一层的等效电磁参数,并利用多层结构反射率公式推导得出该模型的理论反射率,理论计算结果与实测结果基本一致.通过研究能量损耗、电场分布和磁场分布揭示了吸波机理,分析表明该吸波体的宽频吸收效果源于三层结构产生的吸收带宽叠加.本文提出的吸波超材料具有良好的宽频吸收效果,尤其在低频范围吸波性能较佳,结合3D打印快速成型技术,可获得结构精细的三层吸波超材料,具有重要的实际应用价值和广阔的应用前景.
    In order to verify the feasibility of three-dimensional (3D) printing technology in preparing the metamaterial absorbers with complex structure, a three-layer broadband absorbing metamaterial is designed and fabricated by 3D printing technology. The surface layer and middle layer of the metamaterial are composed of periodic arrays with different unit dimensions and the bottom layer of a slab structure. The optimized thickness of the metamaterial is 4.7 mm. A composite absorbent which consists of carbonyl iron powder and nylon is used to fabricate the absorber. In experiment, the obtained absorber is vertically irradiated by an electromagnetic (EM) wave. Two strong absorption peaks at 5.3 GHz and 14.1 GHz are achieved, with the reflection losses of -15.1 dB and -12.5 dB, respectively. The superposition of the two absorption peaks results in a reflection loss below -10 dB in a range from 4 to 18 GHz. The effective EM parameters of the surface layer and the middle layer are calculated by the S parameter inversion method. An effective model of the three-layer structure absorber is proposed and its reflectivity is calculated by using a multilayer structure reflectivity formula. The calculated reflectivity agrees well with the measured one. The absorbing and resonance mechanisms of the two absorption peaks are investigated by analyzing the dynamic distributions of power density loss, electric field and magnetic field. It can be clearly confirmed that the reflection losses at 5.3 GHz and 14.1 GHz are primarily concentrated on the bottom layer and surface layer, and the broadband absorption performance can be derived from the superposition of broadband absorptions of the three absorbing layers. Meanwhile, the strong electric coupling effect between the adjacent units in the surface layer is demonstrated by analyzing the electric-field distributions, which indicates that the strong reflection loss at 14.1 GHz is mainly caused by the electric response. The multiple scattering effects among the three layers are also considered according to the magnetic field distributions at two resonance frequencies. It is shown that there are two magnetic responses at 5.3 GHz and 14.1 GHz, respectively, and the multiple scattering contributes to increasing the EM wave propagation distance and enhancing the power loss. The designed absorbing metamaterials in this paper achieve good broadband absorption performances, particularly in the low frequency band. Combined with 3D printing rapid technology, a promising route to constructing 3D absorbing metamaterials with complex structures is proposed, which would be of great significance and broad practical prospect.
      通信作者: 王岩, wangyan@csu.edu.cn;huangxzh@csu.edu.cn ; 黄小忠, wangyan@csu.edu.cn;huangxzh@csu.edu.cn
    • 基金项目: 湖南省科技计划(批准号:2015TP1007)资助的课题.
      Corresponding author: Wang Yan, wangyan@csu.edu.cn;huangxzh@csu.edu.cn ; Huang Xiao-Zhong, wangyan@csu.edu.cn;huangxzh@csu.edu.cn
    • Funds: Project supported by the Science and Technology Plan Project of Hunan Province, China (Grant No. 2015TP1007).
    [1]

    Hu C X 2004 Stealth Coating Technology (Beijing:Chemistry Industry Press) (in Chinese)[胡传炘 2004 隐身涂层技术 (北京:化学工业出版社)]

    [2]

    Yuan J, Xiao G, Cao M S 2006 Mater. Des. 27 45

    [3]

    Zhou L, Zhou W, Chen M, Luo F, Zhu D 2011 Mater. Sci. Eng. B 176 1456

    [4]

    Kumar T A, Inayathullah J, Nagarajan V A, Kumar S H 2016 Bull. Mater. Sci. 39 279

    [5]

    Choi I, Jin G K, Seo I S, Dai G L 2012 Compos. Struct. 94 3002

    [6]

    Feng J, Zhang Y, Wang P, Fan H 2016 Compos. Part B:Eng. 99 465

    [7]

    Bollen P, Quievy N, Detrtembleur C, Thomassin J M, Monnereau L, Bailly C, Huynen I, Pardoen T 2016 Mater. Des. 89 323

    [8]

    Hosseini S H, Alamian A, Mousavi S M 2016 Fibers Polym. 17 593

    [9]

    He P, Hou Z L, Zhang K L, Li J, Yin K, Feng S, Bi S 2017 J. Mater. Sci. 52 8258

    [10]

    Rozanov K N 2000 IEEE Trans. Antennas Propag. 48 1230

    [11]

    Song W L, Zhang K L, Chen M J, Hou Z L, Chen H S, Yuan X J, Ma Y B, Fang D N 2017 Carbon 118 86

    [12]

    Zhou Q, Yin X W, Ye F, Liu X F, Cheng L F, Zhang L T 2017 Mater. Des. 123 46

    [13]

    Yao B, Xia S X, Ou X H, Cheng C G 2016 Fiber Reinforced Plastics Composites 4 26 (in Chinese)[姚斌, 夏少旭, 欧湘慧, 程朝歌 2016 玻璃钢复合材料 4 26]

    [14]

    Wang H, Kong P, Cheng W T, Bao W Z, Yu X W, Miao L, Jiang J J 2016 Sci. Rep. 6 23081

    [15]

    Xu W H, He Y, Kong P, Li J L, Xu H B, Miao L, Bie S W, Jiang J J 2015 J. Appl. Phys. 118 1443

    [16]

    Bhattacharyya S, Srivastava K V 2014 J. Appl. Phys. 115 4184

    [17]

    Cheng Y Z, Nie Y, Wang X, Gong R Z 2014 J. Appl. Phys. 115 207492

    [18]

    Wang Q, Tang X Z, Zhou D, Du Z J, Huang X Z 2017 IEEE Antennas Wirel. Propag. Lett. 16 3200

    [19]

    D'Aloia A G, D'Amore M, Sarto M S 2016 IEEE Trans. Antennas Propag. 64 2527

    [20]

    Costa F, Monorchio A, Manara G 2010 IEEE Trans. Antennas Propag. 58 1551

    [21]

    Huang L, Chen H 2011 OALib Journal 113 103

    [22]

    Zhang S, Zhou J F, Park Y S, Rho J, Singh R, Nam S, Azad A K, Chen H T, Yin X, Taylor A J, Zhang X 2012 Nat. Commun. 3 942

    [23]

    Zhu W M, Liu A Q, Zhang X M, Tsai D P, Bourouina T, Teng J H, Zhang X H, Guo H C, Tanoto H, Mei T, Lo G Q, Kwong D L 2011 Adv. Mater. 23 1792

    [24]

    Xiong H 2014 Ph. D. Dissertation (Chengdu:University of Electronic Science and Technology of China) (in Chinese)[熊汉 2014博士学位论文 (成都:电子科技大学)]

    [25]

    Zhao Y C, Wan G B 2013 Chin. J. Radio. 28 2 (in Chinese)[赵雨辰,万国宾 2013 电波科学学报 28 2]

    [26]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

    [27]

    Hickey M C, Akyurtlu A, Kussow A G 2010 Phys. Rev. A 82 11992

    [28]

    Leon L S 2014 Encyclopedia of Thermal Stresses (Netherlands:Springer) p5267

    [29]

    Pan Y F 2005 M. S. Dissertation (Nanjing:Nanjing University of Aeronautics and Astronautics) (in Chinese)[潘琰峰 2005 硕士学位论文 (南京:南京航空航天大学)]

    [30]

    Li W, Wu T L, Wang W, Zhai P C, Guan J G 2014 J. Appl. Phys. 104 1189

    [31]

    Zhou Q, Yin X W, Ye F, Liu X F, Cheng L F, Zhang L T 2017 Mater. Des. 123 46

  • [1]

    Hu C X 2004 Stealth Coating Technology (Beijing:Chemistry Industry Press) (in Chinese)[胡传炘 2004 隐身涂层技术 (北京:化学工业出版社)]

    [2]

    Yuan J, Xiao G, Cao M S 2006 Mater. Des. 27 45

    [3]

    Zhou L, Zhou W, Chen M, Luo F, Zhu D 2011 Mater. Sci. Eng. B 176 1456

    [4]

    Kumar T A, Inayathullah J, Nagarajan V A, Kumar S H 2016 Bull. Mater. Sci. 39 279

    [5]

    Choi I, Jin G K, Seo I S, Dai G L 2012 Compos. Struct. 94 3002

    [6]

    Feng J, Zhang Y, Wang P, Fan H 2016 Compos. Part B:Eng. 99 465

    [7]

    Bollen P, Quievy N, Detrtembleur C, Thomassin J M, Monnereau L, Bailly C, Huynen I, Pardoen T 2016 Mater. Des. 89 323

    [8]

    Hosseini S H, Alamian A, Mousavi S M 2016 Fibers Polym. 17 593

    [9]

    He P, Hou Z L, Zhang K L, Li J, Yin K, Feng S, Bi S 2017 J. Mater. Sci. 52 8258

    [10]

    Rozanov K N 2000 IEEE Trans. Antennas Propag. 48 1230

    [11]

    Song W L, Zhang K L, Chen M J, Hou Z L, Chen H S, Yuan X J, Ma Y B, Fang D N 2017 Carbon 118 86

    [12]

    Zhou Q, Yin X W, Ye F, Liu X F, Cheng L F, Zhang L T 2017 Mater. Des. 123 46

    [13]

    Yao B, Xia S X, Ou X H, Cheng C G 2016 Fiber Reinforced Plastics Composites 4 26 (in Chinese)[姚斌, 夏少旭, 欧湘慧, 程朝歌 2016 玻璃钢复合材料 4 26]

    [14]

    Wang H, Kong P, Cheng W T, Bao W Z, Yu X W, Miao L, Jiang J J 2016 Sci. Rep. 6 23081

    [15]

    Xu W H, He Y, Kong P, Li J L, Xu H B, Miao L, Bie S W, Jiang J J 2015 J. Appl. Phys. 118 1443

    [16]

    Bhattacharyya S, Srivastava K V 2014 J. Appl. Phys. 115 4184

    [17]

    Cheng Y Z, Nie Y, Wang X, Gong R Z 2014 J. Appl. Phys. 115 207492

    [18]

    Wang Q, Tang X Z, Zhou D, Du Z J, Huang X Z 2017 IEEE Antennas Wirel. Propag. Lett. 16 3200

    [19]

    D'Aloia A G, D'Amore M, Sarto M S 2016 IEEE Trans. Antennas Propag. 64 2527

    [20]

    Costa F, Monorchio A, Manara G 2010 IEEE Trans. Antennas Propag. 58 1551

    [21]

    Huang L, Chen H 2011 OALib Journal 113 103

    [22]

    Zhang S, Zhou J F, Park Y S, Rho J, Singh R, Nam S, Azad A K, Chen H T, Yin X, Taylor A J, Zhang X 2012 Nat. Commun. 3 942

    [23]

    Zhu W M, Liu A Q, Zhang X M, Tsai D P, Bourouina T, Teng J H, Zhang X H, Guo H C, Tanoto H, Mei T, Lo G Q, Kwong D L 2011 Adv. Mater. 23 1792

    [24]

    Xiong H 2014 Ph. D. Dissertation (Chengdu:University of Electronic Science and Technology of China) (in Chinese)[熊汉 2014博士学位论文 (成都:电子科技大学)]

    [25]

    Zhao Y C, Wan G B 2013 Chin. J. Radio. 28 2 (in Chinese)[赵雨辰,万国宾 2013 电波科学学报 28 2]

    [26]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

    [27]

    Hickey M C, Akyurtlu A, Kussow A G 2010 Phys. Rev. A 82 11992

    [28]

    Leon L S 2014 Encyclopedia of Thermal Stresses (Netherlands:Springer) p5267

    [29]

    Pan Y F 2005 M. S. Dissertation (Nanjing:Nanjing University of Aeronautics and Astronautics) (in Chinese)[潘琰峰 2005 硕士学位论文 (南京:南京航空航天大学)]

    [30]

    Li W, Wu T L, Wang W, Zhai P C, Guan J G 2014 J. Appl. Phys. 104 1189

    [31]

    Zhou Q, Yin X W, Ye F, Liu X F, Cheng L F, Zhang L T 2017 Mater. Des. 123 46

  • [1] 王鑫, 王俊林. 太赫兹波段电磁超材料吸波器折射率传感特性. 物理学报, 2021, 70(3): 038102. doi: 10.7498/aps.70.20201054
    [2] 王彦朝, 许河秀, 王朝辉, 王明照, 王少杰. 电磁超材料吸波体的研究进展. 物理学报, 2020, 69(13): 134101. doi: 10.7498/aps.69.20200355
    [3] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨. 基于超材料的可调谐的太赫兹波宽频吸收器. 物理学报, 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [4] 莫漫漫, 马武伟, 庞永强, 陈润华, 张笑梅, 柳兆堂, 李想, 郭万涛. 基于拓扑优化设计的宽频吸波复合材料. 物理学报, 2018, 67(21): 217801. doi: 10.7498/aps.67.20181170
    [5] 徐永顺, 别少伟, 江建军, 徐海兵, 万东, 周杰. 含螺旋单元频率选择表面的宽频带强吸收复合吸波体. 物理学报, 2014, 63(20): 205202. doi: 10.7498/aps.63.205202
    [6] 鲁磊, 屈绍波, 施宏宇, 张安学, 夏颂, 徐卓, 张介秋. 宽带透射吸收极化无关超材料吸波体. 物理学报, 2014, 63(2): 028103. doi: 10.7498/aps.63.028103
    [7] 鲁磊, 屈绍波, 马华, 余斐, 夏颂, 徐卓, 柏鹏. 基于电磁谐振的极化无关透射吸收超材料吸波体. 物理学报, 2013, 62(10): 104102. doi: 10.7498/aps.62.104102
    [8] 鲁磊, 屈绍波, 夏颂, 徐卓, 马华, 王甲富, 余斐. 极化无关双向吸收超材料吸波体的仿真与实验验证. 物理学报, 2013, 62(1): 013701. doi: 10.7498/aps.62.013701
    [9] 程用志, 聂彦, 龚荣洲, 王鲜. 基于电阻膜与分形频率选择表面的超薄宽频带超材料吸波体的设计. 物理学报, 2013, 62(4): 044103. doi: 10.7498/aps.62.044103
    [10] 刘亚红, 方石磊, 顾帅, 赵晓鹏. 多频与宽频超材料吸收器. 物理学报, 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [11] 程用志, 聂彦, 龚荣洲, 郑栋浩, 范跃农, 熊炫, 王鲜. 基于超材料与电阻型频率选择表面的薄型宽频带吸波体的设计. 物理学报, 2012, 61(13): 134101. doi: 10.7498/aps.61.134101
    [12] 林国昌, 孙宏伟, 谭惠丰, 杜星文. 一种超材料梁对机械波振动吸收的模拟研究. 物理学报, 2011, 60(3): 034302. doi: 10.7498/aps.60.034302
    [13] 孙良奎, 程海峰, 周永江, 王军, 庞永强. 一种基于超材料的吸波材料的设计与制备. 物理学报, 2011, 60(10): 108901. doi: 10.7498/aps.60.108901
    [14] 顾超, 屈绍波, 裴志斌, 徐卓, 马华, 林宝勤, 柏鹏, 彭卫东. 一种极化不敏感和双面吸波的手性超材料吸波体. 物理学报, 2011, 60(10): 107801. doi: 10.7498/aps.60.107801
    [15] 顾超, 屈绍波, 裴志斌, 徐卓, 刘嘉, 顾巍. 准全向平板超材料吸波体的设计. 物理学报, 2011, 60(3): 037801. doi: 10.7498/aps.60.037801
    [16] 帅文娟, 冯少彤, 聂守平, 朱竹青. 基于主分量分析法的小波域三维目标序列图像隐藏技术. 物理学报, 2011, 60(3): 034203. doi: 10.7498/aps.60.034203
    [17] 顾超, 屈绍波, 裴志斌, 徐卓, 林宝勤, 周航, 柏鹏, 顾巍, 彭卫东, 马华. 基于电阻膜的宽频带超材料吸波体的设计. 物理学报, 2011, 60(8): 087802. doi: 10.7498/aps.60.087802
    [18] 顾超, 屈绍波, 裴志斌, 徐卓, 柏鹏, 彭卫东, 林宝勤. 基于磁谐振器加载的宽频带超材料吸波体的设计. 物理学报, 2011, 60(8): 087801. doi: 10.7498/aps.60.087801
    [19] 张希仁, 李斌成, 刘显明. 调制自由载流子吸收测量半导体载流子输运参数的三维理论. 物理学报, 2008, 57(11): 7310-7316. doi: 10.7498/aps.57.7310
    [20] 王少宏, B.Ferguson, 张存林, 张希成. Terahertz波计算机辅助三维层析成像技术. 物理学报, 2003, 52(1): 120-124. doi: 10.7498/aps.52.120
计量
  • 文章访问数:  4821
  • PDF下载量:  385
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-19
  • 修回日期:  2017-12-29
  • 刊出日期:  2019-04-20

一种基于3D打印技术的结构型宽频吸波超材料

    基金项目: 湖南省科技计划(批准号:2015TP1007)资助的课题.

摘要: 设计了一种三层宽频吸波超材料,其表层和中间层为单元尺寸不同的周期阵列结构,底层为吸波平板结构,优化后的总厚度仅为4.7 mm,并采用三维(3D)打印技术成功制备了该吸波超材料.吸波体反射率测试结果表明,在电磁波垂直入射条件下,宽频吸收峰分别出现在5.3和14.1 GHz,两峰叠加使得其在418 GHz频率范围内反射损耗均小于-10 dB.采用S参数反演法计算了每一层的等效电磁参数,并利用多层结构反射率公式推导得出该模型的理论反射率,理论计算结果与实测结果基本一致.通过研究能量损耗、电场分布和磁场分布揭示了吸波机理,分析表明该吸波体的宽频吸收效果源于三层结构产生的吸收带宽叠加.本文提出的吸波超材料具有良好的宽频吸收效果,尤其在低频范围吸波性能较佳,结合3D打印快速成型技术,可获得结构精细的三层吸波超材料,具有重要的实际应用价值和广阔的应用前景.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回