搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种极化不敏感和双面吸波的手性超材料吸波体

顾超 屈绍波 裴志斌 徐卓 马华 林宝勤 柏鹏 彭卫东

引用本文:
Citation:

一种极化不敏感和双面吸波的手性超材料吸波体

顾超, 屈绍波, 裴志斌, 徐卓, 马华, 林宝勤, 柏鹏, 彭卫东

A polarization-insensitive and double-face-absorption chiral metamaterial absorber

Gu Chao, Qu Shao-Bo, Pei Zhi-Bin, Xu Zhuo, Ma Hua, Lin Bao-Qin, Bai Peng, Peng Wei-Dong
PDF
导出引用
  • 基于手性结构设计了一种极化不敏感和双面吸波的超材料吸波体.该吸波体的结构单元由手性结构和介质基板组成.仿真的电磁波正、反向入射时超材料吸波体的吸收率表明:该吸波结构的正、反面是互易的,具有双面吸波特性.仿真的不同极化角下超材料吸波体的吸收率表明:该超材料吸波体具有极化不敏感特性.仿真的不同入射角下超材料吸波体的吸收率表明:该超材料吸波体的入射角较窄.仿真的吸波体单元的表面电流和磁能密度分布表明:电、磁场之间存在交叉耦合,吸波与手性有关.仿真的不同损耗情况下超材料吸波体的吸收率表明:基板的介质损耗在吸波过程中起主导作用,金属的电阻热可以忽略不计.该超材料吸波体可能在要求双面吸波的领域中具有潜在的应用.
    A polarization-insensitive and double-face-absorbing metamaterial absorber is presented, which is based on chiral structure. The unit cell of this absorber is comprised of a chiral structure and a dielectric substrate. Simulated absorbances under frontal and reverse incident directions indicate that the structure of this absorber is reciprocal, and thus this absorber has double-face-absorption property. Simulated absorbances under different polarization angles indicate that this absorber is polarization-insensitive. Simulated absorbances under different angles of incidence indicate that this absorber is narrow-angled. Simulated surface currents and magnetic energy density of the unit cell indicate that there exists cross coupling between electric field and magnetic field, and that the absorption is related to chirality. Simulated absorbances under different loss conditions indicate that dielectric loss of the substrate is dominant in the absorbing process, and that metal loss can be neglected. This absorber may have potential applications in some double-face-absorbing fields.
    • 基金项目: 国家自然科学基金(批准号:50632030, 60871027, 60901029, 61071058)、国家重点基础研究发展计划(批准号:2009CB623306)和陕西省电子信息系统综合集成重点实验室基金(批准号:200905A)资助的课题.
    [1]

    Caloz C, Itoh T 2006 Electromagnetic metamaterials: transmission line theory and microwave applications: the engineering approach (1st ed) (New Jersey: John Wiley Sons, Inc.) p23

    [2]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 4773

    [3]
    [4]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075

    [5]
    [6]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [7]
    [8]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [9]
    [10]

    Smith D R, Schurig D, Rosenbluth M, Schultz S, Ramakrishna S A, Pendry J B 2003 Appl. Phys. Lett. 82 1506

    [11]
    [12]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [13]
    [14]
    [15]

    Enoch S, Tayeb G, Sabouroux P, Gurin N, Vincent P 2002 Phys. Rev. Lett. 89 213902

    [16]

    Colladey S, Tarot A C, Pouliguen P, Mahdjoubi K 2005 Microwave and Opt Tech Lett. 44 546

    [17]
    [18]
    [19]

    Marques R, Martel J, Mesa F, Medina F 2002 Phys. Rev. Lett. 89 183901

    [20]
    [21]

    Liu L, He S 2004 Optics Express. 12 4835

    [22]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [23]
    [24]
    [25]

    Tao H, Landy N I, Bingham C M, Zhan X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181

    [26]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

    [27]
    [28]
    [29]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103(R)

    [30]

    Avitzour Y, Urzhumov Y A, Shvets G 2009 Phys. Rev. B 79 045131

    [31]
    [32]

    Li Y X, Xie Y S, Zhang H W, Liu Y L, Wen Q Y, Ling W W 2009 J. Phys. D: Appl. Phys. 42 095408

    [33]
  • [1]

    Caloz C, Itoh T 2006 Electromagnetic metamaterials: transmission line theory and microwave applications: the engineering approach (1st ed) (New Jersey: John Wiley Sons, Inc.) p23

    [2]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 4773

    [3]
    [4]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075

    [5]
    [6]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [7]
    [8]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [9]
    [10]

    Smith D R, Schurig D, Rosenbluth M, Schultz S, Ramakrishna S A, Pendry J B 2003 Appl. Phys. Lett. 82 1506

    [11]
    [12]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [13]
    [14]
    [15]

    Enoch S, Tayeb G, Sabouroux P, Gurin N, Vincent P 2002 Phys. Rev. Lett. 89 213902

    [16]

    Colladey S, Tarot A C, Pouliguen P, Mahdjoubi K 2005 Microwave and Opt Tech Lett. 44 546

    [17]
    [18]
    [19]

    Marques R, Martel J, Mesa F, Medina F 2002 Phys. Rev. Lett. 89 183901

    [20]
    [21]

    Liu L, He S 2004 Optics Express. 12 4835

    [22]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [23]
    [24]
    [25]

    Tao H, Landy N I, Bingham C M, Zhan X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181

    [26]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

    [27]
    [28]
    [29]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103(R)

    [30]

    Avitzour Y, Urzhumov Y A, Shvets G 2009 Phys. Rev. B 79 045131

    [31]
    [32]

    Li Y X, Xie Y S, Zhang H W, Liu Y L, Wen Q Y, Ling W W 2009 J. Phys. D: Appl. Phys. 42 095408

    [33]
  • [1] 王超, 李绣峰, 张生俊, 王如志. 基于遗传算法的宽带渐变电阻膜超材料吸波器设计. 物理学报, 2024, 73(7): 074101. doi: 10.7498/aps.73.20231781
    [2] 吴雨明, 王任, 丁霄, 王秉中. 基于等效介质原理的宽角超材料吸波体设计. 物理学报, 2020, 69(22): 224201. doi: 10.7498/aps.69.20201488
    [3] 吴雨明, 王任, 丁霄, 王秉中. 基于等效介质原理的宽角超材料吸波体设计*. 物理学报, 2020, (): . doi: 10.7498/aps.69.20201448
    [4] 李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛. 基于超材料吸波体的低雷达散射截面波导缝隙阵列天线. 物理学报, 2015, 64(9): 094102. doi: 10.7498/aps.64.094102
    [5] 郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅. 基于磁/电介质混合型基体的宽带超材料吸波体的设计与制备. 物理学报, 2015, 64(7): 077801. doi: 10.7498/aps.64.077801
    [6] 王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲. 基于多阶等离激元谐振的超薄多频带超材料吸波体. 物理学报, 2014, 63(17): 174101. doi: 10.7498/aps.63.174101
    [7] 鲁磊, 屈绍波, 施宏宇, 张安学, 夏颂, 徐卓, 张介秋. 宽带透射吸收极化无关超材料吸波体. 物理学报, 2014, 63(2): 028103. doi: 10.7498/aps.63.028103
    [8] 刘立国, 吴微微, 吴礼林, 莫锦军, 付云起, 袁乃昌. 等效环路有限差分算法及其在人工复合材料设计中的应用. 物理学报, 2013, 62(13): 130203. doi: 10.7498/aps.62.130203
    [9] 鲁磊, 屈绍波, 施宏宇, 张安学, 张介秋, 马华. 基于宽边耦合螺旋结构的低频小型化极化不敏感超材料吸波体. 物理学报, 2013, 62(15): 158102. doi: 10.7498/aps.62.158102
    [10] 鲁磊, 屈绍波, 苏兮, 尚耀波, 张介秋, 柏鹏. 极薄宽角度平面超材料吸波体仿真与实验验证. 物理学报, 2013, 62(20): 208103. doi: 10.7498/aps.62.208103
    [11] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强. 基于超材料吸波体的低雷达散射截面微带天线设计. 物理学报, 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [12] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [13] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究. 物理学报, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [14] 韩松, 杨河林. 双向多频超材料吸波器的设计与实验研究. 物理学报, 2013, 62(17): 174102. doi: 10.7498/aps.62.174102
    [15] 鲁磊, 屈绍波, 马华, 余斐, 夏颂, 徐卓, 柏鹏. 基于电磁谐振的极化无关透射吸收超材料吸波体. 物理学报, 2013, 62(10): 104102. doi: 10.7498/aps.62.104102
    [16] 鲁磊, 屈绍波, 夏颂, 徐卓, 马华, 王甲富, 余斐. 极化无关双向吸收超材料吸波体的仿真与实验验证. 物理学报, 2013, 62(1): 013701. doi: 10.7498/aps.62.013701
    [17] 程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜. 基于电阻型频率选择表面的低频宽带超材料吸波体的设计. 物理学报, 2012, 61(13): 134102. doi: 10.7498/aps.61.134102
    [18] 顾超, 屈绍波, 裴志斌, 徐卓, 林宝勤, 周航, 柏鹏, 顾巍, 彭卫东, 马华. 基于电阻膜的宽频带超材料吸波体的设计. 物理学报, 2011, 60(8): 087802. doi: 10.7498/aps.60.087802
    [19] 顾超, 屈绍波, 裴志斌, 徐卓, 柏鹏, 彭卫东, 林宝勤. 基于磁谐振器加载的宽频带超材料吸波体的设计. 物理学报, 2011, 60(8): 087801. doi: 10.7498/aps.60.087801
    [20] 顾超, 屈绍波, 裴志斌, 徐卓, 刘嘉, 顾巍. 准全向平板超材料吸波体的设计. 物理学报, 2011, 60(3): 037801. doi: 10.7498/aps.60.037801
计量
  • 文章访问数:  11005
  • PDF下载量:  1280
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-01
  • 修回日期:  2010-12-29
  • 刊出日期:  2011-05-05

/

返回文章
返回