搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于磁谐振器加载的宽频带超材料吸波体的设计

顾超 屈绍波 裴志斌 徐卓 柏鹏 彭卫东 林宝勤

引用本文:
Citation:

基于磁谐振器加载的宽频带超材料吸波体的设计

顾超, 屈绍波, 裴志斌, 徐卓, 柏鹏, 彭卫东, 林宝勤

Design of a wide-band metamaterial absorber based on loaded magnetic resonators

Gu Chao, Qu Shao-Bo, Pei Zhi-Bin, Xu Zhuo, Bai Peng, Peng Wei-Dong, Lin Bao-Qin
PDF
导出引用
  • 基于加载集总元件的磁谐振器设计了一种宽频带、极化不敏感和宽入射角的超材料吸波体.该吸波体的结构单元由加载集总元件的磁谐振器、介质基板和金属背板组成.仿真得到的加载集总元件和不加载集总元件情况下一维阵列结构吸波体的吸收率表明,相对于不加载集总元件的情况,加载集总元件的一维阵列结构吸波体能够实现宽频带吸波.仿真得到的集总电阻和集总电容取不同值时一维阵列结构吸波体的吸收率表明,集总电阻和集总电容都存在一个最佳值,此时吸波体的吸收率最高、吸收带宽最宽.仿真得到的基板有耗和无耗情况下一维阵列结构吸波体的吸收率表明,
    A wide-band, polarization-insensitive and wide-angle metamaterial absorber based on loaded magnetic resonator is proposed. A single unit cell of the absorber is comprised of a magnetic resonator loaded with lumped elements, a substrate and a back metal board. Simulated absorbances of the one-dimensional-array absorber under loading and unloading conditions indicate that compared with under the unloading condition, the one-dimensional absorber under the loading condition can realize a wide-band absorption. Simulated absorbances of the one-dimensional-array absorber with lossy and loss-free substrates indicate that the power loss in the absorber results from lumped resistances in magnetic resonators, and is insensitive to the loss of the substrate. Simulated absorbances of the one-dimensional-array absorber with different lumped resistances and capacitances indicate that there exist optimal values for lumped resistances and capacitances, where the absorbance is highest and the bandwidth is widest. Simulated absorbances of the two-dimensional-array absorber under different polarization angles and different incident angles indicate that the absorber is polarization-insensitive and angle-wide.
    • 基金项目: 国家自然科学基金(批准号:60871027, 60901029, 61071058)、国家重点基础研究发展计划(批准号:2009CB623306)和陕西省自然科学基金(批准号:SJ08F01)资助的课题.
    [1]

    Caloz C, Itoh T 2006 Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach (New Jersey: John Wiley Sons, Inc.) pp2,3

    [2]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [3]
    [4]
    [5]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [6]

    Smith D R, Schurig D, Rosenbluth M, Schultz S, Ramakrishna S A, Pendry J B 2003 Appl. Phys. Lett. 82 1506

    [7]
    [8]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [9]
    [10]
    [11]

    Enoch S, Tayeb G, Sabouroux P, Gurin N, Vincent P 2002 Phys. Rev. Lett. 89 213902

    [12]

    Liu L, He S 2004 Opt. Express 12 4835

    [13]
    [14]
    [15]

    Colladey S, Tarot A C, Pouliguen P, Mahdjoubi K 2005 Microw. Opt. Techn. Lett. 44 546

    [16]
    [17]

    Engheta N 2002 IEEE Antennas Wireless Propag. 1 10

    [18]

    Marques R, Martel J, Mesa F, Medina F 2002 Phys. Rev. Lett. 89 183901

    [19]
    [20]

    Al A, Bilotti F, Engheta N, Vegni L 2007 IEEE Trans. Antennas Propag. 55 882

    [21]
    [22]
    [23]

    Ali A, Khan M A, Hu Z 2007 Electron. Lett. 43 528

    [24]
    [25]

    Tseng C H,Chang C L 2008 IEEE Microwave. Wireless Compon. Lett. 18 25

    [26]
    [27]

    Bonache J, Gil I, Garca G J, Martn F 2005 Electron. Lett. 41 810

    [28]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 4773

    [29]
    [30]
    [31]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Techn. 47 2075

    [32]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [33]
    [34]

    Tao H, Landy N I, Bingham C M, Zhan X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181

    [35]
    [36]
    [37]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

    [38]
    [39]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103

    [40]

    Avitzour Y, Urzhumov Y A, Shvets G 2009 Phys. Rev. B 79 045131

    [41]
  • [1]

    Caloz C, Itoh T 2006 Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach (New Jersey: John Wiley Sons, Inc.) pp2,3

    [2]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [3]
    [4]
    [5]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [6]

    Smith D R, Schurig D, Rosenbluth M, Schultz S, Ramakrishna S A, Pendry J B 2003 Appl. Phys. Lett. 82 1506

    [7]
    [8]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [9]
    [10]
    [11]

    Enoch S, Tayeb G, Sabouroux P, Gurin N, Vincent P 2002 Phys. Rev. Lett. 89 213902

    [12]

    Liu L, He S 2004 Opt. Express 12 4835

    [13]
    [14]
    [15]

    Colladey S, Tarot A C, Pouliguen P, Mahdjoubi K 2005 Microw. Opt. Techn. Lett. 44 546

    [16]
    [17]

    Engheta N 2002 IEEE Antennas Wireless Propag. 1 10

    [18]

    Marques R, Martel J, Mesa F, Medina F 2002 Phys. Rev. Lett. 89 183901

    [19]
    [20]

    Al A, Bilotti F, Engheta N, Vegni L 2007 IEEE Trans. Antennas Propag. 55 882

    [21]
    [22]
    [23]

    Ali A, Khan M A, Hu Z 2007 Electron. Lett. 43 528

    [24]
    [25]

    Tseng C H,Chang C L 2008 IEEE Microwave. Wireless Compon. Lett. 18 25

    [26]
    [27]

    Bonache J, Gil I, Garca G J, Martn F 2005 Electron. Lett. 41 810

    [28]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 4773

    [29]
    [30]
    [31]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theory Techn. 47 2075

    [32]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [33]
    [34]

    Tao H, Landy N I, Bingham C M, Zhan X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181

    [35]
    [36]
    [37]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

    [38]
    [39]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103

    [40]

    Avitzour Y, Urzhumov Y A, Shvets G 2009 Phys. Rev. B 79 045131

    [41]
  • [1] 王超, 李绣峰, 张生俊, 王如志. 基于遗传算法的宽带渐变电阻膜超材料吸波器设计. 物理学报, 2024, 73(7): 074101. doi: 10.7498/aps.73.20231781
    [2] 王彦朝, 许河秀, 王朝辉, 王明照, 王少杰. 电磁超材料吸波体的研究进展. 物理学报, 2020, 69(13): 134101. doi: 10.7498/aps.69.20200355
    [3] 吴良威, 张正平. 基于多开口田字形宽频带低损耗左手材料. 物理学报, 2016, 65(16): 164101. doi: 10.7498/aps.65.164101
    [4] 何政蕊, 耿友林. 一种新型宽频带低损耗小单元左手材料的设计与实现. 物理学报, 2016, 65(9): 094101. doi: 10.7498/aps.65.094101
    [5] 郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅. 基于磁/电介质混合型基体的宽带超材料吸波体的设计与制备. 物理学报, 2015, 64(7): 077801. doi: 10.7498/aps.64.077801
    [6] 鲁磊, 屈绍波, 施宏宇, 张安学, 夏颂, 徐卓, 张介秋. 宽带透射吸收极化无关超材料吸波体. 物理学报, 2014, 63(2): 028103. doi: 10.7498/aps.63.028103
    [7] 王丛屹, 徐成, 伍瑞新. 用最小结构单元频率选择表面实现大入射角宽频带的透波材料. 物理学报, 2014, 63(13): 137803. doi: 10.7498/aps.63.137803
    [8] 司黎明, 侯吉旋, 刘埇, 吕昕. 基于集总元件和负微分元件的有源可调谐超材料传输线. 物理学报, 2014, 63(2): 027802. doi: 10.7498/aps.63.027802
    [9] 王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲. 基于多阶等离激元谐振的超薄多频带超材料吸波体. 物理学报, 2014, 63(17): 174101. doi: 10.7498/aps.63.174101
    [10] 王秀芝, 高劲松, 徐念喜. 利用等效电路模型快速分析加载集总元件的微型化频率选择表面. 物理学报, 2013, 62(20): 207301. doi: 10.7498/aps.62.207301
    [11] 鲁磊, 屈绍波, 马华, 余斐, 夏颂, 徐卓, 柏鹏. 基于电磁谐振的极化无关透射吸收超材料吸波体. 物理学报, 2013, 62(10): 104102. doi: 10.7498/aps.62.104102
    [12] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [13] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究. 物理学报, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [14] 刘青伦, 王自成, 刘濮鲲. 基于双排矩形梳状慢波结构的W波段宽频带行波管模拟研究. 物理学报, 2012, 61(12): 124101. doi: 10.7498/aps.61.124101
    [15] 顾超, 屈绍波, 裴志斌, 徐卓, 马华, 林宝勤, 柏鹏, 彭卫东. 一种极化不敏感和双面吸波的手性超材料吸波体. 物理学报, 2011, 60(10): 107801. doi: 10.7498/aps.60.107801
    [16] 陈春晖, 屈绍波, 徐卓, 王甲富, 马华, 周航. 基于单面金属结构的二维宽带左手材料. 物理学报, 2011, 60(2): 024101. doi: 10.7498/aps.60.024101
    [17] 顾超, 屈绍波, 裴志斌, 徐卓, 林宝勤, 周航, 柏鹏, 顾巍, 彭卫东, 马华. 基于电阻膜的宽频带超材料吸波体的设计. 物理学报, 2011, 60(8): 087802. doi: 10.7498/aps.60.087802
    [18] 王甲富, 屈绍波, 徐卓, 张介秋, 马华, 杨一鸣, 吴翔, 鲁磊. 基于金属结构单元间耦合的左手材料的设计及实验验证. 物理学报, 2010, 59(6): 4018-4022. doi: 10.7498/aps.59.4018
    [19] 王甲富, 屈绍波, 徐卓, 夏颂, 张介秋, 马华, 杨一鸣, 吴翔. 电谐振器和磁谐振器构成的左手材料的实验验证. 物理学报, 2010, 59(3): 1847-1850. doi: 10.7498/aps.59.1847
    [20] 孟繁义, 吴 群, 吴 健. 1.7—2.7GHz宽频带小单元异向介质设计及其介质参数提取. 物理学报, 2006, 55(5): 2194-2199. doi: 10.7498/aps.55.2194
计量
  • 文章访问数:  6104
  • PDF下载量:  1409
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-14
  • 修回日期:  2011-03-24
  • 刊出日期:  2011-04-05

/

返回文章
返回