搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于遗传算法的宽带渐变电阻膜超材料吸波器设计

王超 李绣峰 张生俊 王如志

引用本文:
Citation:

基于遗传算法的宽带渐变电阻膜超材料吸波器设计

王超, 李绣峰, 张生俊, 王如志

Design of broadband gradient resistive film metamaterial absorber based on genetic algorithm

Wang Chao, Li Xiu-Feng, Zhang Sheng-Jun, Wang Ru-Zhi
PDF
HTML
导出引用
  • 近年来, 基于超材料的电磁吸波器件由于其宽带、易制备等优势而备受各国研究者的广泛关注. 本文为实现宽带电磁低可探测, 提出一种渐变电阻膜-介质复合结构的超材料吸波器. 基于传输线理论和阻抗匹配原理, 对强吸波条件进行了分析. 在单元结构设计方面, 采用遗传算法在多变量域内全局搜索最优解, 快速地确定出能够兼顾低频与宽带吸波性能的超材料单元结构与电阻参数, 并对器件吸波性能与吸波机理进行了深入的探讨. 仿真结果表明, 在垂直入射下, 所设计的超材料吸波器对1.62—19.16 GHz (相对带宽168.8%) 之间的入射波吸收率均大于90%, 有效地向L和K波段拓展了吸收带宽. 虽然在部分频段测试和仿真结果之间存在一定偏差, 但两种类型的曲线随频率的变化趋势基本一致, 这充分证明了所设计的超材料吸波器在低频宽带吸波领域具有潜在应用价值.
    In recent years, electromagnetic (EM) wave absorbing devices based on metamaterials have attracted widespread attention, due to their advantages such as broadband, easy preparation, and flexibility to tailor EM waves. Nevertheless, a review of the existing research reveals that the inherent sub-wavelength characteristics of metamaterials and metasurfaces impose certain constraints on their applications in low-frequency ranges. In order to achieve low detectability that takes into account both low-frequency and broadband absorbing performance, this work, presents a metamaterial absorber based on 5-layer gradient resistance film and dielectric composite structure, as shown in Fig. (a). To begin with, we introduce the structural design of the initial element, and based on this, the transmission line theory and impedance matching principle are used to analyze the strong wave absorption conditions of the absorber element. In terms of the element structure optimization, the genetic algorithm is adopted to globally search for the optimal solution in the multi-variable domain, resulting in the rapid determination of metamaterial elements’ configurations and resistance parameters that meet the design goals. In the simulation, the wave absorption performance and mechanism of the designed absorbing element are also investigated in an in-depth manner. Simulation results show that the designed metamaterial absorber can achieve more than 90% EM wave absorption in a frequency range of 1.62–19.16 GHz (with a relative bandwidth of 168.8%) under normal incidence of linearly polarized plane waves, which effectively expands the absorption bandwidth to the L band and K band. In addition, the simulations for oblique incidence at different polarizations provide strong evidence for the device’s insensitivity to both polarization and angle. The radar cross section (RCS) curves obtained by the time domain (TD) simulation illustrate that the novel structure can achieve more than 10 dB RCS reduction in a frequency range of 1.7–20 GHz. In the device's performance verification process, a metamaterial absorber with 20 × 20 elements and dimensions of 1.566$ {\lambda }_{l} $×1.566$ {\lambda }_{l} $× 0.113$ {\lambda }_{l} $ is fabricated and tested by using the bow method reflectivity test system. The absorptivity curves under 5° oblique incidence of different polarizations, show that the proposed metamaterial absorber can realize more than 80% EM absorption in an entire frequency range from 2 to 18 GHz, the test results of different polarizations are basically consistent. The test results at oblique incidence (θ ≥ 30°) show that although the measured and simulated curves exhibit discrepancies in certain frequency bands due to human error or material dispersion characteristics, the overall experimental results are consistent with our expectations, which fully proves that the designed metamaterial absorber has potential application value in the field of low-frequency and broadband EM absorption.
      通信作者: 王如志, wrz@bjut.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFB3500403)资助的课题.
      Corresponding author: Wang Ru-Zhi, wrz@bjut.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFB3500403).
    [1]

    汤泽滢, 孙希刚, 程静 2014 航天电子对抗 30 12

    Tang Z Y, Sun X G, Cheng J 2014 Aerosp. Electron. Warfare 30 12

    [2]

    姬金祖, 黄沛霖, 马云鹏, 张生俊 2018 隐身原理 (北京: 北京航空航天大学出版社)

    Ji J Z, Huang P L, Ma Y P, Zhang S J 2018 Stealth Principle (Beijing: Bei Hang University Press

    [3]

    刘顺华, 刘军民, 董星龙, 段玉平 2020 电磁波屏蔽及吸波材料 (北京: 化学工业出版社)

    Liu S H, Liu J M, Dong X L, Duan Y P 2020 Electromagnetic Wave Shielding and Absorbing Materials (Beijing: Chemical Industry Press

    [4]

    Zhao H F, Zhao H N, Fang S G, Tang C, Deng L W, Qiu L L, Li C, Du J S, Huang S X 2022 J. Phys. D: Appl. Phys. 55 344003Google Scholar

    [5]

    张玉龙, 李萍, 石磊 2018 隐身材料 (北京: 化学工业出版社)

    Zhang Y L, Li P, Shi L 2018 Stealth Materials (Beijing: Chemical Industry Press

    [6]

    王朝辉, 李勇祥, 朱帅 2020 物理学报 69 234103Google Scholar

    Wang C H, Li Y X, Zhu S 2020 Acta Phys. Sin. 69 234103Google Scholar

    [7]

    Xiao S Y, Wang T, Liu T T, Zhou C B, Jiang X Y, Zhang J F 2020 J. Phys. D: Appl. Phys. 53 503002Google Scholar

    [8]

    Ma S H, Li Y G, Zhou J, Zhu Z X 2023 Chin. Phys. Lett. 40 084201Google Scholar

    [9]

    Zhang R, Ding F, Yuan X J, Chen M J 2022 Chin. Phys. Lett. 39 094101Google Scholar

    [10]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [11]

    Lim D, Lim S 2019 IEEE Antennas Wirel. Propag. Lett. 18 1887Google Scholar

    [12]

    Zhuang Y Q, Wang G M, Liang J G, Zhang Q F 2017 IEEE Antennas Wirel. Propag. Lett. 16 2606Google Scholar

    [13]

    王彦朝, 许河秀, 王朝辉, 王明照, 王少杰 2020 物理学报 69 134101Google Scholar

    Wang Y Z, Xu H X, Wang C H, Wang M Z, Wang S J 2020 Acta Phys. Sin. 69 134101Google Scholar

    [14]

    Yang X M, Liu C R, Hou B, Zhou X Y 2021 Chin. Phys. B 30 104102Google Scholar

    [15]

    Su J X, Li W Y, Qu M J, Yu H, Li Z R, Qi K N, Yin H C 2022 IEEE Trans. Antennas Propag. 70 9415Google Scholar

    [16]

    袁方, 毛瑞棋, 高冕, 郑月军, 陈强, 付云起 2022 物理学报 71 084102Google Scholar

    Yuan F, Mao R Q, Gao M, Zheng Y J, Chen Q, Fu Y Q 2022 Acta Phys. Sin. 71 084102Google Scholar

    [17]

    Zhao Y T, Chen J Z, Wei Y Q, Zhang C W, Li L, Wu B, Su T 2022 J. Appl. Phys. 131 165108Google Scholar

    [18]

    金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆 2023 物理学报 72 084202Google Scholar

    Jin J S, Ma C J, Zhang Y, Zhang Y B, Bao S Q, Li M, Li D M, Liu M, Liu Q Z, Zhang Y X 2023 Acta Phys. Sin. 72 084202Google Scholar

    [19]

    Chen P, Kong X L, Han J F, Wang W H, Han K, Ma H Y, Zhao L, Shen X P 2021 Chin. Phys. Lett. 38 027801Google Scholar

    [20]

    沈晓鹏, 崔铁军, 叶建祥 2012 物理学报 61 058101Google Scholar

    Shen X P, Cui T J, Ye J X 2012 Acta Phys. Sin. 61 058101Google Scholar

    [21]

    Wang C, Wang R Z, Zhang S J, Wang H, Wang W S 2023 J. Appl. Phys. 134 044902Google Scholar

    [22]

    Ran Y Z, Shi L H, Wang J B, Ma Y, Li J, Liu Y C 2021 J. Appl. Phys. 130 023106Google Scholar

    [23]

    Chen Q, Sang D, Guo M, Fu Y Q 2018 IEEE Trans. Antennas Propag. 66 4105Google Scholar

    [24]

    Li S H, Li J S 2019 Chin. Phys. B 28 094210Google Scholar

    [25]

    张娜, 赵健民, 陈克, 赵俊明, 姜田, 冯一军 2021 物理学报 70 178102Google Scholar

    Zhang N, Zhao J M, Chen K, Zhao J M, Jiang T, Feng Y J 2021 Acta Phys. Sin. 70 178102Google Scholar

    [26]

    Wang C, Wang R Z, An Z L, Liu L Y, Zhou Y S, Tang Z X, Wang W D, Zhang S J 2022 J. Phys. D: Appl. Phys. 55 485001Google Scholar

    [27]

    Zhang C, Yang J, Yuan W, Zhao J, Dai J Y, Guo T C, Liang J, Xu G Y, Cheng Q, Cui T J 2017 J. Phys. D: Appl. Phys. 50 444002Google Scholar

    [28]

    葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智 2022 物理学报 71 108701Google Scholar

    Ge H Y, Li L, Jiang Y Y, Li G M, Wang F, Lü M, Zhang Y, Li Z 2022 Acta Phys. Sin. 71 108701Google Scholar

    [29]

    Xue W, Zhang J Y, Ma J W, Hou Z L, Zhao Q L, Xie Q, Bi S 2021 J. Phys. D: Appl. Phys. 54 105103Google Scholar

    [30]

    Li C J, Wang X, Liu X H, Zhang J Y, Bi S, Hou Z L 2023 Carbon 214 118383Google Scholar

    [31]

    Wu Y J, Lin H, Xiong J, Hou J J, Zhou R, Deng F, Tang R X 2021 J. Appl. Phys. 129 134902Google Scholar

    [32]

    Zhu W R, Zhao X P, Gong B Y, Liu L H, Su B 2011 Appl. Phys. A 102 147Google Scholar

    [33]

    Chen J F, Hu Z Y, Wang G D, Huang X T, Wang S M, Hu X W, Liu M H 2015 IEEE Trans. Antennas Propag. 63 4367Google Scholar

    [34]

    Wang T, He H H, Ding M D, Mao J B, Sun R, Sheng L 2022 Chin. Phys. B 31 037804Google Scholar

    [35]

    Zhou Q, Yin X W, Ye F, Mo R, Tang Z M, Fan X M, Cheng L F, Zhang L T 2019 Appl. Phys. A 125 131Google Scholar

  • 图 1  基于电阻膜的超材料吸波单元结构及其等效电路模型

    Fig. 1.  Element configuration and its equivalent circuit model of the proposed resistive film-based metamaterial absorber.

    图 2  基于遗传算法的单元结构优化设计流程图

    Fig. 2.  Flowchart of the element’s configuration optimization design based on the genetic algorithm.

    图 3  相同尺寸及电阻参数的单元模型在 “unit cell” 和 “open” 边界下的反射响应

    Fig. 3.  Reflectance response of the metamaterial absorber with same dimension and resistance parameters under “unit cell” and “open” boundaries.

    图 4  垂直入射时超材料吸波单元的反射系数、吸收率(a)和归一化输入阻抗和阻抗匹配系数(b)随频率变化曲线

    Fig. 4.  Reflection coefficient, absorption (a), normalized input impedance and impedance matching coefficient (b) versus frequency curves of the designed metamaterial absorber element under normal incidence of linearly polarized waves.

    图 5  不同极化的电磁波斜入射下, 超材料吸波单元的反射系数和吸收率随频率变化曲线 (a), (b) 反射系数; (c), (d) 吸收率; (e) 垂直入射时, 吸收率对极化角的依赖关系; (f) 吸收率对入射角的依赖关系

    Fig. 5.  Reflection coefficient and absorption curves of the proposed metamaterial absorber under the oblique incidence of electromagnetic waves with different polarizations: (a), (b) Reflection coefficients; (c), (d) absorptivity; (e) dependence of absorptivity on polarization angle at normal incidence; (f) dependence of absorptivity on angle of incidence.

    图 6  电阻膜(a), (b)及PET膜(c), (d)上的能量损耗分布图 (a), (c) 4 GHz, (b), (d) 7.6 GHz

    Fig. 6.  Power loss distribution on the resistive film (a), (b) and the PET film (c), (d): (a), (c) 4 GHz, (b), (d) 7.6 GHz.

    图 7  (a) 超材料吸波阵列三维模型示意图; (b) 有限阵列与无限阵列的反射系数仿真结果

    Fig. 7.  (a) Schematic diagram of three-dimensional model of the proposed metamaterial absorbing array; (b) comparison of the simulated results of reflection coefficients for finite and infinite arrays.

    图 8  超材料吸波阵列表面输入阻抗随频率的变化曲线

    Fig. 8.  Variation curves of surface input impedance of metamaterial absorber with frequency.

    图 9  (a) TM极化波垂直入射时, 超材料吸波阵列的RCS仿真结果. (b), (c) 不同极化的电磁波斜入射时, 吸波器的RCS减缩性能仿真结果 (b) TM极化; (c) TE极化

    Fig. 9.  (a) Simulated RCS curves of the metamaterial absorber under the normal incidence of TM-polarized wave. (b), (c) RCS reduction performance of the proposed metamaterial absorber under oblique incidence of different polarizations: (b) TM polarization; (c) TE polarization.

    图 10  (a) 超材料吸波器样件及测试环境; (b) 所设计的超材料吸波器在不同极化的电磁波5° 斜入射时, 吸收率测试和仿真结果

    Fig. 10.  (a) Photographs of the fabricated prototype and its measurement setup; (b) the measured and simulated results of absorption rate for the proposed metamaterial absorber under 5° oblique incidence of different polarizations.

    图 11  不同入射角度的TM和TE极化电磁波斜入射时超材料吸波器的吸收率测试和仿真结果对比 (a) θ = 30°; (b) θ = 60°

    Fig. 11.  Comparison of measured and simulated results for the designed metamaterial absorber under oblique incidence of TM- and TE-polarized electromagnetic waves: (a) θ = 30°; (b) θ = 60°.

    表 1  具有最优吸波性能的超材料单元参数

    Table 1.  Metamaterial element parameters with optimal wave absorption performance.

    可变参数固定尺寸参数/mm
    $ {h}_{1} $—$ {h}_{5} $/mm4.04.73.03.71.5p14.5
    $ {w}_{1}—{w}_{5} $/mm11.012.013.513.014.5t0.8
    $ {R}_{1}—{R}_{5} $/(Ω·square–1)500450345335250
    下载: 导出CSV

    表 2  本文工作与其他宽带超材料吸波器的性能对比结果

    Table 2.  Comparison of the wave absorption performance between this study and other broadband metamaterial absorbers.

    文献/年 厚度/${\lambda }_{l} $ 90% 吸波带宽GHz (FBW) 角度稳定性
    仿真 测试
    [34]/2022 0.118 10.47—45.44 (125.1%) < 55°
    [31]/2021 0.098 3.21—14.35 (126.88%) 3.20—14.36 (127.1%) < 45°
    [35]/2019 0.120 8—18 (71.4%) < 30°
    [33]/2015 0.230 3.65—13.93 (117%) (80%)吸波 3.85—13.00 (108.6%) < 45°
    本文工作 0.113 1.62—19.16 (168.8%) TM: 2—9.5 (131%); 11.6—18 (43%)
    TE: 2—8.8 (126%); 12.4—18 (37%)
    < 45°
    下载: 导出CSV
  • [1]

    汤泽滢, 孙希刚, 程静 2014 航天电子对抗 30 12

    Tang Z Y, Sun X G, Cheng J 2014 Aerosp. Electron. Warfare 30 12

    [2]

    姬金祖, 黄沛霖, 马云鹏, 张生俊 2018 隐身原理 (北京: 北京航空航天大学出版社)

    Ji J Z, Huang P L, Ma Y P, Zhang S J 2018 Stealth Principle (Beijing: Bei Hang University Press

    [3]

    刘顺华, 刘军民, 董星龙, 段玉平 2020 电磁波屏蔽及吸波材料 (北京: 化学工业出版社)

    Liu S H, Liu J M, Dong X L, Duan Y P 2020 Electromagnetic Wave Shielding and Absorbing Materials (Beijing: Chemical Industry Press

    [4]

    Zhao H F, Zhao H N, Fang S G, Tang C, Deng L W, Qiu L L, Li C, Du J S, Huang S X 2022 J. Phys. D: Appl. Phys. 55 344003Google Scholar

    [5]

    张玉龙, 李萍, 石磊 2018 隐身材料 (北京: 化学工业出版社)

    Zhang Y L, Li P, Shi L 2018 Stealth Materials (Beijing: Chemical Industry Press

    [6]

    王朝辉, 李勇祥, 朱帅 2020 物理学报 69 234103Google Scholar

    Wang C H, Li Y X, Zhu S 2020 Acta Phys. Sin. 69 234103Google Scholar

    [7]

    Xiao S Y, Wang T, Liu T T, Zhou C B, Jiang X Y, Zhang J F 2020 J. Phys. D: Appl. Phys. 53 503002Google Scholar

    [8]

    Ma S H, Li Y G, Zhou J, Zhu Z X 2023 Chin. Phys. Lett. 40 084201Google Scholar

    [9]

    Zhang R, Ding F, Yuan X J, Chen M J 2022 Chin. Phys. Lett. 39 094101Google Scholar

    [10]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [11]

    Lim D, Lim S 2019 IEEE Antennas Wirel. Propag. Lett. 18 1887Google Scholar

    [12]

    Zhuang Y Q, Wang G M, Liang J G, Zhang Q F 2017 IEEE Antennas Wirel. Propag. Lett. 16 2606Google Scholar

    [13]

    王彦朝, 许河秀, 王朝辉, 王明照, 王少杰 2020 物理学报 69 134101Google Scholar

    Wang Y Z, Xu H X, Wang C H, Wang M Z, Wang S J 2020 Acta Phys. Sin. 69 134101Google Scholar

    [14]

    Yang X M, Liu C R, Hou B, Zhou X Y 2021 Chin. Phys. B 30 104102Google Scholar

    [15]

    Su J X, Li W Y, Qu M J, Yu H, Li Z R, Qi K N, Yin H C 2022 IEEE Trans. Antennas Propag. 70 9415Google Scholar

    [16]

    袁方, 毛瑞棋, 高冕, 郑月军, 陈强, 付云起 2022 物理学报 71 084102Google Scholar

    Yuan F, Mao R Q, Gao M, Zheng Y J, Chen Q, Fu Y Q 2022 Acta Phys. Sin. 71 084102Google Scholar

    [17]

    Zhao Y T, Chen J Z, Wei Y Q, Zhang C W, Li L, Wu B, Su T 2022 J. Appl. Phys. 131 165108Google Scholar

    [18]

    金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆 2023 物理学报 72 084202Google Scholar

    Jin J S, Ma C J, Zhang Y, Zhang Y B, Bao S Q, Li M, Li D M, Liu M, Liu Q Z, Zhang Y X 2023 Acta Phys. Sin. 72 084202Google Scholar

    [19]

    Chen P, Kong X L, Han J F, Wang W H, Han K, Ma H Y, Zhao L, Shen X P 2021 Chin. Phys. Lett. 38 027801Google Scholar

    [20]

    沈晓鹏, 崔铁军, 叶建祥 2012 物理学报 61 058101Google Scholar

    Shen X P, Cui T J, Ye J X 2012 Acta Phys. Sin. 61 058101Google Scholar

    [21]

    Wang C, Wang R Z, Zhang S J, Wang H, Wang W S 2023 J. Appl. Phys. 134 044902Google Scholar

    [22]

    Ran Y Z, Shi L H, Wang J B, Ma Y, Li J, Liu Y C 2021 J. Appl. Phys. 130 023106Google Scholar

    [23]

    Chen Q, Sang D, Guo M, Fu Y Q 2018 IEEE Trans. Antennas Propag. 66 4105Google Scholar

    [24]

    Li S H, Li J S 2019 Chin. Phys. B 28 094210Google Scholar

    [25]

    张娜, 赵健民, 陈克, 赵俊明, 姜田, 冯一军 2021 物理学报 70 178102Google Scholar

    Zhang N, Zhao J M, Chen K, Zhao J M, Jiang T, Feng Y J 2021 Acta Phys. Sin. 70 178102Google Scholar

    [26]

    Wang C, Wang R Z, An Z L, Liu L Y, Zhou Y S, Tang Z X, Wang W D, Zhang S J 2022 J. Phys. D: Appl. Phys. 55 485001Google Scholar

    [27]

    Zhang C, Yang J, Yuan W, Zhao J, Dai J Y, Guo T C, Liang J, Xu G Y, Cheng Q, Cui T J 2017 J. Phys. D: Appl. Phys. 50 444002Google Scholar

    [28]

    葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智 2022 物理学报 71 108701Google Scholar

    Ge H Y, Li L, Jiang Y Y, Li G M, Wang F, Lü M, Zhang Y, Li Z 2022 Acta Phys. Sin. 71 108701Google Scholar

    [29]

    Xue W, Zhang J Y, Ma J W, Hou Z L, Zhao Q L, Xie Q, Bi S 2021 J. Phys. D: Appl. Phys. 54 105103Google Scholar

    [30]

    Li C J, Wang X, Liu X H, Zhang J Y, Bi S, Hou Z L 2023 Carbon 214 118383Google Scholar

    [31]

    Wu Y J, Lin H, Xiong J, Hou J J, Zhou R, Deng F, Tang R X 2021 J. Appl. Phys. 129 134902Google Scholar

    [32]

    Zhu W R, Zhao X P, Gong B Y, Liu L H, Su B 2011 Appl. Phys. A 102 147Google Scholar

    [33]

    Chen J F, Hu Z Y, Wang G D, Huang X T, Wang S M, Hu X W, Liu M H 2015 IEEE Trans. Antennas Propag. 63 4367Google Scholar

    [34]

    Wang T, He H H, Ding M D, Mao J B, Sun R, Sheng L 2022 Chin. Phys. B 31 037804Google Scholar

    [35]

    Zhou Q, Yin X W, Ye F, Mo R, Tang Z M, Fan X M, Cheng L F, Zhang L T 2019 Appl. Phys. A 125 131Google Scholar

  • [1] 栾迦淇, 张亚杰, 陈羽, 郜定山, 李培丽, 李嘉琦, 李佳琪. 基于遗传算法的太赫兹多功能可重构狄拉克半金属编码超表面. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240225
    [2] 郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅. 基于磁/电介质混合型基体的宽带超材料吸波体的设计与制备. 物理学报, 2015, 64(7): 077801. doi: 10.7498/aps.64.077801
    [3] 鲁磊, 屈绍波, 施宏宇, 张安学, 夏颂, 徐卓, 张介秋. 宽带透射吸收极化无关超材料吸波体. 物理学报, 2014, 63(2): 028103. doi: 10.7498/aps.63.028103
    [4] 王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲. 基于多阶等离激元谐振的超薄多频带超材料吸波体. 物理学报, 2014, 63(17): 174101. doi: 10.7498/aps.63.174101
    [5] 常红伟, 马华, 张介秋, 张志远, 徐卓, 王甲富, 屈绍波. 基于加权实数编码遗传算法的超材料优化设计. 物理学报, 2014, 63(8): 087804. doi: 10.7498/aps.63.087804
    [6] 鲁磊, 屈绍波, 苏兮, 尚耀波, 张介秋, 柏鹏. 极薄宽角度平面超材料吸波体仿真与实验验证. 物理学报, 2013, 62(20): 208103. doi: 10.7498/aps.62.208103
    [7] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强. 基于超材料吸波体的低雷达散射截面微带天线设计. 物理学报, 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [8] 鲁磊, 屈绍波, 马华, 余斐, 夏颂, 徐卓, 柏鹏. 基于电磁谐振的极化无关透射吸收超材料吸波体. 物理学报, 2013, 62(10): 104102. doi: 10.7498/aps.62.104102
    [9] 鲁磊, 屈绍波, 夏颂, 徐卓, 马华, 王甲富, 余斐. 极化无关双向吸收超材料吸波体的仿真与实验验证. 物理学报, 2013, 62(1): 013701. doi: 10.7498/aps.62.013701
    [10] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [11] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究. 物理学报, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [12] 刘立国, 吴微微, 吴礼林, 莫锦军, 付云起, 袁乃昌. 等效环路有限差分算法及其在人工复合材料设计中的应用. 物理学报, 2013, 62(13): 130203. doi: 10.7498/aps.62.130203
    [13] 程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜. 基于电阻型频率选择表面的低频宽带超材料吸波体的设计. 物理学报, 2012, 61(13): 134102. doi: 10.7498/aps.61.134102
    [14] 汪剑波, 卢俊. 双屏频率选择表面结构的遗传算法优化. 物理学报, 2011, 60(5): 057304. doi: 10.7498/aps.60.057304
    [15] 顾超, 屈绍波, 裴志斌, 徐卓, 柏鹏, 彭卫东, 林宝勤. 基于磁谐振器加载的宽频带超材料吸波体的设计. 物理学报, 2011, 60(8): 087801. doi: 10.7498/aps.60.087801
    [16] 顾超, 屈绍波, 裴志斌, 徐卓, 马华, 林宝勤, 柏鹏, 彭卫东. 一种极化不敏感和双面吸波的手性超材料吸波体. 物理学报, 2011, 60(10): 107801. doi: 10.7498/aps.60.107801
    [17] 顾超, 屈绍波, 裴志斌, 徐卓, 林宝勤, 周航, 柏鹏, 顾巍, 彭卫东, 马华. 基于电阻膜的宽频带超材料吸波体的设计. 物理学报, 2011, 60(8): 087802. doi: 10.7498/aps.60.087802
    [18] 俞阿龙. 基于遗传小波神经网络的机器人腕力传感器动态建模研究. 物理学报, 2008, 57(6): 3385-3390. doi: 10.7498/aps.57.3385
    [19] 程兴华, 唐龙谷, 陈志涛, 龚 敏, 于彤军, 张国义, 石瑞英. GaMnN材料红外光谱中洛伦兹振子模型的遗传算法研究. 物理学报, 2008, 57(9): 5875-5880. doi: 10.7498/aps.57.5875
    [20] 吴忠强, 奥顿, 刘坤. 基于遗传算法的混沌系统模糊控制. 物理学报, 2004, 53(1): 21-24. doi: 10.7498/aps.53.21
计量
  • 文章访问数:  1039
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-29
  • 修回日期:  2023-12-21
  • 上网日期:  2024-01-20
  • 刊出日期:  2024-04-05

/

返回文章
返回