-
多功能可重构超表面能够满足对器件小型化、集成化、适用于多场景应用的需求, 是近几年的研究热点之一. 本文采用狄拉克半金属作为可控材料, 提出了一种太赫兹多功能可重构编码超表面. 首先设计了一种顶部由狄拉克半金属材料构成的“回”字形结构的三层太赫兹编码超表面单元, 利用外加偏置电压动态调节狄拉克半金属介电常数, 使超表面单元在1.95 THz处实现2 bit编码. 然后基于设计的编码超表面单元结构, 利用遗传算法对编码超表面的阵列排布进行逆向设计, 从而实现波束赋形、涡旋波束产生及雷达散射截面缩减等功能. 研究结果表明, 针对波束赋形, 在1.95 THz处可以实现俯仰角在40°范围内、方位角在360°范围内任意角度的单波束与多波束反射, 并且多波束中的各个波束的俯仰角和方位角都可以单独调控, 提高了对太赫兹波束调控的灵活性; 针对涡旋波束, 可以产生拓扑电荷数为l = ±1, l = ±2的单涡旋波束, 并且可以实现俯仰角在30°范围内、方位角在360°范围内任意角度的单涡旋波束与多涡旋波束调控; 此外, 在1.72—2.51 THz范围内可以实现大于10 dB的雷达散射截面缩减. 因此, 提出的狄拉克半金属编码超表面可以实现多种功能, 且性能优良, 在通信网络、天线和雷达系统等领域具有一定的应用前景.Digitally encoded hypersurfaces show great potential in the field of electromagne-tic wave modulation. Currently, digitally encoded hypersurfaces in the terahertz band are mainly classified into two types: structure-encoded and controllable material-encoded. Once a structure-encoded hypersurface is fabricated, its function is fixed, which makes it difficult to adapt to changing application requirements. In contrast, the controllable material-encoded hypersurfaces can achieve dynamic regulation and multifunctional switching of terahertz beams by changing the external excitation, which shows good reconfigurability. To address this challenge, a Dirac semimetal-based encoded hypersurface is proposed in this paper. The Fermi energy level of the Dirac semimetal is varied by changing the bias voltage, which in turn dynamically adjusts its relative permittivity to obtain the coded unit. Besides, the traditional gradient-phase method encodes arrays by periodically arranging the cell structure, but there are limitations in the flexibility and accuracy of beam modulation. In order to break through these limitations, this paper employs a genetic algorithm for the inverse design of hypersurface coding arrays, which effectively improves the initiative and flexibility of beam modulation. In this paper, a three-layer terahertz-encoded hypersurface unit with a “back” structure composed of Dirac semimetallic materials is firstly designed, and the Dirac semimetallic dielectric constant is dynamically adjusted by using an applied bias voltage, so that the hypersurface unit is at 1.95 THz when the Fermi energy levels are 0.01 eV, 0.05 eV, 0.09 eV, and 0.55 eV can achieve 2bit coding. The results show that, for beam configuration, single-beam and multi-beam (two-beam to five-beam) modulation can be achieved at 1.95 THz within 40° pitch angle and 360° azimuth angle; for vortex beam generation, single-vortex beams with ±1 and ±2 topological charges can be generated, with mode purity exceeding 60%, and single-vortex, double-vortex and triple-vortex beams in pitch angle and 360° azimuth angle can be realised with the vortex-phase convolution. In terms of RCS reduction, in the frequency range of 1.72–2.51 THz, the hypersurface is able to achieve more than 10 dB of RCS reduction, especially in the frequency range of 1.82 THz, the maximum reduction value is up to 27.5 dB. achieves the diversity of functions, but also has a high degree of reconfigurability to meet the needs of complex application scenarios.
[1] Davies A G, Linfield E H, Johnston M B 2002 Phys. Med. Biol. 47 3679Google Scholar
[2] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar
[3] Zhang X Q, Tian Z, Yue W S, Gu J Q, Zhang S, Han J G, Zhang W L 2013 Adv. Mater. 25 4567Google Scholar
[4] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218Google Scholar
[5] Zhang L, Wu R Y, Bai G D, Wu H T, Mu H T, Ma Q, Chen X Q, Cui T J 2018 Adv. Funct. Mater. 28 1802205Google Scholar
[6] 黄若彤, 李九生 2023 物理学报 72 054203Google Scholar
Huang R T, Li J S 2023 Acta Phys. Sin. 72 054203Google Scholar
[7] Nie R X, He C H, Zhang R X, Song Z Y 2023 Opt. Laser Technol. 159 109010Google Scholar
[8] Zhao Y Z, Huang C, Song Z L, Yu C Y, Liang S, Luo X G, Qing A Y 2019 IEEE Access 7 79671Google Scholar
[9] 李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨 2020 物理学报 69 228101Google Scholar
Li J H, Zhang Y T, Li J N, Li J, Li J T, Zheng C L, Yang Y, Huang J, Ma Z Z, Ma C Q, Hao X R, Yao J Q 2020 Acta Phys. Sin. 69 228101Google Scholar
[10] Xiao B G, Zhang Y, Tong S J, Yu J B, Xiao L H 2020 Opt. Express 28 7125Google Scholar
[11] Jiang C Y, Li Z K, Lv X Y, Tian M, Liu M, Zhang H Y, Zhang Y P 2023 Opt. Commun. 540 129506Google Scholar
[12] Yang R S, Lou J, Zhang F L, Zhu W, Xu J, Cai T, Fu Q H, Li H, Fan Y C 2021 Adv. Photonics Res. 2 2100103Google Scholar
[13] Yang R S, Zhang F L, Li Z C, Fu Q H, Fan Y C 2023 Opt. Laser Technol. 163 109380Google Scholar
[14] Yang R S, Fan Y C, Zhu W, Hu C J, Chen S N, Wei H, Chen W J, Chan C T, Zhao Q, Zhou J, Zhang F L, Qiu C W 2023 Laser Photonics Rev. 17 2200975Google Scholar
[15] Wu R Y, Shi C B, Liu S, Wu W, Cui T J 2018 Adv. Opt. Mater. 6 1701236Google Scholar
[16] 张娜, 赵健民, 陈克, 赵俊明, 姜田, 冯一军 2021 物理学报 70 178102Google Scholar
Zhang N, Zhao J M, Chen K, Zhao J M, Jiang T, Feng Y J 2021 Acta Phys. Sin. 70 178102Google Scholar
[17] 贾宇翔, 王甲富, 陈维, 随赛, 朱瑞超, 邱天硕, 李勇峰, 韩亚娟, 屈绍波 2021 雷达学报 10 220Google Scholar
Jia Y X, Wang J F, Chen W, Sui S, Zhu R C, Qiu T S, Li Y F, Han Y J, Qu S B 2021 J. Radars 10 220Google Scholar
[18] 韩丁, 马子寅, 王俊林, 王鑫, 刘苏雅拉图 2022 中国激光 49 168
Han D, Ma Z Y, Wang J L, Wang X, Liu S Y L T 2022 Chin. J. Lasers 49 168
[19] Sui S, Ma H, Wang J F, Feng M D, Pang Y Q, Zhang J Q, Xu Z, Qu S B 2019 J. Phys. D: Appl. Phys. 52 035103Google Scholar
[20] Xiao T, Liu C G, Cheng R S, Cao L F, Tang G P CNSRP Qingdao, China September 24–27, 2023 p4 (in Chinese)[肖彤, 刘成国, 程润生, 曹立锋, 唐光普 第十八届全国电波传播年会 中国青岛 2023年 9月24—27日 第4页]
[21] Kotov O V, Lozovik Y E 2016 Phys. Rev. B 93 235417Google Scholar
[22] Liu G D, Zhai X, Meng H Y, Lin Q, Huang Y, Zhao C J, Wang L L 2018 Opt. Express 26 11471Google Scholar
[23] Zhang X G, Tang W X, Jiang W X, Bai G D, Tang J, Bai L, Qiu C W, Cui T J 2018 Adv. Sci. 5 1801028Google Scholar
-
图 2 超表面单元结构在费米能级为0.09 eV时, 不同周期 D (a), 大正方形边长 P (b), 矩形条宽度 w (c), 顶层贴片厚度 m (d); 小正方形边长 l (e); 介质层厚度 h (f) 的反射幅度及反射相位曲线
Fig. 2. Reflection amplitude and reflection phase curves of the hypersurface unit structure at a Fermi energy level of 0.09 eV with different (a) period D, (b) large square side length P, (c) rectangular strip width w, (d) top patch thickness m, (e) small square side length l, and (f) dielectric layer thickness h.
图 7 (a)—(d) $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $分别为(10°, 50°), (20°, 120°), (30°, 225°)及(40°, 340°)时的单波束阵列编码图样; (e)—(h) 对应的三维远场散射图
Fig. 7. (a)–(d) Array coding sequence results of $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $ for (10°, 50°), (20°, 120°), (30°, 225°) and (40°, 340°) respectively; (e)–(h) the corresponding far-field scattering results.
图 9 (a), (e) $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $分别为(20°, 0°), (20°, 90°)双波束的阵列编码图与远场散射结果; (b), (f) $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $分别为(10°, 45°), (20°, 180°), (25°, 320°)三波束的阵列编码图与远场散射结果; (c), (g) $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $分别为(25°, 0°), (30°, 110°), (30°, 220°), (35°, 315°)四波束的阵列编码图与远场散射结果; (d), (h) $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $分别为(25°, 0°), (25°, 75°), (25°, 150°), (25°, 225°), (25°, 300°)五波束的阵列编码图与远场散射结果
Fig. 9. (a), (e) Array coding sequence diagrams and far-field scattering results of $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $ for (20°, 0°) and (20°, 90°) double beams, respectively; (b), (f) array coding sequence diagrams and far-field scattering results of $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $ for (10°, 45°), (20°, 180°) and (25°, 320°) triple beams, respectively; (c), (g) array coding sequence and far-field scattering results of $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $ for (25°, 0°), (30°, 110°), (30°, 220°) and (35°, 315°) four beams, respectively; (d), (h) array coding sequence and far-field scattering results of $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $ for (25°, 0°), (25°, 75°), (25°, 150°), (25°, 225°) and (25°, 300°) five beams, respectively.
图 12 (a), (b) $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $ 分别为(20°, 120°), (30°, 225°)时的单涡旋波束阵列编码图; (c), (d)对应的三维远场散射图; (e), (f)对应的模式纯度图
Fig. 12. (a), (b) Coding diagram of a single vortex beam array at $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $ of (20°, 120°) and (30°, 225°) , respectively; (c), (d) the corresponding three-dimensional far-field scattering diagram; (e), (f) the corresponding model purity diagram.
图 13 (a), (c) $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $分别为(20°, 0°), (20°, 90°)双涡旋波束的阵列编码图及远场散射俯视图; (b), (d) $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $分别为(10°, 45°), (20°, 180°), (25°, 320°)三涡旋波束的阵列编码图及远场散射俯视图
Fig. 13. (a), (c) The array coding diagram and the top view of the far-field scattering of $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $ for the (20°, 0°) and (20°, 90°) double-vortex beams, respectively; (b), (d) the array coding diagram and the top view of the far-field scattering of $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $for the (10°, 45°), (20°, 180°) and (25°, 320°) three-vortex beams, respectively.
表 1 傅里叶卷积加运算具体规则
Table 1. Specific rules for the Fourier convolutional addition operation.
0
(0°/360°)1
(90°)2
(180°)3
(270°)0
(0°/360°)0 1 2 3 1
(90°)1 2 3 0 2
(180°)2 3 0 1 3
(270°)3 0 1 2 -
[1] Davies A G, Linfield E H, Johnston M B 2002 Phys. Med. Biol. 47 3679Google Scholar
[2] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar
[3] Zhang X Q, Tian Z, Yue W S, Gu J Q, Zhang S, Han J G, Zhang W L 2013 Adv. Mater. 25 4567Google Scholar
[4] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218Google Scholar
[5] Zhang L, Wu R Y, Bai G D, Wu H T, Mu H T, Ma Q, Chen X Q, Cui T J 2018 Adv. Funct. Mater. 28 1802205Google Scholar
[6] 黄若彤, 李九生 2023 物理学报 72 054203Google Scholar
Huang R T, Li J S 2023 Acta Phys. Sin. 72 054203Google Scholar
[7] Nie R X, He C H, Zhang R X, Song Z Y 2023 Opt. Laser Technol. 159 109010Google Scholar
[8] Zhao Y Z, Huang C, Song Z L, Yu C Y, Liang S, Luo X G, Qing A Y 2019 IEEE Access 7 79671Google Scholar
[9] 李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨 2020 物理学报 69 228101Google Scholar
Li J H, Zhang Y T, Li J N, Li J, Li J T, Zheng C L, Yang Y, Huang J, Ma Z Z, Ma C Q, Hao X R, Yao J Q 2020 Acta Phys. Sin. 69 228101Google Scholar
[10] Xiao B G, Zhang Y, Tong S J, Yu J B, Xiao L H 2020 Opt. Express 28 7125Google Scholar
[11] Jiang C Y, Li Z K, Lv X Y, Tian M, Liu M, Zhang H Y, Zhang Y P 2023 Opt. Commun. 540 129506Google Scholar
[12] Yang R S, Lou J, Zhang F L, Zhu W, Xu J, Cai T, Fu Q H, Li H, Fan Y C 2021 Adv. Photonics Res. 2 2100103Google Scholar
[13] Yang R S, Zhang F L, Li Z C, Fu Q H, Fan Y C 2023 Opt. Laser Technol. 163 109380Google Scholar
[14] Yang R S, Fan Y C, Zhu W, Hu C J, Chen S N, Wei H, Chen W J, Chan C T, Zhao Q, Zhou J, Zhang F L, Qiu C W 2023 Laser Photonics Rev. 17 2200975Google Scholar
[15] Wu R Y, Shi C B, Liu S, Wu W, Cui T J 2018 Adv. Opt. Mater. 6 1701236Google Scholar
[16] 张娜, 赵健民, 陈克, 赵俊明, 姜田, 冯一军 2021 物理学报 70 178102Google Scholar
Zhang N, Zhao J M, Chen K, Zhao J M, Jiang T, Feng Y J 2021 Acta Phys. Sin. 70 178102Google Scholar
[17] 贾宇翔, 王甲富, 陈维, 随赛, 朱瑞超, 邱天硕, 李勇峰, 韩亚娟, 屈绍波 2021 雷达学报 10 220Google Scholar
Jia Y X, Wang J F, Chen W, Sui S, Zhu R C, Qiu T S, Li Y F, Han Y J, Qu S B 2021 J. Radars 10 220Google Scholar
[18] 韩丁, 马子寅, 王俊林, 王鑫, 刘苏雅拉图 2022 中国激光 49 168
Han D, Ma Z Y, Wang J L, Wang X, Liu S Y L T 2022 Chin. J. Lasers 49 168
[19] Sui S, Ma H, Wang J F, Feng M D, Pang Y Q, Zhang J Q, Xu Z, Qu S B 2019 J. Phys. D: Appl. Phys. 52 035103Google Scholar
[20] Xiao T, Liu C G, Cheng R S, Cao L F, Tang G P CNSRP Qingdao, China September 24–27, 2023 p4 (in Chinese)[肖彤, 刘成国, 程润生, 曹立锋, 唐光普 第十八届全国电波传播年会 中国青岛 2023年 9月24—27日 第4页]
[21] Kotov O V, Lozovik Y E 2016 Phys. Rev. B 93 235417Google Scholar
[22] Liu G D, Zhai X, Meng H Y, Lin Q, Huang Y, Zhao C J, Wang L L 2018 Opt. Express 26 11471Google Scholar
[23] Zhang X G, Tang W X, Jiang W X, Bai G D, Tang J, Bai L, Qiu C W, Cui T J 2018 Adv. Sci. 5 1801028Google Scholar
计量
- 文章访问数: 1699
- PDF下载量: 61
- 被引次数: 0