搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于遗传算法的太赫兹多功能可重构狄拉克半金属编码超表面

栾迦淇 张亚杰 陈羽 郜定山 李培丽 李嘉琦 李佳琪

引用本文:
Citation:

基于遗传算法的太赫兹多功能可重构狄拉克半金属编码超表面

栾迦淇, 张亚杰, 陈羽, 郜定山, 李培丽, 李嘉琦, 李佳琪

Genetic algorithm based terahertz multifunctional reconfigurable Dirac semi-metallic coded metasurface

Luan Jia-Qi, Zhang Ya-Jie, Chen Yu, Gao Ding-Shan, Li Pei-Li, Li Jia-Qi, Li Jia-Qi
PDF
HTML
导出引用
  • 多功能可重构超表面能够满足对器件小型化、集成化、适用于多场景应用的需求, 是近几年的研究热点之一. 本文采用狄拉克半金属作为可控材料, 提出了一种太赫兹多功能可重构编码超表面. 首先设计了一种顶部由狄拉克半金属材料构成的“回”字形结构的三层太赫兹编码超表面单元, 利用外加偏置电压动态调节狄拉克半金属介电常数, 使超表面单元在1.95 THz处实现2 bit编码. 然后基于设计的编码超表面单元结构, 利用遗传算法对编码超表面的阵列排布进行逆向设计, 从而实现波束赋形、涡旋波束产生及雷达散射截面缩减等功能. 研究结果表明, 针对波束赋形, 在1.95 THz处可以实现俯仰角在40°范围内、方位角在360°范围内任意角度的单波束与多波束反射, 并且多波束中的各个波束的俯仰角和方位角都可以单独调控, 提高了对太赫兹波束调控的灵活性; 针对涡旋波束, 可以产生拓扑电荷数为l = ±1, l = ±2的单涡旋波束, 并且可以实现俯仰角在30°范围内、方位角在360°范围内任意角度的单涡旋波束与多涡旋波束调控; 此外, 在1.72—2.51THz范围内可以实现大于10 dB的雷达散射截面缩减. 因此, 提出的狄拉克半金属编码超表面可以实现多种功能, 且性能优良, 在通信网络、天线和雷达系统具有一定的应用前景.
    Digitally encoded hypersurfaces show great potential in the field of electromagne-tic wave modulation. Currently, digitally encoded hypersurfaces in the terahertz band are mainly classified into two types: structure-encoded and controllable material-encoded. Once a structure-encoded hypersurface is fabricated, its function is fixed, which makes it difficult to adapt to changing application requirements. In contrast, the controllable material-encoded hypersurfaces can achieve dynamic regulation and multifunctional switching of terahertz beams by changing the external excitation, which shows good reconfigurability. To address this challenge, a Dirac semimetal-based encoded hypersurface is proposed in this paper. The Fermi energy level of the Dirac semimetal is varied by changing the bias voltage, which in turn dynamically adjusts its relative permittivity to obtain the coded unit. Besides, the traditional gradient-phase method encodes arrays by periodically arranging the cell structure, but there are limitations in the flexibility and accuracy of beam modulation. In order to break through these limitations, this paper employs a genetic algorithm for the inverse design of hypersurface coding arrays, which effectively improves the initiative and flexibility of beam modulation. In this paper, a three-layer terahertz-encoded hypersurface unit with a “back” structure composed of Dirac semimetallic materials is firstly designed, and the Dirac semimetallic dielectric constant is dynamically adjusted by using an applied bias voltage, so that the hypersurface unit is at 1.95 THz when the Fermi energy levels are 0.01 eV, 0.05 eV, 0.09 eV, and 0.55 eV can achieve 2bit coding. The results show that, for beam configuration, single-beam and multi-beam (two-beam to five-beam) modulation can be achieved at 1.95 THz within 40° pitch angle and 360° azimuth angle; for vortex beam generation, single-vortex beams with ±1 and ±2 topological charges can be generated, with mode purity exceeding 60%, and single-vortex, double-vortex and triple-vortex beams in pitch angle and 360° azimuth angle can be realised with the vortex-phase convolution. In terms of RCS reduction, in the frequency range of 1.72–2.51 THz, the hypersurface is able to achieve more than 10 dB of RCS reduction, especially in the frequency range of 1.82 THz, the maximum reduction value is up to 27.5 dB. achieves the diversity of functions, but also has a high degree of reconfigurability to meet the needs of complex application scenarios.
  • 图 1  基于狄拉克半金属“回”字形单元结构示意图 (a)单元俯视图; (b)单元侧视图

    Fig. 1.  Based on Dirac semi-metal "back" font structure diagram: (a) Top view of the unit; (b) side view of the unit.

    图 2  超表面单元结构在费米能级为0.09 eV时, 不同周期 D (a), 大正方形边长 P (b), 矩形条宽度 w (c), 顶层贴片厚度 m (d); 小正方形边长 l (e); 介质层厚度 h (f) 的反射幅度及反射相位曲线

    Fig. 2.  Reflection amplitude and reflection phase curves of the hypersurface unit structure at a Fermi energy level of 0.09 eV with different (a) period D, (b) large square side length P, (c) rectangular strip width w, (d) top patch thickness m, (e) small square side length l, and (f) dielectric layer thickness h.

    图 3  不同频率、不同费米能级下狄拉克半金属的相对介电常数的实部和虚部

    Fig. 3.  The real and imaginary parts of the relative permittivity of Dirac semi-metals at different frequencies and Fermi levels.

    图 4  基于遗传算法逆向设计阵列编码流程图

    Fig. 4.  Genetic algorithm is used to reverse design array coding flow chart.

    图 5  不同编码周期下迭代次数与适应度函数值之间的关系图

    Fig. 5.  The relationship between the number of iterations and the fitness function value under different coding cycles.

    图 6  超表面编码单元结构, 狄拉克半金属费米能级为0.01, 0.05, 0.09 eV及0.55 eV (a) 幅度响应曲线; (b) 相位响应曲线

    Fig. 6.  Metasurface coding unit structure at Dirac semi-metallic Fermi level of 0.01, 0.05, 0.09 eV and 0.55 eV: (a) Amplitude response curves; (b) phase response curve.

    图 7  (a)—(d) $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $分别为(10°, 50°), (20°, 120°), (30°, 225°)及(40°, 340°)时的单波束阵列编码图样; (e)—(h) 对应的三维远场散射图

    Fig. 7.  (a)–(d) Array coding sequence results of $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $ for (10°, 50°), (20°, 120°), (30°, 225°) and (40°, 340°) respectively; (e)–(h) the corresponding far-field scattering results.

    图 8  1.95 THz处加运算之前和之后编码排布及三维远场散射结果

    Fig. 8.  Pre-and post-array arrangements and 3D far-field scattering results for addition at 1.97 THz.

    图 9  (a), (e) $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $分别为(20°, 0°), (20°, 90°)双波束的阵列编码图与远场散射结果; (b), (f) $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $分别为(10°, 45°), (20°, 180°), (25°, 320°)三波束的阵列编码图与远场散射结果; (c), (g) $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $分别为(25°, 0°), (30°, 110°), (30°, 220°), (35°, 315°)四波束的阵列编码图与远场散射结果; (d), (h) $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $分别为(25°, 0°), (25°, 75°), (25°, 150°), (25°, 225°), (25°, 300°)五波束的阵列编码图与远场散射结果

    Fig. 9.  (a), (e) Array coding sequence diagrams and far-field scattering results of $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $ for (20°, 0°) and (20°, 90°) double beams, respectively; (b), (f) array coding sequence diagrams and far-field scattering results of $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $ for (10°, 45°), (20°, 180°) and (25°, 320°) triple beams, respectively; (c), (g) array coding sequence and far-field scattering results of $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $ for (25°, 0°), (30°, 110°), (30°, 220°) and (35°, 315°) four beams, respectively; (d), (g) array coding sequence and far-field scattering results of $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $ for (25°, 0°), (25°, 75°), (25°, 150°), (25°, 225°) and (25°, 300°) five beams, respectively.

    图 10  拓扑电荷数分别为$ l = - 1 $, $ l = + 1 $, $ l = - 2 $, $ l = + 2 $的涡旋相位分布图

    Fig. 10.  Diagrams of vortex phase distribution for topological charges $ l = - 1 $, $ l = + 1 $, $ l = - 2 $, $ l = + 2 $ respectively.

    图 11  (a)—(d) $ l = \pm 1 $和$ l = \pm 2 $的远场散射图及相位图; (e)—(h) 相对应的模式纯度图

    Fig. 11.  Far-field scattering diagram and phase diagram: (a)–(d) $ l = \pm 1 $ and $ l = \pm 2 $; (e)–(h) the corresponding pattern purity distribution diagrams.

    图 12  (a), (b) $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $ 分别为(20°, 120°), (30°, 225°)时的单涡旋波束阵列编码图; (c), (d)对应的三维远场散射图; (e), (f)对应的模式纯度图

    Fig. 12.  (a), (b) Coding diagram of a single vortex beam array at $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $ of (20°, 120°) and (30°, 225°) , respectively; (c), (d) the corresponding three-dimensional far-field scattering diagram; (e), (f) the corresponding model purity diagram.

    图 13  (a), (c) $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $分别为(20°, 0°), (20°, 90°)双涡旋波束的阵列编码图及远场散射俯视图; (b), (d) $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $分别为(10°, 45°), (20°, 180°), (25°, 320°)三涡旋波束的阵列编码图及远场散射俯视图

    Fig. 13.  (a), (c)The array coding diagram and the top view of the far-field scattering of $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $ for the (20°, 0°) and (20°, 90°) double-vortex beams, respectively; (b), (d) the array coding diagram and the top view of the far-field scattering of $ \left( {{\theta _{{\text{ob}}}}, {\varphi _{{\text{ob}}}}} \right) $for the (10°, 45°), (20°, 180°) and (25°, 320°) three-vortex beams, respectively.

    图 14  编码超表面与同等尺寸的金属板相比RCS缩减图与超表面阵列编码图

    Fig. 14.  RCS reduction plot of the encoded hypersurface compared to a metal plate of the same size with the hypersurface array encoded.

    图 15  (a) φ = 0°, (b) φ = 90°时编码超表面和同等尺寸的金属板远场散射图的三维和一维结果对比图

    Fig. 15.  (a) φ = 0°, (b) φ = 90° comparison of three-dimensional and one-dimensional results of the far-field scattering pattern encoding metasurface and metal plate of the same size.

    表 1  傅里叶卷积加运算具体规则

    Table 1.  Specific rules for the Fourier convolutional addition operation.

    0
    (0°/360°)
    1
    (90°)
    2
    (180°)
    3
    (270°)
    0
    (0°/360°)
    0123
    1
    (90°)
    1230
    2
    (180°)
    2301
    3
    (270°)
    3012
    下载: 导出CSV
  • [1]

    Davies A G, Linfield E H, Johnston M B 2002 Phys. Med. Biol. 47 3679Google Scholar

    [2]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [3]

    Zhang X Q, Tian Z, Yue W S, Gu J Q, Zhang S, Han J G, Zhang W L 2013 Adv. Mater. 25 4567Google Scholar

    [4]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218Google Scholar

    [5]

    Zhang L, Wu R Y, Bai G D, Wu H T, Mu H T, Ma Q, Chen X Q, Cui T J 2018 Adv. Funct. Mater. 28 1802205Google Scholar

    [6]

    黄若彤, 李九生 2023 物理学报 72 054203Google Scholar

    Huang R T, Li J S 2023 Acta Phys. Sin. 72 054203Google Scholar

    [7]

    Nie R X, He C H, Zhang R X, Song Z Y 2023 Opt. Laser Technol. 159 109010Google Scholar

    [8]

    Zhao Y Z, Huang C, Song Z L, Yu C Y, Liang S, Luo X G, Qing A Y 2019 IEEE Access 7 79671Google Scholar

    [9]

    李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨 2020 物理学报 69 228101Google Scholar

    Li J H, Zhang Y T, Li J N, Li J, Li J T, Zheng C L, Yang Y, Huang J, Ma Z Z, Ma C Q, Hao X R, Yao J Q 2020 Acta Phys. Sin. 69 228101Google Scholar

    [10]

    Xiao B G, Zhang Y, Tong S J, Yu J B, Xiao L H 2020 Opt. Express 28 7125Google Scholar

    [11]

    Jiang C Y, Li Z K, Lv X Y, Tian M, Liu M, Zhang H Y, Zhang Y P 2023 Opt. Commun. 540 129506Google Scholar

    [12]

    Yang R S, Lou J, Zhang F L, Zhu W, Xu J, Cai T, Fu Q H, Li H, Fan Y C 2021 Adv. Photonics Res. 2 2100103Google Scholar

    [13]

    Yang R S, Zhang F L, Li Z C, Fu Q H, Fan Y C 2023 Opt. Laser Technol. 163 109380Google Scholar

    [14]

    Yang R S, Fan Y C, Zhu W, Hu C J, Chen S N, Wei H, Chen W J, Chan C T, Zhao Q, Zhou J, Zhang F L, Qiu C W 2023 Laser Photonics Rev. 17 2200975Google Scholar

    [15]

    Wu R Y, Shi C B, Liu S, Wu W, Cui T J 2018 Adv. Opt. Mater. 6 1701236Google Scholar

    [16]

    张娜, 赵健民, 陈克, 赵俊明, 姜田, 冯一军 2021 物理学报 70 178102Google Scholar

    Zhang N, Zhao J M, Chen K, Zhao J M, Jiang T, Feng Y J 2021 Acta Phys. Sin. 70 178102Google Scholar

    [17]

    贾宇翔, 王甲富, 陈维, 随赛, 朱瑞超, 邱天硕, 李勇峰, 韩亚娟, 屈绍波 2021 雷达学报 10 220Google Scholar

    Jia Y X, Wang J F, Chen W, Sui S, Zhu R C, Qiu T S, Li Y F, Han Y J, Qu S B 2021 J. Radars 10 220Google Scholar

    [18]

    韩丁, 马子寅, 王俊林, 王鑫, 刘苏雅拉图 2022 中国激光 49 168

    Han D, Ma Z Y, Wang J L, Wang X, Liu S Y L T 2022 Chin. J. Lasers 49 168

    [19]

    Sui S, Ma H, Wang J F, Feng M D, Pang Y Q, Zhang J Q, Xu Z, Qu S B 2019 J. Phys. D: Appl. Phys. 52 035103Google Scholar

    [20]

    Xiao T, Liu C G, Cheng R S, Cao L F, Tang G P CNSRP Qingdao, China September 24-27, 2023 p4 (in Chinese)[肖彤, 刘成国, 程润生, 曹立锋, 唐光普 第十八届全国电波传播年会 中国青岛 2023年 9月24 -27日 4 ]

    [21]

    Kotov O V, Lozovik Y E 2016 Phys. Rev. B 93 235417Google Scholar

    [22]

    Liu G D, Zhai X, Meng H Y, Lin Q, Huang Y, Zhao C J, Wang L L 2018 Opt. Express 26 11471Google Scholar

    [23]

    Zhang X G, Tang W X, Jiang W X, Bai G D, Tang J, Bai L, Qiu C W, Cui T J 2018 Adv. Sci. 5 1801028Google Scholar

  • [1] 王超, 李绣峰, 张生俊, 王如志. 基于遗传算法的宽带渐变电阻膜超材料吸波器设计. 物理学报, doi: 10.7498/aps.73.20231781
    [2] 韩俊杰, 钱思贤, 朱传名, 黄志祥, 任信钢, 程光尚. 基于双极化编码超表面生成的双模式轨道角动量. 物理学报, doi: 10.7498/aps.72.20230457
    [3] 姜在超, 宫正, 钟芸襄, 崔彬, 邹斌, 杨玉平. 基于几何相位的太赫兹编码超表面反射器研制与测试. 物理学报, doi: 10.7498/aps.72.20230989
    [4] 汪静丽, 杨志雄, 董先超, 尹亮, 万洪丹, 陈鹤鸣, 钟凯. 基于VO2的太赫兹各向异性编码超表面. 物理学报, doi: 10.7498/aps.72.20222171
    [5] 汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯. 基于二氧化钒的太赫兹双频多功能编码超表面. 物理学报, doi: 10.7498/aps.72.20222321
    [6] 张建国, 易早, 康永强, 任浩, 王文艳, 周婧璠, 郝慧珍, 常会东, 高英豪, 陈亚慧, 李艳娜. 局域表面等离子体谐振辅助的高效率宽频带可调谐偏振转换超表面. 物理学报, doi: 10.7498/aps.70.20220288
    [7] 张建国, 易早, 康永强, 任浩, 王文艳, 周婧璠, 郝慧珍, 常会东, 高英豪, 陈亚慧, 李艳娜. 局域表面等离子体谐振辅助的高效率宽频带可调谐偏振转换超表面. 物理学报, doi: 10.7498/aps.71.20220288
    [8] 李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨. 基于二氧化钒的太赫兹编码超表面. 物理学报, doi: 10.7498/aps.69.20200891
    [9] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究. 物理学报, doi: 10.7498/aps.64.158101
    [10] 常红伟, 马华, 张介秋, 张志远, 徐卓, 王甲富, 屈绍波. 基于加权实数编码遗传算法的超材料优化设计. 物理学报, doi: 10.7498/aps.63.087804
    [11] 何然, 黄思训, 周晨腾, 姜祝辉. 遗传算法结合正则化方法反演海洋大气波导. 物理学报, doi: 10.7498/aps.61.049201
    [12] 俎云霄, 周杰. 基于组合混沌遗传算法的认知无线电资源分配. 物理学报, doi: 10.7498/aps.60.079501
    [13] 汪剑波, 卢俊. 双屏频率选择表面结构的遗传算法优化. 物理学报, doi: 10.7498/aps.60.057304
    [14] 程兴华, 唐龙谷, 陈志涛, 龚 敏, 于彤军, 张国义, 石瑞英. GaMnN材料红外光谱中洛伦兹振子模型的遗传算法研究. 物理学报, doi: 10.7498/aps.57.5875
    [15] 牛培峰, 张 君, 关新平. 基于遗传算法的统一混沌系统比例-积分-微分神经网络解耦控制研究. 物理学报, doi: 10.7498/aps.56.2493
    [16] 林 海, 吴晨旭. 基于遗传算法的重复囚徒困境博弈策略在复杂网络中的演化. 物理学报, doi: 10.7498/aps.56.4313
    [17] 龚春娟, 胡雄伟. 遗传算法优化设计三角晶格光子晶体. 物理学报, doi: 10.7498/aps.56.927
    [18] 保文星, 朱长纯, 崔万照. 基于克隆选择的混合遗传算法在碳纳米管结构优化中的研究. 物理学报, doi: 10.7498/aps.54.5281
    [19] 王东风. 基于遗传算法的统一混沌系统比例-积分-微分控制. 物理学报, doi: 10.7498/aps.54.1495
    [20] 吴忠强, 奥顿, 刘坤. 基于遗传算法的混沌系统模糊控制. 物理学报, doi: 10.7498/aps.53.21
计量
  • 文章访问数:  247
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-02
  • 修回日期:  2024-03-21
  • 上网日期:  2024-06-05

/

返回文章
返回