搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

局域表面等离子体谐振辅助的高效率宽频带可调谐偏振转换超表面

张建国 易早 康永强 任浩 王文艳 周婧璠 郝慧珍 常会东 高英豪 陈亚慧 李艳娜

引用本文:
Citation:

局域表面等离子体谐振辅助的高效率宽频带可调谐偏振转换超表面

张建国, 易早, 康永强, 任浩, 王文艳, 周婧璠, 郝慧珍, 常会东, 高英豪, 陈亚慧, 李艳娜

A high-efficiency wideband tunable polarization conversion metasurface assisted by localized surface plasmon resonances

Zhang Jian-Guo, Yi Zao, Kang Yong-Qiang, Ren Hao, Wang Wen-Yan, Zhou Jing-Fan, Hao Hui-Zhen, Chang Hui-Dong, Gao Ying-Hao, Chen Ya-Hui, Li Yan-Na
PDF
HTML
导出引用
  • 结合狄拉克半金属研究了一种基于各向异性构型的可调谐宽频带太赫兹偏振转换超表面, 其中的狄拉克半金属线阵列有利于费米能的调控. 研究结果表明, 该超表面可以实现宽带高效率的偏振转换, 在谐振模式处具有半波片特性. 这种转换特性源于局域表面等离子体激元谐振的激发和结构自身的各向异性. 当入射角在0º—40º范围内变化时, 能保持高效的宽带偏振转换特性, 大于$40^\circ $后, 宽带转换逐渐转变为双带或多带转换. 此外, 发现AlCuFe的费米能从65 meV增大至140 meV过程中, 偏振转换效率能维持在很高水平, 并且转换性能由单带转换变为宽带转换再变为带较宽的宽带转换与带较窄的单带转换. 同时, 通过讨论结合了不同类型狄拉克半金属的超表面, 得出了狄拉克半金属的金属性越好, 相应超表面的宽带偏振转换性能越优的结论. 最后, 基于类法布里-珀罗谐振腔的多重干涉理论对数值结果进行了验证.
    Combined with the Dirac semimetals (DSMs), which is a new type of material and also called 3D graphene, a tunable wideband terahertz polarization conversion metasurface based on an anisotropic configuration is studied, in which the DSM wire array is beneficial to the regulation of Fermi energy. The results show that the metasurface can realize wideband and highly efficient polarization conversion, and has the property of half wave plate at the resonant modes. These characteristics are derived from the excitation of localized surface plasmon resonance (LSPR) and the anisotropy of structure itself. When the incident angle changes in a range of $0^\circ $$40^\circ $, the high efficiency of wideband polarization conversion can be maintained. When it is greater than $40^\circ $, the wideband polarization conversion gradually changes into the dual-band conversion or the multi-band conversion. Furthermore, it is found that in the process of increasing the Fermi energy of AlCuFe from 65 to 140 meV, the polarization conversion ratio can be maintained at a high level, and the conversion performance changes from single-band conversion into wideband conversion, and then into wideband conversion with wider band and single-band conversion with narrower band. At the same time, by discussing the metasurface combined with the different DSM, it is concluded that the better the metallic property of DSMs, the better the wideband polarization conversion performance of the corresponding metasurface is. Finally, the numerical results are verified by the multiple interference theory based on the Fabry-Pérot-like resonance cavity.
      通信作者: 易早, yizaomy@swust.edu.cn ; 李艳娜, yannali18@sxu.edu.cn
    • 基金项目: 山西省高等学校科技创新项目(批准号: 2021L485)、山西省应用基础研究计划(批准号: 202103021223353)和国家自然科学基金(批准号: 11904216)资助的课题.
      Corresponding author: Yi Zao, yizaomy@swust.edu.cn ; Li Yan-Na, yannali18@sxu.edu.cn
    • Funds: Project supported by the Scientific Innovation Programs of Higher Education of Shanxi Province, China (Grant No. 2021L485), the Applied Basic Research Program of Shanxi Province, China (Grant No. 202103021223353), and the National Natural Science Foundation of China (Grant No. 11904216).
    [1]

    Gruev V, Perkins R, York T 2010 Opt. Express 18 19087Google Scholar

    [2]

    Zhao X, Boussaid F, Bermak A, Chigrinov V G 2011 Opt. Express 19 5565Google Scholar

    [3]

    Beruete M, Navarro-Cía M, Sorolla M, Campillo I 2008 J. Appl. Phys. 103 053102Google Scholar

    [4]

    Liu S, Zhang P, Liu W, Gong S, Zhong R, Zhang Y, Hu M 2012 Phys. Rev. Lett. 109 153902Google Scholar

    [5]

    Takagi K, Nair S V, Watanabe R, Seto K, Kobayashi T, Tokunaga E 2017 J. Phys. Soc. Jpn. 86 124721Google Scholar

    [6]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photonics 6 749Google Scholar

    [7]

    Li Q, Tian Z, Zhang X, Singh R, Du L, Gu J, Han J, Zhang W 2015 Nat. Commun. 6 7082Google Scholar

    [8]

    Huang W, Liang S J, Kyoseva E, Ang L K 2018 Carbon 127 187Google Scholar

    [9]

    Huang W, Yin S, Zhang W, Wang K, Zhang Y, Han J 2019 New J. Phys. 21 113004Google Scholar

    [10]

    Feng Y, Cao L, Zhang Y 2021 IEEE J. Sel. Top. Quant. 27 8500205

    [11]

    Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B, Cava R J 2014 Phys. Rev. Lett. 113 027603Google Scholar

    [12]

    Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z, Chen Y L 2014 Nat. Mater. 13 677Google Scholar

    [13]

    Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864Google Scholar

    [14]

    田元仕, 郭晓涵, 戴林林, 张会云, 张玉萍 2019 中国激光 46 0614033Google Scholar

    Tian Y S, Guo X H, Dai L L, Zhang H Y, Zhang Y P 2019 Chin. J. Lasers 46 0614033Google Scholar

    [15]

    Meng W L, Hou B Y, Cao Q H, Lin H M, Zhou W, Li Z X, Li D H 2020 Microwave Opt. Technol. Lett. 62 2703Google Scholar

    [16]

    Dai L L, Zhang Y P, Zhang H Y, O’Hara J F 2019 Appl. Phys. Express 12 075003Google Scholar

    [17]

    Dai L L, Zhang Y P, Guo X H, Zhao Y K, Liu S D, Zhang H Y 2018 Opt. Mater. Express 8 3238Google Scholar

    [18]

    Dai L L, Zhang Y P, Zhang Y L, Liu S D, Zhang H Y 2020 Opt. Commun. 468 125802Google Scholar

    [19]

    Zhang Y P, Tian Y S, Zhang Y L, Dai L L, Liu S D, Zhang Y, Zhang H Y 2020 Opt. Commun. 477 126348Google Scholar

    [20]

    Yang C H, Gao Q G, Dai L L, Zhang Y L, Zhang H Y, Zhang Y P 2020 Opt. Mater. Express 10 2289Google Scholar

    [21]

    Jia D L, Xu J, Yu X M 2018 Opt. Express 26 26227Google Scholar

    [22]

    Seo M A, Park H R, Koo S M, Park D J, Kang J H, Suwal O K, Choi S S, Planken P C M, Park G S, Park N K, Park Q H, Kim D S 2009 Nat. Photonics 3 152Google Scholar

    [23]

    Liu D J, Xiao Z Y, Ma X L, Xu K K, Tang J Y, Wang Z H 2016 Wave Motion 66 1Google Scholar

    [24]

    Xu K K, Xiao Z Y, Tang J Y 2017 Plasmonics 12 1869Google Scholar

    [25]

    Zhong R B, Yang L, Liang Z K, Wu Z H, Wang Y Q, Ma A C, Fang Z, Liu S G 2020 Opt. Express 28 28773Google Scholar

    [26]

    Wang Y, Wang Y, Li Q Y, Zhang Y, Yan S Y, Wang C H 2021 Opt. Express 29 26865Google Scholar

    [27]

    Kotov O V, Lozovik Y E 2016 Phys. Rev. B 93 235417Google Scholar

    [28]

    Wang Y Q, Yi Y T, Xu D Y, Yi Z, Li Z Y, Chen X F, Jile H, Zhang J G, Zeng L C, Li G F 2021 Physica E 131 114750Google Scholar

    [29]

    Liu G D, Zhai X, Meng H Y, Lin Q, Huang Y, Zhao C J, Wang L L 2018 Opt. Express 26 11471Google Scholar

    [30]

    Luo J, Lin Q, Wang L L, Xia S X, Meng H Y, Zhai X 2019 Opt. Express 27 20165Google Scholar

    [31]

    Meng H Y, Shang X J, Xue X X, Tang K Z, Xia S X, Zhai X, Liu Z R, Chen J H, Li H J, Wang L L 2019 Opt. Express 27 31062Google Scholar

    [32]

    Timusk T, Carbotte J P, Homes C C, Basov D N, Sharapov S G 2013 Phys. Rev. B 87 235121Google Scholar

    [33]

    Zheng X X, Xiao Z Y, Ling X Y 2016 Opt. Quantum Electron. 48 461Google Scholar

    [34]

    Zhang H J, Liu Y, Liu Z Q, Liu X S, Liu G Q, Fu G L, Wang J Q, Shen Y 2021 Opt. Express 29 70Google Scholar

    [35]

    Lin R, Lu F K, He X L, Jiang Z L, Liu C, Wang S Y, Kong Y 2021 Opt. Express 29 30357Google Scholar

    [36]

    Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908Google Scholar

    [37]

    Li F X, Zhang L B, Zhou P H, Chen H Y, Zhao R, Zhou Y, Liang D F, Lu H P, Deng L J 2018 Appl. Phys. B 124 28

    [38]

    Gandhi C, Babu P R, Senthilnathan K 2019 J. Infrared Millimeter Terahertz Waves 40 500Google Scholar

    [39]

    Gao X, Singh L, Yang W L, Zheng J J, Li H O, Zhang W L 2017 Sci. Rep. 7 6817Google Scholar

    [40]

    Jiang Y N, Wang L, Wang J, Akwuruoha C N, Cao W P 2017 Opt. Express 25 27616Google Scholar

    [41]

    Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE Trans. Antennas Propag. 63 3522Google Scholar

    [42]

    张建国, 田晋平, 李禄, 张丽娟 2020 量子光学学报 26 60

    Zhang J G, Tian J P, Li L, Zhang L J 2020 J. Quantum Opt. 26 60

    [43]

    Zhang J G, Tian J P, Li L 2018 IEEE Photonics J 10 4800512

    [44]

    张建国 2020 博士学位论文 (太原: 山西大学)

    Zhang J G 2020 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)

    [45]

    Meng W W, Que L C, Lv J, Zhang L W, Zhou Y, Jiang Y D 2019 Results Phys. 14 102461Google Scholar

    [46]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304Google Scholar

    [47]

    Jia Y T, Liu Y, Zhang W B, Wang J, Wang Y Z, Gong S X, Liao G S 2018 Opt. Mater. Express 8 597Google Scholar

    [48]

    Zhang J G, Tian J P, Xiao S Y, Li L 2020 IEEE Access 8 46505Google Scholar

  • 图 1  (a)偏振转换超表面的三维结构示意图; (b), (c)一个周期单元顶部狄拉克半金属层的结构分解图和相应的几何参数; (d)一个周期单元的全视图与几何参数; (e)一个周期单元的底视图及几何参数; (f)偏振转换机理图

    Fig. 1.  (a) Schematic diagram of the three-dimensional structure of the polarization conversion metasurface; (b), (c) structural decomposition diagram of Dirac semimetals (DSMs) layer at the top of a unit cell and corresponding geometric parameters; (d) overall view of a unit cell with geometric parameters; (e) bottom view of a unit cell with geometric parameters; (f) polarization conversion mechanism diagram.

    图 2  (a), (b)相应插图中子超表面在y偏振垂直入射情形下的偏振转换效率; (c), (d)复合超表面在yx偏振垂直入射情况下的反射系数振幅和偏振转换效率以及三明治结构超表面在y偏振垂直入射情况下的偏振转换效率; (e), (f)复合超表面在y偏振垂直入射情况下的偏振方向旋转角度、相位差与振幅比. 其中, 图(d)中的插图是部分放大图, DSMs材料费米能的值为${\text{9}}0{\text{ meV}}$

    Fig. 2.  (a), (b) PCR of the sub-metasurfaces in the corresponding illustrations for the normal incident wave polarized along y-axis; (c), (d) numerically simulated cross- and co-polarized reflection amplitudes and calculated PCR of the composite metasurface for the normal incident wave polarized along y- or x-axis, as well as calculated PCR of the sandwich structure metasurface for the normal incident wave polarized along y-axis; (e), (f) calculated polarization azimuth rotation angle $\eta $, relative phase $\Delta {\varphi _{xy}}$ and reflection amplitude ratio ${{{r_{xy}}} \mathord{\left/ {\vphantom {{{r_{xy}}} {{r_{yy}}}}} \right. } {{r_{yy}}}}$ of the composite metasurface for the normal incident wave polarized along y-axis. The inset in panel (d) indicates the partially enlarged view of the PCR for y- polarized incident wave, and the Fermi energy of DSMs is ${\text{9}}0{\text{ meV}}$.

    图 3  两种子超表面谐振模式处的电场分量Ez分布, 电流I流向以及等效感应电场E、磁场H示意图. 第1行和第2行分别对应于图2(a)图2(b)中的子超表面. 第1列和第3列是顶层DSMs阵列中的Ez分布, 第2列和第4列是底层金属板中的Ez分布. 第1列和第2列是v偏振入射波对应的Ez分布, 第3列和第4列是u偏振入射波对应的Ez分布. 第5列是等效感应电场E与等效感应磁场H的组合图. 其他参数与图2一致

    Fig. 3.  Distributions of electric field Ez, flow direction of current I, and diagrams of the equivalent induced electric and magnetic fields at the resonant modes for the two sub-metasurfaces. The images from the 1st and 2nd rows correspond to the sub-metasurface in Fig. 2(a) and Fig. 2(b), respectively. The images from the 1st and 3rd columns show Ez distributions along the DSMs array at the top layer, and the 2nd and 4th columns show those on the metal ground at the bottom layer. The 1st and 2nd columns show those for the v-polarized incident wave, and the 3rd and 4th columns show those for the u-polarized incident wave. The 5th column shows the combinational diagrams of the equivalent induced electric field and equivalent induced magnetic field. Here, the other parameters are the same as in Fig. 2.

    图 4  复合超表面谐振模式处的电场分量Ez分布, 电流I流向以及等效感应电场E、磁场H示意图. 第1列和第3列是顶层DSMs阵列中的Ez分布, 第2列和第4列是底层金属板中的Ez分布. 第1列和第2列是v偏振入射波对应的Ez分布, 第3列和第4列是u偏振入射波对应的Ez分布. 第5列是等效感应电场E与等效感应磁场H的组合图. 其他参数与图2一致

    Fig. 4.  Distributions of electric field Ez, flow direction of current I, and diagrams of the equivalent induced electric and magnetic fields at the resonant modes for the composite metasurface. The images from the 1st and 3rd columns show Ez distributions along the DSMs array at the top layer, and the 2nd and 4th columns show those on the metal ground at the bottom layer. The 1st and 2nd columns show those for the v-polarized incident wave, and the 3rd and 4th columns show those for the u-polarized incident wave. The 5th column shows the combinational diagrams of the equivalent induced electric field and equivalent induced magnetic field. Here, the other parameters are the same as in Fig. 2.

    图 5  (a)当入射角$\chi $$0^\circ $时, 偏振转换效率对偏振角$\varPsi $的依赖性; (b), (c)当偏振角$\varPsi $$0^\circ $时, 偏振转换效率对入射角$\chi $的依赖性(b)入射波为TE波; (c)入射波为TM波. 其他参数与图2一致

    Fig. 5.  (a) Dependence of PCR on the polarization angle $\varPsi $ when the incident angle $\chi $ is equal to $0^\circ $. Dependence of PCR on the incident angle $\chi $ for (b) TE wave and (c) TM wave when the polarization angle $\varPsi $ is $0^\circ $. Here, the other parameters are the same as in Fig. 2.

    图 6  (a)相应于y偏振垂直入射波的偏振转换效率对狄拉克半金属AlCuFe的费米能与入射波频率的依赖关系; 不同费米能和频率下, 狄拉克半金属AlCuFe的相对介电常数的实部(a1)和虚部(a2); (b)相应于y偏振垂直入射波的偏振转换效率对不同类型狄拉克半金属与入射波频率的依赖关系; 不同类型狄拉克半金属的相对介电常数的实部(b1)和虚部(b2). 其他参数与图2一致

    Fig. 6.  (a) Dependence of PCRy on the Fermi level EF of AlCuFe and incident wave frequency for the normal incident wave polarized along y-axis; The real (a1) and imaginary (a2) parts of the relative permittivity of AlCuFe at different Fermi level EF and different frequency. (b) Dependence of PCRy on the different DSMs and incident wave frequency for the normal incident wave polarized along y-axis; The real (b1) and imaginary (b2) parts of the relative permittivity of the different DSMs and incident wave frequency. Here, the other parameters are the same as in Fig. 2.

    图 7  (a)沿y轴方向偏振的入射波在类法布里-珀罗谐振腔中的多重反射和透射过程, 其中$\tilde r$$\tilde t$分别表示不同界面处的反射系数和透射系数, $\gamma $是入射角, $\alpha $是折射角. 偏振方向沿y轴且垂直入射情形下, 去耦合结构对应的部分散射参数的振幅(b)和相位(c), 以及结合狄拉克半金属AlCuFe的复合超表面对应的偏振转换效率的数值模拟与理论计算结果(d). 其他参数与图2一致

    Fig. 7.  (a) Multiple reflection and transmission processes in a Fabry-Pérot-like resonance cavity for the incident wave polarized along y-axis, where $\tilde r$ and $\tilde t$ are respectively the reflection and transmission coefficients at different interfaces, $\gamma $ represents incident angle, $\alpha $ represents refractional angle. The amplitude (b) and phase (c) of the partial scattering parameters corresponding to the decoupling structure, as well as the numerically simulated and theoretically calculated PCR (d) corresponding to the composite metasurface combined with AlCuFe in the case of normal incident wave polarized along y-axis. Here, the other parameters are the same as in Fig. 2.

  • [1]

    Gruev V, Perkins R, York T 2010 Opt. Express 18 19087Google Scholar

    [2]

    Zhao X, Boussaid F, Bermak A, Chigrinov V G 2011 Opt. Express 19 5565Google Scholar

    [3]

    Beruete M, Navarro-Cía M, Sorolla M, Campillo I 2008 J. Appl. Phys. 103 053102Google Scholar

    [4]

    Liu S, Zhang P, Liu W, Gong S, Zhong R, Zhang Y, Hu M 2012 Phys. Rev. Lett. 109 153902Google Scholar

    [5]

    Takagi K, Nair S V, Watanabe R, Seto K, Kobayashi T, Tokunaga E 2017 J. Phys. Soc. Jpn. 86 124721Google Scholar

    [6]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photonics 6 749Google Scholar

    [7]

    Li Q, Tian Z, Zhang X, Singh R, Du L, Gu J, Han J, Zhang W 2015 Nat. Commun. 6 7082Google Scholar

    [8]

    Huang W, Liang S J, Kyoseva E, Ang L K 2018 Carbon 127 187Google Scholar

    [9]

    Huang W, Yin S, Zhang W, Wang K, Zhang Y, Han J 2019 New J. Phys. 21 113004Google Scholar

    [10]

    Feng Y, Cao L, Zhang Y 2021 IEEE J. Sel. Top. Quant. 27 8500205

    [11]

    Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B, Cava R J 2014 Phys. Rev. Lett. 113 027603Google Scholar

    [12]

    Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z, Chen Y L 2014 Nat. Mater. 13 677Google Scholar

    [13]

    Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864Google Scholar

    [14]

    田元仕, 郭晓涵, 戴林林, 张会云, 张玉萍 2019 中国激光 46 0614033Google Scholar

    Tian Y S, Guo X H, Dai L L, Zhang H Y, Zhang Y P 2019 Chin. J. Lasers 46 0614033Google Scholar

    [15]

    Meng W L, Hou B Y, Cao Q H, Lin H M, Zhou W, Li Z X, Li D H 2020 Microwave Opt. Technol. Lett. 62 2703Google Scholar

    [16]

    Dai L L, Zhang Y P, Zhang H Y, O’Hara J F 2019 Appl. Phys. Express 12 075003Google Scholar

    [17]

    Dai L L, Zhang Y P, Guo X H, Zhao Y K, Liu S D, Zhang H Y 2018 Opt. Mater. Express 8 3238Google Scholar

    [18]

    Dai L L, Zhang Y P, Zhang Y L, Liu S D, Zhang H Y 2020 Opt. Commun. 468 125802Google Scholar

    [19]

    Zhang Y P, Tian Y S, Zhang Y L, Dai L L, Liu S D, Zhang Y, Zhang H Y 2020 Opt. Commun. 477 126348Google Scholar

    [20]

    Yang C H, Gao Q G, Dai L L, Zhang Y L, Zhang H Y, Zhang Y P 2020 Opt. Mater. Express 10 2289Google Scholar

    [21]

    Jia D L, Xu J, Yu X M 2018 Opt. Express 26 26227Google Scholar

    [22]

    Seo M A, Park H R, Koo S M, Park D J, Kang J H, Suwal O K, Choi S S, Planken P C M, Park G S, Park N K, Park Q H, Kim D S 2009 Nat. Photonics 3 152Google Scholar

    [23]

    Liu D J, Xiao Z Y, Ma X L, Xu K K, Tang J Y, Wang Z H 2016 Wave Motion 66 1Google Scholar

    [24]

    Xu K K, Xiao Z Y, Tang J Y 2017 Plasmonics 12 1869Google Scholar

    [25]

    Zhong R B, Yang L, Liang Z K, Wu Z H, Wang Y Q, Ma A C, Fang Z, Liu S G 2020 Opt. Express 28 28773Google Scholar

    [26]

    Wang Y, Wang Y, Li Q Y, Zhang Y, Yan S Y, Wang C H 2021 Opt. Express 29 26865Google Scholar

    [27]

    Kotov O V, Lozovik Y E 2016 Phys. Rev. B 93 235417Google Scholar

    [28]

    Wang Y Q, Yi Y T, Xu D Y, Yi Z, Li Z Y, Chen X F, Jile H, Zhang J G, Zeng L C, Li G F 2021 Physica E 131 114750Google Scholar

    [29]

    Liu G D, Zhai X, Meng H Y, Lin Q, Huang Y, Zhao C J, Wang L L 2018 Opt. Express 26 11471Google Scholar

    [30]

    Luo J, Lin Q, Wang L L, Xia S X, Meng H Y, Zhai X 2019 Opt. Express 27 20165Google Scholar

    [31]

    Meng H Y, Shang X J, Xue X X, Tang K Z, Xia S X, Zhai X, Liu Z R, Chen J H, Li H J, Wang L L 2019 Opt. Express 27 31062Google Scholar

    [32]

    Timusk T, Carbotte J P, Homes C C, Basov D N, Sharapov S G 2013 Phys. Rev. B 87 235121Google Scholar

    [33]

    Zheng X X, Xiao Z Y, Ling X Y 2016 Opt. Quantum Electron. 48 461Google Scholar

    [34]

    Zhang H J, Liu Y, Liu Z Q, Liu X S, Liu G Q, Fu G L, Wang J Q, Shen Y 2021 Opt. Express 29 70Google Scholar

    [35]

    Lin R, Lu F K, He X L, Jiang Z L, Liu C, Wang S Y, Kong Y 2021 Opt. Express 29 30357Google Scholar

    [36]

    Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908Google Scholar

    [37]

    Li F X, Zhang L B, Zhou P H, Chen H Y, Zhao R, Zhou Y, Liang D F, Lu H P, Deng L J 2018 Appl. Phys. B 124 28

    [38]

    Gandhi C, Babu P R, Senthilnathan K 2019 J. Infrared Millimeter Terahertz Waves 40 500Google Scholar

    [39]

    Gao X, Singh L, Yang W L, Zheng J J, Li H O, Zhang W L 2017 Sci. Rep. 7 6817Google Scholar

    [40]

    Jiang Y N, Wang L, Wang J, Akwuruoha C N, Cao W P 2017 Opt. Express 25 27616Google Scholar

    [41]

    Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE Trans. Antennas Propag. 63 3522Google Scholar

    [42]

    张建国, 田晋平, 李禄, 张丽娟 2020 量子光学学报 26 60

    Zhang J G, Tian J P, Li L, Zhang L J 2020 J. Quantum Opt. 26 60

    [43]

    Zhang J G, Tian J P, Li L 2018 IEEE Photonics J 10 4800512

    [44]

    张建国 2020 博士学位论文 (太原: 山西大学)

    Zhang J G 2020 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)

    [45]

    Meng W W, Que L C, Lv J, Zhang L W, Zhou Y, Jiang Y D 2019 Results Phys. 14 102461Google Scholar

    [46]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304Google Scholar

    [47]

    Jia Y T, Liu Y, Zhang W B, Wang J, Wang Y Z, Gong S X, Liao G S 2018 Opt. Mater. Express 8 597Google Scholar

    [48]

    Zhang J G, Tian J P, Xiao S Y, Li L 2020 IEEE Access 8 46505Google Scholar

  • [1] 卢文强, 易颖婷, 宋前举, 周自刚, 易有根, 曾庆栋, 易早. 基于狄拉克半金属纳米线的太赫兹可调七波段完美吸收器的模拟仿真. 物理学报, 2025, 74(3): 034101. doi: 10.7498/aps.74.20241516
    [2] 王丹, 李九生, 郭风雷. 宽带吸收与极化转换可切换的太赫兹超表面. 物理学报, 2024, 73(14): 148701. doi: 10.7498/aps.73.20240525
    [3] 栾迦淇, 张亚杰, 陈羽, 郜定山, 李培丽, 李嘉琦, 李佳琪. 基于遗传算法的太赫兹多功能可重构狄拉克半金属编码超表面. 物理学报, 2024, 73(14): 144204. doi: 10.7498/aps.73.20240225
    [4] 孙斌, 赵立臣, 刘杰. 双孤子非线性干涉中的狄拉克磁单极势. 物理学报, 2023, 72(10): 100501. doi: 10.7498/aps.72.20222416
    [5] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [6] 王焕文, 付博, 沈顺清. 狄拉克量子材料中的输运理论进展. 物理学报, 2023, 72(17): 177303. doi: 10.7498/aps.72.20230672
    [7] 徐诗琳, 胡岳芳, 袁丹文, 陈巍, 张薇. 应变调控下Tl2Ta2O7中的拓扑相变. 物理学报, 2023, 72(12): 127102. doi: 10.7498/aps.72.20230043
    [8] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面. 物理学报, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [9] 刘靖宇, 李文宇, 刘智星, 舒敬懿, 赵国忠. 基于V形超表面的透射式太赫兹线偏振转换器. 物理学报, 2022, 71(23): 230701. doi: 10.7498/aps.71.20221259
    [10] 姚海云, 闫昕, 梁兰菊, 杨茂生, 杨其利, 吕凯凯, 姚建铨. 图案化石墨烯/氮化镓复合超表面对太赫兹波在狄拉克点的动态多维调制. 物理学报, 2022, 71(6): 068101. doi: 10.7498/aps.71.20211845
    [11] 张建国, 易早, 康永强, 任浩, 王文艳, 周婧璠, 郝慧珍, 常会东, 高英豪, 陈亚慧, 李艳娜. 局域表面等离子体谐振辅助的高效率宽频带可调谐偏振转换超表面. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220288
    [12] 杨俊涛, 熊永臣, 黄海铭, 罗时军. 多狄拉克锥的二维CrPSe3的半金属铁磁性与电子结构(已撤稿). 物理学报, 2020, 69(24): 247101. doi: 10.7498/aps.69.20200960
    [13] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨. 基于超材料的可调谐的太赫兹波宽频吸收器. 物理学报, 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [14] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [15] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体. 物理学报, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [16] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [17] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究. 物理学报, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [18] 曹惠娴, 梅军. 声子晶体中的半狄拉克点研究. 物理学报, 2015, 64(19): 194301. doi: 10.7498/aps.64.194301
    [19] 李忠洋, 姚建铨, 李俊, 邴丕彬, 徐德刚, 王鹏. 基于闪锌矿晶体中受激电磁耦子散射产生可调谐太赫兹波的理论研究. 物理学报, 2010, 59(9): 6237-6242. doi: 10.7498/aps.59.6237
    [20] 刘 欢, 徐德刚, 姚建铨. 基于GaSe和ZnGeP2晶体差频产生可调谐太赫兹辐射的理论研究. 物理学报, 2008, 57(9): 5662-5669. doi: 10.7498/aps.57.5662
计量
  • 文章访问数:  4603
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-17
  • 修回日期:  2022-03-07
  • 上网日期:  2022-06-11
  • 刊出日期:  2022-06-20

/

返回文章
返回