-
结合狄拉克半金属研究了一种基于各向异性构型的可调谐宽频带太赫兹偏振转换超表面, 其中的狄拉克半金属线阵列有利于费米能的调控. 研究结果表明, 该超表面可以实现宽带高效率的偏振转换, 在谐振模式处具有半波片特性. 这种转换特性源于局域表面等离子体激元谐振的激发和结构自身的各向异性. 当入射角在0º—40º范围内变化时, 能保持高效的宽带偏振转换特性, 大于
$40^\circ $ 后, 宽带转换逐渐转变为双带或多带转换. 此外, 发现AlCuFe的费米能从65 meV增大至140 meV过程中, 偏振转换效率能维持在很高水平, 并且转换性能由单带转换变为宽带转换再变为带较宽的宽带转换与带较窄的单带转换. 同时, 通过讨论结合了不同类型狄拉克半金属的超表面, 得出了狄拉克半金属的金属性越好, 相应超表面的宽带偏振转换性能越优的结论. 最后, 基于类法布里-珀罗谐振腔的多重干涉理论对数值结果进行了验证.Combined with the Dirac semimetals (DSMs), which is a new type of material and also called 3D graphene, a tunable wideband terahertz polarization conversion metasurface based on an anisotropic configuration is studied, in which the DSM wire array is beneficial to the regulation of Fermi energy. The results show that the metasurface can realize wideband and highly efficient polarization conversion, and has the property of half wave plate at the resonant modes. These characteristics are derived from the excitation of localized surface plasmon resonance (LSPR) and the anisotropy of structure itself. When the incident angle changes in a range of$0^\circ $ –$40^\circ $ , the high efficiency of wideband polarization conversion can be maintained. When it is greater than$40^\circ $ , the wideband polarization conversion gradually changes into the dual-band conversion or the multi-band conversion. Furthermore, it is found that in the process of increasing the Fermi energy of AlCuFe from 65 to 140 meV, the polarization conversion ratio can be maintained at a high level, and the conversion performance changes from single-band conversion into wideband conversion, and then into wideband conversion with wider band and single-band conversion with narrower band. At the same time, by discussing the metasurface combined with the different DSM, it is concluded that the better the metallic property of DSMs, the better the wideband polarization conversion performance of the corresponding metasurface is. Finally, the numerical results are verified by the multiple interference theory based on the Fabry-Pérot-like resonance cavity.-
Keywords:
- terahertz tunable metasurface /
- Dirac semimetals /
- wideband polarization conversion /
- multiple interference theory
[1] Gruev V, Perkins R, York T 2010 Opt. Express 18 19087Google Scholar
[2] Zhao X, Boussaid F, Bermak A, Chigrinov V G 2011 Opt. Express 19 5565Google Scholar
[3] Beruete M, Navarro-Cía M, Sorolla M, Campillo I 2008 J. Appl. Phys. 103 053102Google Scholar
[4] Liu S, Zhang P, Liu W, Gong S, Zhong R, Zhang Y, Hu M 2012 Phys. Rev. Lett. 109 153902Google Scholar
[5] Takagi K, Nair S V, Watanabe R, Seto K, Kobayashi T, Tokunaga E 2017 J. Phys. Soc. Jpn. 86 124721Google Scholar
[6] Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photonics 6 749Google Scholar
[7] Li Q, Tian Z, Zhang X, Singh R, Du L, Gu J, Han J, Zhang W 2015 Nat. Commun. 6 7082Google Scholar
[8] Huang W, Liang S J, Kyoseva E, Ang L K 2018 Carbon 127 187Google Scholar
[9] Huang W, Yin S, Zhang W, Wang K, Zhang Y, Han J 2019 New J. Phys. 21 113004Google Scholar
[10] Feng Y, Cao L, Zhang Y 2021 IEEE J. Sel. Top. Quant. 27 8500205
[11] Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B, Cava R J 2014 Phys. Rev. Lett. 113 027603Google Scholar
[12] Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z, Chen Y L 2014 Nat. Mater. 13 677Google Scholar
[13] Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864Google Scholar
[14] 田元仕, 郭晓涵, 戴林林, 张会云, 张玉萍 2019 中国激光 46 0614033Google Scholar
Tian Y S, Guo X H, Dai L L, Zhang H Y, Zhang Y P 2019 Chin. J. Lasers 46 0614033Google Scholar
[15] Meng W L, Hou B Y, Cao Q H, Lin H M, Zhou W, Li Z X, Li D H 2020 Microwave Opt. Technol. Lett. 62 2703Google Scholar
[16] Dai L L, Zhang Y P, Zhang H Y, O’Hara J F 2019 Appl. Phys. Express 12 075003Google Scholar
[17] Dai L L, Zhang Y P, Guo X H, Zhao Y K, Liu S D, Zhang H Y 2018 Opt. Mater. Express 8 3238Google Scholar
[18] Dai L L, Zhang Y P, Zhang Y L, Liu S D, Zhang H Y 2020 Opt. Commun. 468 125802Google Scholar
[19] Zhang Y P, Tian Y S, Zhang Y L, Dai L L, Liu S D, Zhang Y, Zhang H Y 2020 Opt. Commun. 477 126348Google Scholar
[20] Yang C H, Gao Q G, Dai L L, Zhang Y L, Zhang H Y, Zhang Y P 2020 Opt. Mater. Express 10 2289Google Scholar
[21] Jia D L, Xu J, Yu X M 2018 Opt. Express 26 26227Google Scholar
[22] Seo M A, Park H R, Koo S M, Park D J, Kang J H, Suwal O K, Choi S S, Planken P C M, Park G S, Park N K, Park Q H, Kim D S 2009 Nat. Photonics 3 152Google Scholar
[23] Liu D J, Xiao Z Y, Ma X L, Xu K K, Tang J Y, Wang Z H 2016 Wave Motion 66 1Google Scholar
[24] Xu K K, Xiao Z Y, Tang J Y 2017 Plasmonics 12 1869Google Scholar
[25] Zhong R B, Yang L, Liang Z K, Wu Z H, Wang Y Q, Ma A C, Fang Z, Liu S G 2020 Opt. Express 28 28773Google Scholar
[26] Wang Y, Wang Y, Li Q Y, Zhang Y, Yan S Y, Wang C H 2021 Opt. Express 29 26865Google Scholar
[27] Kotov O V, Lozovik Y E 2016 Phys. Rev. B 93 235417Google Scholar
[28] Wang Y Q, Yi Y T, Xu D Y, Yi Z, Li Z Y, Chen X F, Jile H, Zhang J G, Zeng L C, Li G F 2021 Physica E 131 114750Google Scholar
[29] Liu G D, Zhai X, Meng H Y, Lin Q, Huang Y, Zhao C J, Wang L L 2018 Opt. Express 26 11471Google Scholar
[30] Luo J, Lin Q, Wang L L, Xia S X, Meng H Y, Zhai X 2019 Opt. Express 27 20165Google Scholar
[31] Meng H Y, Shang X J, Xue X X, Tang K Z, Xia S X, Zhai X, Liu Z R, Chen J H, Li H J, Wang L L 2019 Opt. Express 27 31062Google Scholar
[32] Timusk T, Carbotte J P, Homes C C, Basov D N, Sharapov S G 2013 Phys. Rev. B 87 235121Google Scholar
[33] Zheng X X, Xiao Z Y, Ling X Y 2016 Opt. Quantum Electron. 48 461Google Scholar
[34] Zhang H J, Liu Y, Liu Z Q, Liu X S, Liu G Q, Fu G L, Wang J Q, Shen Y 2021 Opt. Express 29 70Google Scholar
[35] Lin R, Lu F K, He X L, Jiang Z L, Liu C, Wang S Y, Kong Y 2021 Opt. Express 29 30357Google Scholar
[36] Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908Google Scholar
[37] Li F X, Zhang L B, Zhou P H, Chen H Y, Zhao R, Zhou Y, Liang D F, Lu H P, Deng L J 2018 Appl. Phys. B 124 28
[38] Gandhi C, Babu P R, Senthilnathan K 2019 J. Infrared Millimeter Terahertz Waves 40 500Google Scholar
[39] Gao X, Singh L, Yang W L, Zheng J J, Li H O, Zhang W L 2017 Sci. Rep. 7 6817Google Scholar
[40] Jiang Y N, Wang L, Wang J, Akwuruoha C N, Cao W P 2017 Opt. Express 25 27616Google Scholar
[41] Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE Trans. Antennas Propag. 63 3522Google Scholar
[42] 张建国, 田晋平, 李禄, 张丽娟 2020 量子光学学报 26 60
Zhang J G, Tian J P, Li L, Zhang L J 2020 J. Quantum Opt. 26 60
[43] Zhang J G, Tian J P, Li L 2018 IEEE Photonics J 10 4800512
[44] Zhang J G 2020 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)
[45] Meng W W, Que L C, Lv J, Zhang L W, Zhou Y, Jiang Y D 2019 Results Phys. 14 102461Google Scholar
[46] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304Google Scholar
[47] Jia Y T, Liu Y, Zhang W B, Wang J, Wang Y Z, Gong S X, Liao G S 2018 Opt. Mater. Express 8 597Google Scholar
[48] Zhang J G, Tian J P, Xiao S Y, Li L 2020 IEEE Access 8 46505Google Scholar
-
图 1 (a)偏振转换超表面的三维结构示意图; (b), (c)一个周期单元顶部狄拉克半金属层的结构分解图和相应的几何参数; (d)一个周期单元的全视图与几何参数; (e)一个周期单元的底视图及几何参数; (f)偏振转换机理图
Fig. 1. (a) Schematic diagram of the three-dimensional structure of the polarization conversion metasurface; (b), (c) structural decomposition diagram of Dirac semimetals (DSMs) layer at the top of a unit cell and corresponding geometric parameters; (d) overall view of a unit cell with geometric parameters; (e) bottom view of a unit cell with geometric parameters; (f) polarization conversion mechanism diagram.
图 2 (a), (b)相应插图中子超表面在y偏振垂直入射情形下的偏振转换效率; (c), (d)复合超表面在y或x偏振垂直入射情况下的反射系数振幅和偏振转换效率以及三明治结构超表面在y偏振垂直入射情况下的偏振转换效率; (e), (f)复合超表面在y偏振垂直入射情况下的偏振方向旋转角度、相位差与振幅比. 其中, 图(d)中的插图是部分放大图, DSMs材料费米能的值为
${\text{9}}0{\text{ meV}}$ Fig. 2. (a), (b) PCR of the sub-metasurfaces in the corresponding illustrations for the normal incident wave polarized along y-axis; (c), (d) numerically simulated cross- and co-polarized reflection amplitudes and calculated PCR of the composite metasurface for the normal incident wave polarized along y- or x-axis, as well as calculated PCR of the sandwich structure metasurface for the normal incident wave polarized along y-axis; (e), (f) calculated polarization azimuth rotation angle
$\eta $ , relative phase$\Delta {\varphi _{xy}}$ and reflection amplitude ratio${{{r_{xy}}} \mathord{\left/ {\vphantom {{{r_{xy}}} {{r_{yy}}}}} \right. } {{r_{yy}}}}$ of the composite metasurface for the normal incident wave polarized along y-axis. The inset in panel (d) indicates the partially enlarged view of the PCR for y- polarized incident wave, and the Fermi energy of DSMs is${\text{9}}0{\text{ meV}}$ .图 3 两种子超表面谐振模式处的电场分量Ez分布, 电流I流向以及等效感应电场E、磁场H示意图. 第1行和第2行分别对应于图2(a)与图2(b)中的子超表面. 第1列和第3列是顶层DSMs阵列中的Ez分布, 第2列和第4列是底层金属板中的Ez分布. 第1列和第2列是v偏振入射波对应的Ez分布, 第3列和第4列是u偏振入射波对应的Ez分布. 第5列是等效感应电场E与等效感应磁场H的组合图. 其他参数与图2一致
Fig. 3. Distributions of electric field Ez, flow direction of current I, and diagrams of the equivalent induced electric and magnetic fields at the resonant modes for the two sub-metasurfaces. The images from the 1st and 2nd rows correspond to the sub-metasurface in Fig. 2(a) and Fig. 2(b), respectively. The images from the 1st and 3rd columns show Ez distributions along the DSMs array at the top layer, and the 2nd and 4th columns show those on the metal ground at the bottom layer. The 1st and 2nd columns show those for the v-polarized incident wave, and the 3rd and 4th columns show those for the u-polarized incident wave. The 5th column shows the combinational diagrams of the equivalent induced electric field and equivalent induced magnetic field. Here, the other parameters are the same as in Fig. 2.
图 4 复合超表面谐振模式处的电场分量Ez分布, 电流I流向以及等效感应电场E、磁场H示意图. 第1列和第3列是顶层DSMs阵列中的Ez分布, 第2列和第4列是底层金属板中的Ez分布. 第1列和第2列是v偏振入射波对应的Ez分布, 第3列和第4列是u偏振入射波对应的Ez分布. 第5列是等效感应电场E与等效感应磁场H的组合图. 其他参数与图2一致
Fig. 4. Distributions of electric field Ez, flow direction of current I, and diagrams of the equivalent induced electric and magnetic fields at the resonant modes for the composite metasurface. The images from the 1st and 3rd columns show Ez distributions along the DSMs array at the top layer, and the 2nd and 4th columns show those on the metal ground at the bottom layer. The 1st and 2nd columns show those for the v-polarized incident wave, and the 3rd and 4th columns show those for the u-polarized incident wave. The 5th column shows the combinational diagrams of the equivalent induced electric field and equivalent induced magnetic field. Here, the other parameters are the same as in Fig. 2.
图 5 (a)当入射角
$\chi $ 为$0^\circ $ 时, 偏振转换效率对偏振角$\varPsi $ 的依赖性; (b), (c)当偏振角$\varPsi $ 为$0^\circ $ 时, 偏振转换效率对入射角$\chi $ 的依赖性(b)入射波为TE波; (c)入射波为TM波. 其他参数与图2一致Fig. 5. (a) Dependence of PCR on the polarization angle
$\varPsi $ when the incident angle$\chi $ is equal to$0^\circ $ . Dependence of PCR on the incident angle$\chi $ for (b) TE wave and (c) TM wave when the polarization angle$\varPsi $ is$0^\circ $ . Here, the other parameters are the same as in Fig. 2.图 6 (a)相应于y偏振垂直入射波的偏振转换效率对狄拉克半金属AlCuFe的费米能与入射波频率的依赖关系; 不同费米能和频率下, 狄拉克半金属AlCuFe的相对介电常数的实部(a1)和虚部(a2); (b)相应于y偏振垂直入射波的偏振转换效率对不同类型狄拉克半金属与入射波频率的依赖关系; 不同类型狄拉克半金属的相对介电常数的实部(b1)和虚部(b2). 其他参数与图2一致
Fig. 6. (a) Dependence of PCRy on the Fermi level EF of AlCuFe and incident wave frequency for the normal incident wave polarized along y-axis; The real (a1) and imaginary (a2) parts of the relative permittivity of AlCuFe at different Fermi level EF and different frequency. (b) Dependence of PCRy on the different DSMs and incident wave frequency for the normal incident wave polarized along y-axis; The real (b1) and imaginary (b2) parts of the relative permittivity of the different DSMs and incident wave frequency. Here, the other parameters are the same as in Fig. 2.
图 7 (a)沿y轴方向偏振的入射波在类法布里-珀罗谐振腔中的多重反射和透射过程, 其中
$\tilde r$ 和$\tilde t$ 分别表示不同界面处的反射系数和透射系数,$\gamma $ 是入射角,$\alpha $ 是折射角. 偏振方向沿y轴且垂直入射情形下, 去耦合结构对应的部分散射参数的振幅(b)和相位(c), 以及结合狄拉克半金属AlCuFe的复合超表面对应的偏振转换效率的数值模拟与理论计算结果(d). 其他参数与图2一致Fig. 7. (a) Multiple reflection and transmission processes in a Fabry-Pérot-like resonance cavity for the incident wave polarized along y-axis, where
$\tilde r$ and$\tilde t$ are respectively the reflection and transmission coefficients at different interfaces,$\gamma $ represents incident angle,$\alpha $ represents refractional angle. The amplitude (b) and phase (c) of the partial scattering parameters corresponding to the decoupling structure, as well as the numerically simulated and theoretically calculated PCR (d) corresponding to the composite metasurface combined with AlCuFe in the case of normal incident wave polarized along y-axis. Here, the other parameters are the same as in Fig. 2. -
[1] Gruev V, Perkins R, York T 2010 Opt. Express 18 19087Google Scholar
[2] Zhao X, Boussaid F, Bermak A, Chigrinov V G 2011 Opt. Express 19 5565Google Scholar
[3] Beruete M, Navarro-Cía M, Sorolla M, Campillo I 2008 J. Appl. Phys. 103 053102Google Scholar
[4] Liu S, Zhang P, Liu W, Gong S, Zhong R, Zhang Y, Hu M 2012 Phys. Rev. Lett. 109 153902Google Scholar
[5] Takagi K, Nair S V, Watanabe R, Seto K, Kobayashi T, Tokunaga E 2017 J. Phys. Soc. Jpn. 86 124721Google Scholar
[6] Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photonics 6 749Google Scholar
[7] Li Q, Tian Z, Zhang X, Singh R, Du L, Gu J, Han J, Zhang W 2015 Nat. Commun. 6 7082Google Scholar
[8] Huang W, Liang S J, Kyoseva E, Ang L K 2018 Carbon 127 187Google Scholar
[9] Huang W, Yin S, Zhang W, Wang K, Zhang Y, Han J 2019 New J. Phys. 21 113004Google Scholar
[10] Feng Y, Cao L, Zhang Y 2021 IEEE J. Sel. Top. Quant. 27 8500205
[11] Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B, Cava R J 2014 Phys. Rev. Lett. 113 027603Google Scholar
[12] Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z, Chen Y L 2014 Nat. Mater. 13 677Google Scholar
[13] Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864Google Scholar
[14] 田元仕, 郭晓涵, 戴林林, 张会云, 张玉萍 2019 中国激光 46 0614033Google Scholar
Tian Y S, Guo X H, Dai L L, Zhang H Y, Zhang Y P 2019 Chin. J. Lasers 46 0614033Google Scholar
[15] Meng W L, Hou B Y, Cao Q H, Lin H M, Zhou W, Li Z X, Li D H 2020 Microwave Opt. Technol. Lett. 62 2703Google Scholar
[16] Dai L L, Zhang Y P, Zhang H Y, O’Hara J F 2019 Appl. Phys. Express 12 075003Google Scholar
[17] Dai L L, Zhang Y P, Guo X H, Zhao Y K, Liu S D, Zhang H Y 2018 Opt. Mater. Express 8 3238Google Scholar
[18] Dai L L, Zhang Y P, Zhang Y L, Liu S D, Zhang H Y 2020 Opt. Commun. 468 125802Google Scholar
[19] Zhang Y P, Tian Y S, Zhang Y L, Dai L L, Liu S D, Zhang Y, Zhang H Y 2020 Opt. Commun. 477 126348Google Scholar
[20] Yang C H, Gao Q G, Dai L L, Zhang Y L, Zhang H Y, Zhang Y P 2020 Opt. Mater. Express 10 2289Google Scholar
[21] Jia D L, Xu J, Yu X M 2018 Opt. Express 26 26227Google Scholar
[22] Seo M A, Park H R, Koo S M, Park D J, Kang J H, Suwal O K, Choi S S, Planken P C M, Park G S, Park N K, Park Q H, Kim D S 2009 Nat. Photonics 3 152Google Scholar
[23] Liu D J, Xiao Z Y, Ma X L, Xu K K, Tang J Y, Wang Z H 2016 Wave Motion 66 1Google Scholar
[24] Xu K K, Xiao Z Y, Tang J Y 2017 Plasmonics 12 1869Google Scholar
[25] Zhong R B, Yang L, Liang Z K, Wu Z H, Wang Y Q, Ma A C, Fang Z, Liu S G 2020 Opt. Express 28 28773Google Scholar
[26] Wang Y, Wang Y, Li Q Y, Zhang Y, Yan S Y, Wang C H 2021 Opt. Express 29 26865Google Scholar
[27] Kotov O V, Lozovik Y E 2016 Phys. Rev. B 93 235417Google Scholar
[28] Wang Y Q, Yi Y T, Xu D Y, Yi Z, Li Z Y, Chen X F, Jile H, Zhang J G, Zeng L C, Li G F 2021 Physica E 131 114750Google Scholar
[29] Liu G D, Zhai X, Meng H Y, Lin Q, Huang Y, Zhao C J, Wang L L 2018 Opt. Express 26 11471Google Scholar
[30] Luo J, Lin Q, Wang L L, Xia S X, Meng H Y, Zhai X 2019 Opt. Express 27 20165Google Scholar
[31] Meng H Y, Shang X J, Xue X X, Tang K Z, Xia S X, Zhai X, Liu Z R, Chen J H, Li H J, Wang L L 2019 Opt. Express 27 31062Google Scholar
[32] Timusk T, Carbotte J P, Homes C C, Basov D N, Sharapov S G 2013 Phys. Rev. B 87 235121Google Scholar
[33] Zheng X X, Xiao Z Y, Ling X Y 2016 Opt. Quantum Electron. 48 461Google Scholar
[34] Zhang H J, Liu Y, Liu Z Q, Liu X S, Liu G Q, Fu G L, Wang J Q, Shen Y 2021 Opt. Express 29 70Google Scholar
[35] Lin R, Lu F K, He X L, Jiang Z L, Liu C, Wang S Y, Kong Y 2021 Opt. Express 29 30357Google Scholar
[36] Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908Google Scholar
[37] Li F X, Zhang L B, Zhou P H, Chen H Y, Zhao R, Zhou Y, Liang D F, Lu H P, Deng L J 2018 Appl. Phys. B 124 28
[38] Gandhi C, Babu P R, Senthilnathan K 2019 J. Infrared Millimeter Terahertz Waves 40 500Google Scholar
[39] Gao X, Singh L, Yang W L, Zheng J J, Li H O, Zhang W L 2017 Sci. Rep. 7 6817Google Scholar
[40] Jiang Y N, Wang L, Wang J, Akwuruoha C N, Cao W P 2017 Opt. Express 25 27616Google Scholar
[41] Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE Trans. Antennas Propag. 63 3522Google Scholar
[42] 张建国, 田晋平, 李禄, 张丽娟 2020 量子光学学报 26 60
Zhang J G, Tian J P, Li L, Zhang L J 2020 J. Quantum Opt. 26 60
[43] Zhang J G, Tian J P, Li L 2018 IEEE Photonics J 10 4800512
[44] Zhang J G 2020 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)
[45] Meng W W, Que L C, Lv J, Zhang L W, Zhou Y, Jiang Y D 2019 Results Phys. 14 102461Google Scholar
[46] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304Google Scholar
[47] Jia Y T, Liu Y, Zhang W B, Wang J, Wang Y Z, Gong S X, Liao G S 2018 Opt. Mater. Express 8 597Google Scholar
[48] Zhang J G, Tian J P, Xiao S Y, Li L 2020 IEEE Access 8 46505Google Scholar
计量
- 文章访问数: 4603
- PDF下载量: 146
- 被引次数: 0