搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于V形超表面的透射式太赫兹线偏振转换器

刘靖宇 李文宇 刘智星 舒敬懿 赵国忠

引用本文:
Citation:

基于V形超表面的透射式太赫兹线偏振转换器

刘靖宇, 李文宇, 刘智星, 舒敬懿, 赵国忠

Transmission polarization converter based on V-shaped metasurface in terahertz region

Liu Jing-Yu, Li Wen-Yu, Liu Zhi-Xing, Shu Jing-Yi, Zhao Guo-Zhong
PDF
HTML
导出引用
  • 提出了一种基于V形单元结构阵列的太赫兹波段宽带透射式偏振转换器, 该偏振转换器由光栅-V形超表面-光栅组成, 顶层、底层是一对相互正交的光栅, 中间层为V形超表面, 层与层间被聚酰亚胺隔开. 该结构在0.35—1.11 THz频段内可以实现交叉偏振透射率达到80%以上, 偏振转换率达到99%以上. 对该结构在交叉偏振透射率高和低频率处的表面电流和电场进行仿真, 发现相邻V形结构间会产生偶极振荡, 在透射率高的频率处, 相邻V形结构间电场具有相近的值, 而在透射率低的频率处, 相邻V形结构间电场具有相反的值. 同时, 还分别研究了V形阵列的单层结构和V形阵列后放置光栅的双层结构对于垂直入射x偏振太赫兹波的响应, 并分析了引起高偏振转换率和宽带的物理机理.
    Metasurfaces have attracted extensive attention due to their powerful functions, especially the manipulation of the polarization state of electromagnetic wave in many different areas, which have aroused a lot of research interest. In this work, a broadband transmission polarization converter based on V-shaped element array in terahertz band is designed and analyzed, which consists of grating-V-shaped metasurface-grating. The top layer and bottom layer form a pair of crossed gratings, and the middle layer is a V-shaped metasurface, and the layers are separated by polyimide. The structure parameters of the polarization converter are optimized by CST microwave studio, changes of which can result in narrow band or low transmission. Cross-polarization transmission rate and polarization conversion rate can reach more than 80% and 99%, respectively, in a frequency range from 0.35 THz to 1.11 THz. By studying the electric field distribution in the substrate under the V-shaped metasurface , it is found that the real part of the cross-polarization electric field between adjacent V-shaped metasurfaces presents similar values in a frequency range from 0.35 THz to 1.11 THz, resulting in high cross-polarization transmission. However, the real part of the cross-polarization electric field between adjacent V-shaped metasurfaces presents opposite values, resulting in low cross-polarization transmission at 1.40 THz. At the same time, the responses of the single layer structure of the V-shaped array and the bi-layer structure of the grating placed behind the V-shaped array to vertically incident x-polarized terahertz waves are investigated respectively, and the results show that the single-layer V-shaped array can convert part of linearly polarized incident light into cross-polarization light, however, in the bi-layer structure, Fabry-Perot cavity is formed between the V-shaped array and the grating, and the cross polarization transmission increases. This indicates that the V-shaped array provides the capability of polarization conversion, and the existence of the grating makes the F-P cavity inside the structure create the conditions for the back and forth reflection of terahertz waves. The combined action of the V-shaped metasurface and orthogonal grating results in a high polarization conversion rate.
      通信作者: 赵国忠, guozhong-zhao@126.com
    • 基金项目: 国家重点研发专项 (批准号: 2021YFB3200102)和国家自然科学基金 (批准号: 62071312)资助的课题.
      Corresponding author: Zhao Guo-Zhong, guozhong-zhao@126.com
    • Funds: Project supported by the Special Foundation for State Major Research Program of China (Grant No. 2021YFB3200102) and the National Natural Science Foundation of China (Grant No. 62071312).
    [1]

    Dietlein C, Luukanen A, Popovi Z, Grossman E 2007 IEEE Trans. Antennas Propag. 55 1804Google Scholar

    [2]

    Zhu W, Jiang M, Guan H, Yu J, Lu H, Zhang J, Chen Z 2017 Photonics Res. 5 684Google Scholar

    [3]

    Monticone F, Valagiannopoulos C A, Alù A 2016 Phys. Rev. X 6 041018Google Scholar

    [4]

    Yin X, Ye Z, Rho J, Wang Y, Zhang X 2013 Science 339 1405Google Scholar

    [5]

    Rajaram M, Rajamani A 2021 J. Supercond. Novel Magn. 34 1185Google Scholar

    [6]

    Zhang Z, Qin F, Xu Y, Fu S, Wang Y, Qin Y 2021 Photonics Res. 9 1592Google Scholar

    [7]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar

    [8]

    Stoja E, Konstandin S, Philipp D, Wilke R N, Betancourt D, Bertuch T, Jenne J, Umathum R, Gunther M 2021 Sci. Rep. 11 16179Google Scholar

    [9]

    Lee S H, Shin S, Roh Y, Oh S J, Lee S H, Song H S, Ryu Y S, Kim Y K, Seo M 2020 Biosens. Bioelectron. 170 112663Google Scholar

    [10]

    Engay E, Huo D, Malureanu R, Bunea A I, Lavrinenko A 2021 Nano Lett. 21 3820Google Scholar

    [11]

    Slobozhanyuk A P, Shchelokova A V, Kozachenko A V, et al. 2021 Phys. Rev. Appl. 16 L021002Google Scholar

    [12]

    Peng X Y, Wang B, Lai S, Zhang D H, Teng J H 2012 Opt. Express 20 27756Google Scholar

    [13]

    Zhang N, Zhou P, Zhang L, Weng X, Xie J, Deng L 2015 Appl. Phys. B 118 409Google Scholar

    [14]

    Ra’di Y, Simovski C R, Tretyakov S A 2015 Phys. Rev. Appl. 3 037001Google Scholar

    [15]

    Yin J Y, Wan X, Zhang Q, Cui T J 2015 Sci. Rep. 5 12476Google Scholar

    [16]

    Chen H, Wang J, Ma H, Qu S, Xu Z, Zhang A, Yan M, Li Y 2014 J. Appl. Phys. 115 154504Google Scholar

    [17]

    Han B, Li S, Cao X, Han J, Jidi L, Li Y 2020 AIP Adv. 10 125025Google Scholar

    [18]

    Chaudhary P, Kumar A, Kumar P, Kanaujia B K, Birwal A 2020 Int. J. Electron. 108 411Google Scholar

    [19]

    Wu L, Yang Z, Cheng Y, Gong R, Zhao M, Zheng Y, Duan J A, Yuan X 2014 Appl. Phys. A 116 643Google Scholar

    [20]

    Liu W, Chen S, Li Z, Cheng H, Yu P, Li J, Tian J 2015 Opt. Lett. 40 3185Google Scholar

    [21]

    Zhang Y, Yang L, Li X K, Wang Y L, Huang C P 2020 J. Opt. 22 305101Google Scholar

    [22]

    Kamal B, Chen J, Yingzeng Y, Ren J, Ullah S, Khan W U R 2021 Opt. Mater. Express 11 1343Google Scholar

    [23]

    Liu Z, Zhao B, Jiao C, Zhao L, Han X 2021 Appl. Phys. A 127 825Google Scholar

    [24]

    Yin B, Ma Y 2021 Opt. Commun. 493 126996Google Scholar

    [25]

    Huang X, Xiao B, Yang D, Yang H 2015 Opt. Commun. 338 416Google Scholar

    [26]

    Fan R H, Zhou Y, Ren X P, Peng R W, Jiang S C, Xu D H, Xiong X, Huang X R, Wang M 2015 Adv. Mater. 27 1201Google Scholar

    [27]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A, Chen H T 2013 Science 340 1304Google Scholar

    [28]

    Xiao Z Y, Liu D J, Ma X L, Wang Z H 2015 Opt. Express 23 7053Google Scholar

    [29]

    Chiang Y J, Yen T J 2013 Appl. Phys. Lett. 102 011129Google Scholar

  • 图 1  (a) 透射式偏振转换器示意图; (b) V形结构示意图

    Fig. 1.  (a) Diagram of transmission polarization converter; (b) diagram of V-shaped structure.

    图 2  偏振转换器的 (a) 偏振转换率和 (b) 透射率

    Fig. 2.  (a) Polarization conversion rate and (b) transmission of polarization converter.

    图 3  (a) 偏振转换率和 (b) 交叉偏振透射率与$ \theta $角的关系, 其中(a)中插图是$ \theta $角的定义

    Fig. 3.  (a) Polarization conversion rate and (b) cross polarization transmission with respect to $ \theta $. The illustration of Fig. (a) is the definition of $ \theta $.

    图 4  入射太赫兹波的偏振方向沿着$ u $, $ v $ 轴 (a) 交叉偏振透射率, 插图是$ u $, $ v $轴的定义; (b) 同向偏振透射率; (c) 同向偏振透射相位差; (d) 交叉偏振透射相位差

    Fig. 4.  The polarization direction of the incident THz wave is along the $ u $, $ v $ axis: (a) Transmission of cross-polarization, the insert is the definition of $ u $, $ v $ axis; (b) transmission of co-polarization; (c) phase difference of co-polarization; (d) phase difference of cross-polarization for electric field along $ u $, $ v $ axis.

    图 5  (a) 0.78 THz频率处V形阵列层的表面电流分布; (b) 1.40 THz (左)和0.78 THz (右)频率处衬底的交叉偏振电场分布

    Fig. 5.  (a) The distribution of surface current on the V-shaped array layer for 0.78 THz; (b) the distribution of cross-polarized electric field of the substrate layer for 1.40 THz (left) and 0.78 THz (right).

    图 6  (a) 单层结构下太赫兹波的透射率; (b) 双层结构下太赫兹波的透射率

    Fig. 6.  (a) Transmission of terahertz waves in single layer structure; (b) transmission of terahertz waves in bi-layer layer structure.

  • [1]

    Dietlein C, Luukanen A, Popovi Z, Grossman E 2007 IEEE Trans. Antennas Propag. 55 1804Google Scholar

    [2]

    Zhu W, Jiang M, Guan H, Yu J, Lu H, Zhang J, Chen Z 2017 Photonics Res. 5 684Google Scholar

    [3]

    Monticone F, Valagiannopoulos C A, Alù A 2016 Phys. Rev. X 6 041018Google Scholar

    [4]

    Yin X, Ye Z, Rho J, Wang Y, Zhang X 2013 Science 339 1405Google Scholar

    [5]

    Rajaram M, Rajamani A 2021 J. Supercond. Novel Magn. 34 1185Google Scholar

    [6]

    Zhang Z, Qin F, Xu Y, Fu S, Wang Y, Qin Y 2021 Photonics Res. 9 1592Google Scholar

    [7]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar

    [8]

    Stoja E, Konstandin S, Philipp D, Wilke R N, Betancourt D, Bertuch T, Jenne J, Umathum R, Gunther M 2021 Sci. Rep. 11 16179Google Scholar

    [9]

    Lee S H, Shin S, Roh Y, Oh S J, Lee S H, Song H S, Ryu Y S, Kim Y K, Seo M 2020 Biosens. Bioelectron. 170 112663Google Scholar

    [10]

    Engay E, Huo D, Malureanu R, Bunea A I, Lavrinenko A 2021 Nano Lett. 21 3820Google Scholar

    [11]

    Slobozhanyuk A P, Shchelokova A V, Kozachenko A V, et al. 2021 Phys. Rev. Appl. 16 L021002Google Scholar

    [12]

    Peng X Y, Wang B, Lai S, Zhang D H, Teng J H 2012 Opt. Express 20 27756Google Scholar

    [13]

    Zhang N, Zhou P, Zhang L, Weng X, Xie J, Deng L 2015 Appl. Phys. B 118 409Google Scholar

    [14]

    Ra’di Y, Simovski C R, Tretyakov S A 2015 Phys. Rev. Appl. 3 037001Google Scholar

    [15]

    Yin J Y, Wan X, Zhang Q, Cui T J 2015 Sci. Rep. 5 12476Google Scholar

    [16]

    Chen H, Wang J, Ma H, Qu S, Xu Z, Zhang A, Yan M, Li Y 2014 J. Appl. Phys. 115 154504Google Scholar

    [17]

    Han B, Li S, Cao X, Han J, Jidi L, Li Y 2020 AIP Adv. 10 125025Google Scholar

    [18]

    Chaudhary P, Kumar A, Kumar P, Kanaujia B K, Birwal A 2020 Int. J. Electron. 108 411Google Scholar

    [19]

    Wu L, Yang Z, Cheng Y, Gong R, Zhao M, Zheng Y, Duan J A, Yuan X 2014 Appl. Phys. A 116 643Google Scholar

    [20]

    Liu W, Chen S, Li Z, Cheng H, Yu P, Li J, Tian J 2015 Opt. Lett. 40 3185Google Scholar

    [21]

    Zhang Y, Yang L, Li X K, Wang Y L, Huang C P 2020 J. Opt. 22 305101Google Scholar

    [22]

    Kamal B, Chen J, Yingzeng Y, Ren J, Ullah S, Khan W U R 2021 Opt. Mater. Express 11 1343Google Scholar

    [23]

    Liu Z, Zhao B, Jiao C, Zhao L, Han X 2021 Appl. Phys. A 127 825Google Scholar

    [24]

    Yin B, Ma Y 2021 Opt. Commun. 493 126996Google Scholar

    [25]

    Huang X, Xiao B, Yang D, Yang H 2015 Opt. Commun. 338 416Google Scholar

    [26]

    Fan R H, Zhou Y, Ren X P, Peng R W, Jiang S C, Xu D H, Xiong X, Huang X R, Wang M 2015 Adv. Mater. 27 1201Google Scholar

    [27]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A, Chen H T 2013 Science 340 1304Google Scholar

    [28]

    Xiao Z Y, Liu D J, Ma X L, Wang Z H 2015 Opt. Express 23 7053Google Scholar

    [29]

    Chiang Y J, Yen T J 2013 Appl. Phys. Lett. 102 011129Google Scholar

  • [1] 吕行, 富容国, 常本康, 郭欣, 王芝. 透射式GaAs光电阴极性能提高以及结构优化. 物理学报, 2024, 73(3): 037801. doi: 10.7498/aps.73.20231542
    [2] 韦进志, 王金浩, 陈俊学. 相干控制的布洛赫表面波偏振转换. 物理学报, 2023, 72(21): 214201. doi: 10.7498/aps.72.20231050
    [3] 才啟胜, 黄旻, 韩炜, 丛麟骁, 路向宁. 外差式偏振干涉成像光谱技术研究. 物理学报, 2017, 66(16): 160702. doi: 10.7498/aps.66.160702
    [4] 付亚男, 张新群, 赵国忠, 李永花, 于佳怡. 基于谐振环的太赫兹宽带偏振转换器件研究. 物理学报, 2017, 66(18): 180701. doi: 10.7498/aps.66.180701
    [5] 金柯, 刘永强, 韩俊, 杨崇民, 王颖辉, 王慧娜. 基于超材料的中波红外宽带偏振转换研究. 物理学报, 2017, 66(13): 134201. doi: 10.7498/aps.66.134201
    [6] 牟欢, 李保权, 曹阳. 基于空间应用的透射式微型微束调制X射线源. 物理学报, 2016, 65(14): 140703. doi: 10.7498/aps.65.140703
    [7] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [8] 张晓旭, 张胜海, 吴天安, 孙巍阳. 1550 nm-VCSELs在偏振保持光反馈和正交光注入下的偏振转换特性. 物理学报, 2016, 65(21): 214206. doi: 10.7498/aps.65.214206
    [9] 周桢力, 夏光琼, 邓涛, 赵茂戎, 吴正茂. 互注入垂直腔表面发射激光器的多次偏振转换特性研究. 物理学报, 2015, 64(2): 024208. doi: 10.7498/aps.64.024208
    [10] 钟东洲, 计永强, 邓涛, 周开利. 电光调制对外部光注入垂直腔表面发射激光器的偏振转换及其非线性动力学行为的操控性研究. 物理学报, 2015, 64(11): 114203. doi: 10.7498/aps.64.114203
    [11] 邓文娟, 彭新村, 邹继军, 江少涛, 郭栋, 张益军, 常本康. 变组分AlGaAs/GaAs透射式光电阴极分辨力特性分析. 物理学报, 2014, 63(16): 167902. doi: 10.7498/aps.63.167902
    [12] 曹柱荣, 董建军, 杨正华, 詹夏宇, 袁铮, 张海鹰, 江少恩, 丁永坤. 一种透射式软X光带通方法研究. 物理学报, 2013, 62(4): 045205. doi: 10.7498/aps.62.045205
    [13] 蔡志鹏, 杨文正, 唐伟东, 侯洵. 大梯度指数掺杂透射式GaAs光电阴极响应特性的理论分析. 物理学报, 2012, 61(18): 187901. doi: 10.7498/aps.61.187901
    [14] 赵静, 常本康, 张益军, 张俊举, 石峰, 程宏昌, 崔东旭. 透射式蓝延伸GaAs光电阴极光学结构对比. 物理学报, 2012, 61(3): 037803. doi: 10.7498/aps.61.037803
    [15] 刘洋, 徐进, 许雄, 沈飞, 魏彦玉, 黄民智, 唐涛, 王文祥, 宫玉彬. V形曲折矩形槽慢波结构的研究. 物理学报, 2012, 61(15): 154208. doi: 10.7498/aps.61.154208
    [16] 张益军, 牛军, 赵静, 邹继军, 常本康. 指数掺杂结构对透射式GaAs光电阴极量子效率的影响研究. 物理学报, 2011, 60(6): 067301. doi: 10.7498/aps.60.067301
    [17] 赵静, 张益军, 常本康, 熊雅娟, 张俊举, 石峰, 程宏昌, 崔东旭. 高性能透射式GaAs光电阴极量子效率拟合与结构研究. 物理学报, 2011, 60(10): 107802. doi: 10.7498/aps.60.107802
    [18] 邓舒鹏, 李文萃, 黄文彬, 刘永刚, 鲁兴海, 宣丽. 基于透射式液晶/聚合物光栅的分布反馈式激光器的研究. 物理学报, 2011, 60(5): 056102. doi: 10.7498/aps.60.056102
    [19] 王晓晖, 常本康, 钱芸生, 高频, 张益军, 乔建良, 杜晓晴. 透射式负电子亲和势GaN光电阴极的光谱响应研究. 物理学报, 2011, 60(5): 057902. doi: 10.7498/aps.60.057902
    [20] 杨智, 邹继军, 常本康. 透射式指数掺杂GaAs光电阴极最佳厚度研究. 物理学报, 2010, 59(6): 4290-4295. doi: 10.7498/aps.59.4290
计量
  • 文章访问数:  4322
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-28
  • 修回日期:  2022-07-30
  • 上网日期:  2022-11-28
  • 刊出日期:  2022-12-05

/

返回文章
返回