搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超材料的中波红外宽带偏振转换研究

金柯 刘永强 韩俊 杨崇民 王颖辉 王慧娜

引用本文:
Citation:

基于超材料的中波红外宽带偏振转换研究

金柯, 刘永强, 韩俊, 杨崇民, 王颖辉, 王慧娜

Middle-wave infrared and broadband polarization conversion based on metamaterial

Jin Ke, Liu Yong-Qiang, Han Jun, Yang Chong-Min, Wang Ying-Hui, Wang Hui-Na
PDF
导出引用
  • 基于硅纳米块阵列和亚波长金属光栅,硅纳米块长轴与金属光栅夹角为45,本文设计了一种高效、宽带偏振转换结构.模拟计算表明该结构实现了线偏振光90旋转,在3.44.5 m波段偏振转换率大于60%,在35 m光谱范围内的转换对比率大于104.由于该结构光学性能优异,制备难度低,可以应用于光传输控制.
    The polarization state is one of the most important basic properties of the electromagnetic wave. Researchers have made great efforts to manipulate it. Control of the polarization state of an electromagnetic wave is a promising promotion for figuring out many practical engineering problems in infrared remote sensing, optical communication and infrared target recognition. In this paper, we propose a wide-band and high-efficient linear-polarization converter on the basis of the metamaterial, which is comprised of silicon nanorod array and subwavelength metal grating that can realize a 90 polarization converter of linearly polarized light and is composed of silicon nanorod array cascade subwavelength metal grating:on one side of design located is the cuboid silicon nanorod array, on the other side of the design the subwavelength metallic grating on the silicon substrate, and the angle between silicon nanorod array and subwavelength metal grating is 45. Because of the deference in geometrical dimension between the long axis and the short axis of the nanorod, results of the equivalent refractive index of the long axis direction and the short axis direction are different, and the anisotropic birefrigent effect is formed. Based on the Jones matrix, the feasibility of polarization converter is described. The polarization converter efficiency and polarization state of the structure are simulated and analyzed by the finite-difference time-domain method. And the variation characteristics of polarization converter transmittance are simulated under several nanorod with different heights and widths. In order to improve the contrast ratio and the transmission, the effective medium theory is used to design the metal grating for improving the transmission. According to the theory of optical thin film, we design the subwavelength metal grating with suitable duty cycle as the anti-reflection coating. The simulation results show that the structure can realize 90 rotation of linearly polarized light, the polarization converter efficiency is greater than 60% in a spectral range of 3.4-4.5 m and the contrast ratio is greater than 104 in a spectral range of 3-5 m. This structure can effectively realize the 90 polarization conversion in the spectral range of medium wave infrared and has the advantages of high conversion efficiency and high contrast ratio. In addition, the range of spectral of polarization conversion can be changed by adjusting the height and width of the nanorod. It can be applied to optical transmission control of optical network and optical information system, because of its excellent optical performance with the advantages of high polarization conversion efficiency and wide band in the mid-infrared waveband and low preparation difficulty.
      Corresponding author: Jin Ke, jinkegoodman@163.com
    [1]

    Zhao H J, Yang S L, Zhang D 2009 Acta Phys. Sin. 58 6236 (in Chinese)[赵华君, 杨守良, 张东 2009 物理学报 58 6236]

    [2]

    Chen J, Yan L S, Pan W, Luo B, Guo Z 2011 Acta Opt. Sin. 31 1224001 (in Chinese)[陈娟, 闫连山, 潘炜, 罗斌, 郭振 2011 光学学报 31 1224001]

    [3]

    Sundaram C M, Prabakaran K, Anbarasan P M, Rajesh K B, Musthafa A M 2016 Chin. Phys. Lett. 33 64203

    [4]

    Dong C, Li B, Li H X, Liu H, Chen M Q, Li D D, Yan C C, Zhang D H 2016 Chin. Phys. Lett. 33 74201

    [5]

    Wang P, Shang Y P, Li X, Xu X J 2015 Chin. J. Lasers 42 116002 (in Chinese)[王鹏, 尚亚萍, 李霄, 许晓军 2015 中国激光 42 116002]

    [6]

    Li C Z, Wu B J 2010 Acta Opt. Sin. 30 3153 (in Chinese)[李崇真, 武保剑 2010 光学学报 30 3153]

    [7]

    Han J F, Cao X Y, Gao J, Li S J, Zhang C 2016 Acta Phys. Sin. 65 044201 (in Chinese)[韩江枫, 曹祥玉, 高军, 李思佳, 张晨 2016 物理学报 65 044201]

    [8]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [9]

    Fan Y N, Cheng Y Z, Nie Y, Wang X, Gong R Z 2013 Chin. Phys. B 22 067801

    [10]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [11]

    Yang H H, Cao X Y, Gao J, Liu T, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese)[杨欢欢, 曹祥玉, 高军, 刘涛, 李文强 2013 物理学报 62 064103]

    [12]

    Li S J, Gao J, Cao X Y, Zhang Z, Zheng Y J, Zhang C 2015 Opt. Express 23 3523

    [13]

    Huang Ch P 2015 Opt. Express 23 251150

    [14]

    Genet C, Ebbesen T W 2007 Nature 445 39

    [15]

    Cong L, Cao W, Zhang X, Tian Z, Han J, Zhang W 2013 Appl. Phys. Lett. 103 171107

    [16]

    Huang C P, Wang Q J, Yin X G, Zhang Y, Li J Q, Zhu Y Y 2014 Adv. Opt. Mater. 2 723

    [17]

    Cheng H, Chen S Q, Yu P, Li J X, Xie B Y, Li Z C, Tian J G 2013 Appl. Phys. Lett. 103 223102

    [18]

    Dong G X, Shi H Y, Xia S, Li W, Zhang A X, Xu Z, Wei X Y 2016 Chin. Phys. B 25 084202

    [19]

    Wu J L, Lin B Q, Da X Y 2016 Chin. Phys. B 25 088101

    [20]

    Zhu Z H, Liu K, Xu W, Luo Z, Guo C C, Yang B, Ma T, Yuan X D, Ye W M 2012 Opt. Lett. 37 4008

    [21]

    Liao Y L, Zhao Y 2014 Opt. Quant. Electron. 46 641

  • [1]

    Zhao H J, Yang S L, Zhang D 2009 Acta Phys. Sin. 58 6236 (in Chinese)[赵华君, 杨守良, 张东 2009 物理学报 58 6236]

    [2]

    Chen J, Yan L S, Pan W, Luo B, Guo Z 2011 Acta Opt. Sin. 31 1224001 (in Chinese)[陈娟, 闫连山, 潘炜, 罗斌, 郭振 2011 光学学报 31 1224001]

    [3]

    Sundaram C M, Prabakaran K, Anbarasan P M, Rajesh K B, Musthafa A M 2016 Chin. Phys. Lett. 33 64203

    [4]

    Dong C, Li B, Li H X, Liu H, Chen M Q, Li D D, Yan C C, Zhang D H 2016 Chin. Phys. Lett. 33 74201

    [5]

    Wang P, Shang Y P, Li X, Xu X J 2015 Chin. J. Lasers 42 116002 (in Chinese)[王鹏, 尚亚萍, 李霄, 许晓军 2015 中国激光 42 116002]

    [6]

    Li C Z, Wu B J 2010 Acta Opt. Sin. 30 3153 (in Chinese)[李崇真, 武保剑 2010 光学学报 30 3153]

    [7]

    Han J F, Cao X Y, Gao J, Li S J, Zhang C 2016 Acta Phys. Sin. 65 044201 (in Chinese)[韩江枫, 曹祥玉, 高军, 李思佳, 张晨 2016 物理学报 65 044201]

    [8]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [9]

    Fan Y N, Cheng Y Z, Nie Y, Wang X, Gong R Z 2013 Chin. Phys. B 22 067801

    [10]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [11]

    Yang H H, Cao X Y, Gao J, Liu T, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese)[杨欢欢, 曹祥玉, 高军, 刘涛, 李文强 2013 物理学报 62 064103]

    [12]

    Li S J, Gao J, Cao X Y, Zhang Z, Zheng Y J, Zhang C 2015 Opt. Express 23 3523

    [13]

    Huang Ch P 2015 Opt. Express 23 251150

    [14]

    Genet C, Ebbesen T W 2007 Nature 445 39

    [15]

    Cong L, Cao W, Zhang X, Tian Z, Han J, Zhang W 2013 Appl. Phys. Lett. 103 171107

    [16]

    Huang C P, Wang Q J, Yin X G, Zhang Y, Li J Q, Zhu Y Y 2014 Adv. Opt. Mater. 2 723

    [17]

    Cheng H, Chen S Q, Yu P, Li J X, Xie B Y, Li Z C, Tian J G 2013 Appl. Phys. Lett. 103 223102

    [18]

    Dong G X, Shi H Y, Xia S, Li W, Zhang A X, Xu Z, Wei X Y 2016 Chin. Phys. B 25 084202

    [19]

    Wu J L, Lin B Q, Da X Y 2016 Chin. Phys. B 25 088101

    [20]

    Zhu Z H, Liu K, Xu W, Luo Z, Guo C C, Yang B, Ma T, Yuan X D, Ye W M 2012 Opt. Lett. 37 4008

    [21]

    Liao Y L, Zhao Y 2014 Opt. Quant. Electron. 46 641

  • [1] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料. 物理学报, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [2] 韦进志, 王金浩, 陈俊学. 相干控制的布洛赫表面波偏振转换. 物理学报, 2023, 72(21): 214201. doi: 10.7498/aps.72.20231050
    [3] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [4] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器. 物理学报, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [5] 刘靖宇, 李文宇, 刘智星, 舒敬懿, 赵国忠. 基于V形超表面的透射式太赫兹线偏振转换器. 物理学报, 2022, 71(23): 230701. doi: 10.7498/aps.71.20221259
    [6] 江孝伟, 武华. 吸收波长和吸收效率可控的超材料吸收器. 物理学报, 2021, 70(2): 027804. doi: 10.7498/aps.70.20201173
    [7] 胡宝晶, 黄铭, 黎鹏, 杨成福. 基于纳米盘棒耦合的多频段等离激元诱导透明研究. 物理学报, 2020, 69(13): 134202. doi: 10.7498/aps.69.20200093
    [8] 崔铁军, 吴浩天, 刘硕. 信息超材料研究进展. 物理学报, 2020, 69(15): 158101. doi: 10.7498/aps.69.20200246
    [9] 付亚男, 张新群, 赵国忠, 李永花, 于佳怡. 基于谐振环的太赫兹宽带偏振转换器件研究. 物理学报, 2017, 66(18): 180701. doi: 10.7498/aps.66.180701
    [10] 汪肇坤, 杨振宇, 陶欢, 赵茗. 复合结构螺旋超材料对光波前的高效调控. 物理学报, 2016, 65(21): 217802. doi: 10.7498/aps.65.217802
    [11] 张晓旭, 张胜海, 吴天安, 孙巍阳. 1550 nm-VCSELs在偏振保持光反馈和正交光注入下的偏振转换特性. 物理学报, 2016, 65(21): 214206. doi: 10.7498/aps.65.214206
    [12] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [13] 徐新河, 刘鹰, 甘月红, 刘文苗. 磁电耦合超材料本构矩阵获取方法的研究. 物理学报, 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [14] 周桢力, 夏光琼, 邓涛, 赵茂戎, 吴正茂. 互注入垂直腔表面发射激光器的多次偏振转换特性研究. 物理学报, 2015, 64(2): 024208. doi: 10.7498/aps.64.024208
    [15] 钟东洲, 计永强, 邓涛, 周开利. 电光调制对外部光注入垂直腔表面发射激光器的偏振转换及其非线性动力学行为的操控性研究. 物理学报, 2015, 64(11): 114203. doi: 10.7498/aps.64.114203
    [16] 邹涛波, 胡放荣, 肖靖, 张隆辉, 刘芳, 陈涛, 牛军浩, 熊显名. 基于超材料的偏振不敏感太赫兹宽带吸波体设计. 物理学报, 2014, 63(17): 178103. doi: 10.7498/aps.63.178103
    [17] 刘亚红, 方石磊, 顾帅, 赵晓鹏. 多频与宽频超材料吸收器. 物理学报, 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [18] 沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器. 物理学报, 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [19] 孙良奎, 程海峰, 周永江, 王军, 庞永强. 一种基于超材料的吸波材料的设计与制备. 物理学报, 2011, 60(10): 108901. doi: 10.7498/aps.60.108901
    [20] 付非亚, 陈微, 周文君, 刘安金, 邢名欣, 王宇飞, 郑婉华. 纳米三明治结构光子超材料中电磁场振荡行为研究. 物理学报, 2010, 59(12): 8579-8583. doi: 10.7498/aps.59.8579
计量
  • 文章访问数:  5123
  • PDF下载量:  364
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-18
  • 修回日期:  2017-05-01
  • 刊出日期:  2017-07-05

/

返回文章
返回