搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于狄拉克半金属纳米线的太赫兹可调七波段完美吸收器的模拟仿真

卢文强 易颖婷 宋前举 周自刚 易有根 曾庆栋 易早

引用本文:
Citation:

基于狄拉克半金属纳米线的太赫兹可调七波段完美吸收器的模拟仿真

卢文强, 易颖婷, 宋前举, 周自刚, 易有根, 曾庆栋, 易早

Terahertz tunable seven-band perfect absorber based on high frequency detection function of Dirac semi-metallic nanowires

Wenqiang Lu, Yingting Yi, Qianju Song, Zigang Zhou, Yougen Yi, Qingdong Zeng, Zao Yi
PDF
导出引用
  • 本文设计了一种高灵敏度、高品质因子、高品质因数、高频探测、双固定功能的太赫兹可调完美吸收器。该吸收器可实现4 -14.5 THz范围内七个波段的完美吸收。在进行结构设计时,我们将线阵结构的参数与周期进行了关联。我们通过计算吸收器的相对阻抗来对器件宏观层面的电磁进行解释。并通过分析共振频率点的表面电场和磁场分布,来分析该器件的物理机制。我们计算了七个共振频点的品质因数,其中,最大Q值为219.41。通过改变外部折射率,我们发现该吸收器的灵敏度和FOM值最大可达5421.43 (GHz/RIU)和35.204 (1/RIU)。我们通过讨论关键参数对器件的影响,得出该器件可实现双固定性能的选择,七波段吸收以及全波段反射。通过改变狄拉克半金属的费米能级,证明该吸收器具有良好的动态调节能力。最后,我们通过改变外部电磁波的入射角发现该器件在中低频段具有良好的稳定性,但在高频段受外部入射角影响较大。我们所提出的吸收器在成像、探测、检测等领域具有巨大的应用潜力,相关工作对光电器件的设计提供了思路。
    This study introduces a tunable perfect absorber in the terahertz range based on Dirac semimetal nanowires, featuring high sensitivity, quality factor, and dual functionality. The absorber achieves perfect absorption across seven bands within the range of 0 - 14.5 THz: f1=5.032 THz (84.43%), f2=5.859 THz (96.23%), f3=7.674 THz (91.36%), f4=9.654 THz (99.02%), f5=11.656 THz (93.84%), f6=12.514 THz (98.47%), and f7=14.01 THz (97.32%). To ensure structural stability during design, the periodicity of the wire array structure was carefully considered. Verification of the absorber's performance was conducted through impedance matching calculations. Analysis of the surface electric and magnetic fields at resonance frequencies elucidates the underlying physical mechanisms governing the absorber's characteristics. Quality factors (Q) for the seven resonance points were computed, with a maximum Q of 219.41 observed. Further investigations by varying the external refractive index reveal maximum sensitivity and figure of merit (FOM) values of 5421.43 (GHz/RIU) and 35.204 (1/RIU), respectively. Then, by discussing the influence of key parameters on the device, we conclude that the device can achieve the choice of dual fixed performance. Dynamic modulation capabilities were demonstrated by varying the Dirac semimetal's Fermi energy (BDS). Additionally, examination of the device's angle of incidence dependence highlighted stable performance in the mid-low frequency range but cautioned about high-frequency range, necessitating careful consideration in practical applications. In conclusion, the proposed absorber holds significant promise for imaging, sensing, and detection applications, offering valuable insights for optoelectronic device design.
  • [1]

    Li J, Wang G, Yue Z, Liu J, Li J, Zheng C, Zhang Y, Zhang Y, Yao J 2022 Opto-Electron Adv 5 210062.

    [2]

    Zhang X J, Lu Y Q, Chen Y F, Zhu Y Y, Zhu S N 2017 Acta Phys. Sin. 66 148705 (张学进, 陆延青, 陈延峰, 朱永元, 祝世宁 2017 物理学报 66 148705)

    [3]

    Huang R T, Li J S 2023 Acta Phys. Sin. 72 054203(黄若彤, 李九生 2023物理学报72 054203)

    [4]

    Yue Z, Li J, Li J, Zheng C, Liu J, Wang G, Xu H, Chen M, Zhang Y, Zhang Y, Yao J 2022 Opto-Electron Sci 1 210014.

    [5]

    Li W X, Zhao W C, Cheng S B, Yang W X, Yi Z, Li G F, Zeng L C, Li H L, Wu P H, Cai S S 2023 Surfaces and Interfaces 40 103042.

    [6]

    Sun W F, Wang X K, Zhang Y 2022 Opto-Electron Sci 1 220003.

    [7]

    Li W X, Yi Y T, Yang H, Cheng S B, Yang W X, Zhang H F, Yi Z, Yi Y G, Li H L 2023 Commun. Theor. Phys. 75 045503.

    [8]

    Chen J, Yang M S, Li Y D, Cheng D K, Guo G L, Jiang L, Zhang H T, Song X X, Ye Y X, Ren Y P, Ren X D, Zhang Y T, Yao J Q 2019 Acta Phys. Sin. 68 247802(陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨 2019 物理学报 68 247802)

    [9]

    Zhao H, Wang X K, Liu S T, Zhang Y 2023 Opto-Electron Adv 6 220012.

    [10]

    Song H J, Nagatsuma T 2011 IEEE Transactions on Terahertz Science and Technology 1 256-263.

    [11]

    Gigli C, Leo G 2022 Opto-Electron Adv 5 210093.

    [12]

    Li F, Li Y, Tang T, Liao Y, Lu Y, Liu X, Wen Q 2022 Journal of Alloys and Compounds 928 167232.

    [13]

    Zhu J, Xiong J Y 2023 Measurement 220 113302.

    [14]

    Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2015 Advanced Optical Materials 3 376.

    [15]

    Li W X, Cheng S B, Zhang H F, Yi Z, Tang B, Ma C, Wu P H, Zeng Q D, Raza R 2024 Commun. Theor. Phys. 76 065701.

    [16]

    Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597.

    [17]

    Cao T, Lian M, Chen X, Mao L, Liu K, Jia J, Su Y, Ren H, Zhang S, Xu Y, Chen J, Tian Z, Guo D M 2022 Opto-Electron Sci 1 210010.

    [18]

    Shen X P, Cui T J, Ye J X 2012 Acta Phys. Sin. 61 058101(沈晓鹏, 崔铁军, 叶建祥 2012物理学报 61 058101).

    [19]

    He M Y, Wang Q Q, Zhang H, Xiong J, Liu X P, Wang J Q 2024 Phys. Scr. 99 035506.

    [20]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402.

    [21]

    Zhan Y, Yin H, Wang J, Yao H, Fan C 2022 Results in Optics 8 100255.

    [22]

    Mao Y, Zhang H, Xiong J, Liu X P, Wang Q Q, Wang J Q 2024 J. Phys. D: Appl. Phys. 57 255111.

    [23]

    Ullah K, Meng Y, Sun Y, Yang Y, Wang X, Wang A, Wang X, Xiu F, Shi Y, Wang F 2020 Appl. Phys. Lett. 117 011102.

    [24]

    Moll P J W, Nair N L, Helm T, Potter A C, Kimchi I, Vishwanath A, Analytis J G 2016 Nature 535 266-270.

    [25]

    Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B, Cava R J 2014 Phys. Rev. Lett 113 027603.

    [26]

    Cheng S B, Li W X, Zhang H F, Akhtar M N, Yi Z, Zeng Q D, Ma C, Sun T Y, Wu P H, Ahmad S 2024 Optics Communications 569 130816.

    [27]

    Chen Z Y, Cheng S B, Zhang H F, Yi Z, Tang B, Chen J, Zhang J G, Tang C J 2024 Physics Letters A 517 129675.

    [28]

    Li W X, Ma J, Zhang H F, Cheng S B, Yang W X, Yi Z, Yang H, Zhang J G, Wu X W, Wu P H 2023 Phys. Chem. Chem. Phys. 25 8489-8496.

    [29]

    Liang S R, Cheng S B, Zhang H F, Yang W X, Yi Z, Zeng Q D, Tang B, Wu P H, Ahmad S, Sun T Y 2024 Ceramics International 50 23611–23620.

    [30]

    Li W X, Zhao W C, Cheng S B, Zhang H F, Yi Z, Sun T Y, Wu P H, Zeng Q D, Raza R 2024 Optics and Lasers in Engineering 181 108368.

    [31]

    Ma J, Wu P H, Li W X, Liang S R, Shangguan Q Y, Cheng S B, Tian Y H, Fu J Q, Zhang L B 2023 Diamond and Related Materials 136 109960.

    [32]

    Zhu J, Xiong J Y 2023 Optics Express 31 36677.

    [33]

    Huang S L, Chen Y, Yu C C, Chen S J, Zhou Z K, Liang J, Dai W 2024 Chinese Journal of Physics 89 740-747.

    [34]

    Fu R, Chen K X, Li Z L, Yu S H, Zheng G X 2022 Opto-Electron Sci 1 220011.

    [35]

    Wang J L, Hassan M, Liu J W, Yu S H 2018 Advanced Materials 30 1803430.

    [36]

    Cheng C, Gonela R K, Gu Q, Haynie D T 2005 Nano Lett 5 175.

    [37]

    Qu T, Zhao Y, Li Z, Wang P, Cao S, Xu Y, Li Y, Chen A 2016 Nanoscale 8 3268.

    [38]

    Shangguan Q Y, Zhao Y, Song Z J, Wang J, Yang H, Chen J, Liu C, Cheng S B, Yang W X, Yi Z 2022 Diamond & Related Materials 128 109273.

    [39]

    Li W X, Liu Y H, Ling L, Sheng Z X, Cheng S B, Yi Z, Wu P H, Zeng Q D, Tang B, Ahmad S 2024 Surfaces and Interfaces 48 104248.

    [40]

    Liang S, Xu F, Li W, Yang W, Cheng S, Yang H, Chen J, Yi Z, Jiang P 2023 Applied Thermal Engineering 232 121074.

    [41]

    Zhang Y J, Yi Y T, Li W X, Liang S R, Ma J, Cheng S B, Yang W X, Yi Y G 2023 Coatings13 531.

    [42]

    Huang X M, Chen Y, Chen S J, Yang K, Liang J, Zhou Z K, Dai W 2023 Results in Physics 47 106364.

    [43]

    Zeng C, Lu H, Mao D, Du Y, Hua H, Zhao W, Zhao J 2022 Opto-Electron Adv 5 200098.

    [44]

    Li W X, Liu M S, Cheng S B, Zhang H F, Yang W X, Yi Z, Zeng Q D, Tang B, Ahmad S, Sun T Y 2024 Diamond and Related Materials 142 110793.

    [45]

    Liang S, Xu F, Yang H, Cheng S, Yang W, Yi Z, Song Q, Wu P, Chen J, Tang C 2023 Optics & Laser Technology 158 108789.

    [46]

    Shangguan Q, Chen Z, Yang H, Cheng S, Yang W, Yi Z, Wu X, Wang S, Yi Y, Wu P 2022 Sensors 22 6483.

    [47]

    Shangguan Q, Chen H, Yang H, Liang S, Zhang Y J, Cheng S B, Yang W X, Yi Z, Luo Y, Wu P H 2022 Diamond & Related Materials 125 108973.

    [48]

    Sourav A, Li Z, Huang Z, Botcha V D, Hu C, Ao J P, Peng Y, Kuo H C, Wu J, Liu X, Ang K W 2018 Advanced Optical Materials 6 1800461.

    [49]

    Piper J R, Liu V, Fan S 2014 Appl. Phys. Lett. 104 251110.

    [50]

    Li H, Qin M, Wang L, Zhai X, Ren R, Hu J 2017 Optics Express 25 31612.

    [51]

    Wang Y, Cheng W, Qin J, Han Z 2019 Optics Communications 434 163-166.

    [52]

    Zhou K, Cheng Q, Lu L, Li B, Song J, Luo Z 2020 Optics Express 28 1647-1656.

    [53]

    Li W, Xu F, Cheng S, Yang W, Liu B, Liu M, Yi Z, Tang B, Chen J, Sun T 2024 Optics & Laser Technology 169 110186.

    [54]

    Zheng W, Fan F, Chen M, Bai J J, Chang S J 2017 Infrared Laser Eng 46 420003.

    [55]

    Pan W, Yan Y, Ma Y, Shen D 2019 Optics Communications 431 115-119.

    [56]

    Lu W, Wu P, Bian L, Yan J, Yi Z, Liu M, Tang B, Li G, Liu C 2024 Optics & Laser Technology 174 110650.

    [57]

    Chen T, Jiang W, Yin X 2021 Superlattices and Microstructures 154 106898.

  • [1] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性. 物理学报, doi: 10.7498/aps.73.20231357
    [2] 栾迦淇, 张亚杰, 陈羽, 郜定山, 李培丽, 李嘉琦, 李佳琪. 基于遗传算法的太赫兹多功能可重构狄拉克半金属编码超表面. 物理学报, doi: 10.7498/aps.73.20240225
    [3] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面. 物理学报, doi: 10.7498/aps.72.20221962
    [4] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料. 物理学报, doi: 10.7498/aps.72.20222336
    [5] 于博, 庄书磊, 王正心, 王曼诗, 郭兰军, 李鑫煜, 郭文瑞, 苏文明, 龚诚, 刘伟伟. 基于纳米印刷技术的双螺旋太赫兹可调超表面. 物理学报, doi: 10.7498/aps.71.20212408
    [6] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, doi: 10.7498/aps.71.20212400
    [7] 张建国, 易早, 康永强, 任浩, 王文艳, 周婧璠, 郝慧珍, 常会东, 高英豪, 陈亚慧, 李艳娜. 局域表面等离子体谐振辅助的高效率宽频带可调谐偏振转换超表面. 物理学报, doi: 10.7498/aps.70.20220288
    [8] 张建国, 易早, 康永强, 任浩, 王文艳, 周婧璠, 郝慧珍, 常会东, 高英豪, 陈亚慧, 李艳娜. 局域表面等离子体谐振辅助的高效率宽频带可调谐偏振转换超表面. 物理学报, doi: 10.7498/aps.71.20220288
    [9] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器. 物理学报, doi: 10.7498/aps.71.20212303
    [10] 王玥, 崔子健, 张晓菊, 张达篪, 张向, 周韬, 王暄. 超材料赋能先进太赫兹生物化学传感检测技术的研究进展. 物理学报, doi: 10.7498/aps.70.20211752
    [11] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生. 物理学报, doi: 10.7498/aps.68.20182147
    [12] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨. 基于超材料的可调谐的太赫兹波宽频吸收器. 物理学报, doi: 10.7498/aps.68.20191216
    [13] 翟世龙, 王元博, 赵晓鹏. 基于声学超材料的低频可调吸收器. 物理学报, doi: 10.7498/aps.68.20181908
    [14] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, doi: 10.7498/aps.67.20180114
    [15] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, doi: 10.7498/aps.66.204101
    [16] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体. 物理学报, doi: 10.7498/aps.65.018101
    [17] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究. 物理学报, doi: 10.7498/aps.64.117801
    [18] 戴雨涵, 陈小浪, 赵强, 张继华, 陈宏伟, 杨传仁. 太赫兹波段谐振频率可调的开口谐振环结构. 物理学报, doi: 10.7498/aps.62.064101
    [19] 刘冉, 史金辉, E. Plum, V.A. Fedotov, N.I. Zheludev. 基于平面超材料的Fano谐振可调谐研究. 物理学报, doi: 10.7498/aps.61.154101
    [20] 艾 芬, 白 洋, 徐 芳, 乔利杰, 周 济. 基于铁氧体基板的开口谐振环的可调微波左手特性研究. 物理学报, doi: 10.7498/aps.57.4189
计量
  • 文章访问数:  34
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-23

/

返回文章
返回