-
处于太赫兹频段的电磁波表现出许多极具发展前景的特点, 如非电离、“指纹”谱、对弱共振敏感、对非极性物质穿透性强等特性, 并逐步发展成物理、信息、材料、生物、化学等学科基础与应用研究关注的热点. 然而, 在生物、化学物质的传感检测应用中, 当待测物尺度小于入射太赫兹波长时, 微小扰动和细微特征难以被太赫兹波检测到, 并且无法与太赫兹波之间产生充分的相互作用, 这无疑阻碍了太赫兹生物化学传感检测技术的进一步发展. 而太赫兹超材料的迅速发展提供了解决这一问题的全新思路. 近年来, 一系列基于太赫兹超材料的研究工作与新材料、新结构、新机制结合, 为实现高灵敏太赫兹生物化学传感检测带来了新的机遇. 本文主要综述了最近太赫兹超材料应用于生物化学传感检测技术的研究进展, 并简述了评价器件性能的关键参数. 根据材料特性、设计策略的不同, 对基于金属-介质、碳基纳米材料、全硅等太赫兹超材料生物化学传感检测相关工作做了总结, 并在文末对太赫兹超材料传感检测技术的未来发展方向做出了展望.The electromagnetic wave in the terahertz region shows many promising properties, such as non-ionizing, sensitivity to weak resonance, and gradually becomes a basic and applied research hotspot of physics, information, materials, biology, chemistry and other disciplines. However, the analyte molecules tend to be of subwavelength size, and cannot have sufficient interaction with the incident terahertz wave. Small disturbances and subtle features are difficult to detect, which undoubtedly hinders the further development of the terahertz biochemical sensing and detection. The rapid development of terahertz metamaterials provides an alternative method to overcome this obstacle. The intense electromagnetic field enhancement induced by metamaterials allows the sensing and detection application to surpass the limitation of classical terahertz spectroscopy, which is due to the enhancement of the interaction between the analyte and terahertz. In recent years, a series of researches based on terahertz metamaterials combined with new materials, new structures and new mechanisms has offered new opportunities for the application of highly sensitive terahertz biochemical sensing and detection. In this paper, the recent advances in the application of terahertz metamaterials biochemical sensing are reviewed. The related concepts are briefly introduced and the influences of different factors on the sensing performance of metamaterial sensor are analyzed. According to the material selection and design strategies, the related researches of terahertz metamaterial biochemical sensing and detection are summarized. Furthermore, the novel strategy of terahertz metamaterial sensing and detection application based on multidisciplinary are presented, and the future development directions are also discussed, which will greatly conduce to expanding the practicality of terahertz sensing and detection.
-
Keywords:
- terahertz /
- metamaterial /
- biological /
- sensing
[1] Tonouchi M 2007 Nat. Photonics 1 97
Google Scholar
[2] Seo M, Park H R 2020 Adv. Opt. Mater. 8 1900662
Google Scholar
[3] Danciu M, Alexa-Stratulat T, Stefanescu C, Dodi G, Tamba B I, Mihai C T, Stanciu G D, Luca A, Spiridon I A, Ungureanu L B 2019 Materials 12 1519
Google Scholar
[4] Hua C, Chen T H, Tseng T F, Lu J T, Sun C K 2011 Opt. Express 19 21552
Google Scholar
[5] Yao Z H, Huang Y Y, Zhu L P, Obraztsov P A, Du W Y, Zhang L H, Xu X L 2019 Nanoscale 11 16614
Google Scholar
[6] 王与烨, 陈霖宇, 徐德刚, 陈图南, 冯华, 姚建铨 2019 光学学报 39 0317002
Google Scholar
Wang Y Y, Chen L Y, Xu D G, Chen T N, Feng H, Yao J Q 2019 Acta Opt. Sin. 39 0317002
Google Scholar
[7] Gong A, Qiu Y, Chen X, Zhao Z, Xia L, Shao Y 2019 Appl. Spectrosc. Rev. 55 1
Google Scholar
[8] Shi W, Wang Y Z, Hou L, Ma C, Yang L, Dong C G, Wang Z Q, Wang H Q, Guo J, Li J 2020 J. Biophotonics 14 e202000237
Google Scholar
[9] 何明霞, 陈涛 2012 电子测量与仪器学报 26 471
Google Scholar
He M X, Chen T 2012 J. Electr. Measur. Instr. 26 471
Google Scholar
[10] 何明霞, 郭帅 2012 电子测量与仪器学报 26 663
Google Scholar
He M X, Guo S 2012 J. Electr. Measur. Instr. 26 663
Google Scholar
[11] Kitagami H, Kondo S, Hirano S, Kawakami H, Tanaka M 2007 Pancreas 35 42
Google Scholar
[12] Cao Y, Guo T, Wang X, Sun D, Ran Y, Feng X, Guan B O 2015 Opt. Express 23 27061
Google Scholar
[13] Trepanier M, Zhang D M, Filippenko L V, Koshelets V P, Anlage S M 2019 AIP Adv. 9 105320
Google Scholar
[14] Cao Y, Wang X D, Guo T, Ran Y, Feng X H, Guan B O, Yao J P 2017 Sens. Actuators. B 245 583
Google Scholar
[15] Kim H Y, Sato S, Takenaka S, Lee M H 2018 Sensors 18 2933
Google Scholar
[16] Bahar A A M, Zakaria Z, Arshad M K M, Alahnomi R A, Abu-Khadrah A I, Sam W Y 2019 Int. J. RF Technol. Res. Appl. 29 e21801
Google Scholar
[17] Bahar A A M, Zakaria Z, Arshad M K M, Isa A A M, Dasril Y, Alahnomi R A 2019 2019 Sci. Rep. 9 5467
Google Scholar
[18] Pandit N, Jaiswal R K, Pathak N P 2020 Electron. Lett. 56 185
Google Scholar
[19] Bunaciu A A, Hoang V D, Aboul-Enein H Y 2015 Crit. Rev. Anal. Chem. 45 156
Google Scholar
[20] Jin T, Lin P T 2018 IEEE Conference on Lasers and Electro-Optics (CLEO) San Jose, California, USA, May 13–18, 2018 p18024339
[21] Zhao Y, Lu Y F, Zhu Y K, Wu Y C, Zhai M Y, Wang X, Yin J H 2019 Infrared Phys. Technol. 98 236
Google Scholar
[22] Chen G C, Cao Y H, Tang Y X, Yang X, Liu Y Y, Huang D H, Zhang Y J, Li C Y, Wang Q B 2020 Adv. Sci. 7 1903783
Google Scholar
[23] Aydin K, Ferry V E, Briggs R M, Atwater H A 2011 Nat. Commun. 2 517
Google Scholar
[24] Ding L J, Jiang D, Wen Z R, Xu Y H, Guo Y S, Ding C F, Wang K 2020 Biosens. Bioelectron. 150 111867
Google Scholar
[25] 李芬, 赵跃进, 孔令琴, 刘明, 董立泉, 惠梅, 刘小华 2020 光学学报 40 229
Google Scholar
Li F, Zhao Y J, Kong L Q, Liu M, Dong L Q, Hui M, Liu X H 2020 Acta Opt. Sin. 40 229
Google Scholar
[26] Zhang M, Jia Z H, Lv X Y, Huang X H 2020 IEEE Sens. J. 20 12184
Google Scholar
[27] Zhang Y, Wang Q, Liu D M, Wang Q, Li T, Wang Z 2020 Appl. Surf. Sci. 521 146434
Google Scholar
[28] Wang S, Wang M K, Liu Y C, Meng X Y, Ye Y, Song X W, Liang Z Q 2021 Sens. Actuators, B 326 128808
Google Scholar
[29] Xia Y K, Chen T T, Zhang L, Zhang X L, Shi W H, Chen G Y, Chen W Q, Lan J M, Li C Y, Sun W M, Chen J H 2021 Biosens. Bioelectron. 173 112834
Google Scholar
[30] Wang P, He M X 2020 Conference on Infrared, Millimeter-Wave, and Terahertz Technologies VII Electrical Network, October 12–16, 2020 p115590W
[31] Herring G K, Hesselink L 2021 Appl. Phys. Lett. 118 261105
Google Scholar
[32] Zhuang R Z, Wang X J, Ma W B, Wu Y H, Chen X, Tang L H, Zhu Haiming, Liu J Y, Wu L L, Zhou W, Liu X, Yang Y 2019 Nat. Photonics 13 602
Google Scholar
[33] Toyama M, Mori T, Takahashi J, Iwahashi H 2018 Radiat. Phys. Chem. 146 11
Google Scholar
[34] Dai X J, Sivasubramanian K, Xing L 2019 Conference on Molecular-Guided Surgery-Molecules, Devices, and Applications V San Francisco, California, USA, Febuary 02–04, 2019 p1086218
[35] Guilherme Buzanich A 2021 X-Ray Spectrom. 1 1
Google Scholar
[36] Lu L, Sun M Z, Lu Q Y, Wu T, Huang B L 2021 Nano Energy 79 105437
Google Scholar
[37] Lin S J, Xu X L, Hu F R, Chen Z C, Wang Y L, Zhang L H, Peng Z Y, Li D X, Zeng L Z, Chen Y, Wang Z Y 2021 IEEE J. Sel. Top. Quantum Electron. 27 7
Google Scholar
[38] Hou L, Shi W, Dong C G, Yang L, Wang Y Z, Wang H Q, Hang Y H, Xue F 2020 Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 246 119044
Google Scholar
[39] Zhu Z J, Cheng C, Chang C, Ren G H, Zhang J B, Peng Y, Han J G, Zhao H W 2019 Analyst 144 2504
Google Scholar
[40] Yang J, Tang C, Wang Y D, Chang C, Zhang J B, Hu J, Lu J H 2019 Chem. Commun. 55 15141
Google Scholar
[41] Xiang Z X, Tang C X, Chang C, Liu G Z 2020 Sci. Bull. 65 308
Google Scholar
[42] 杨磊, 范飞, 陈猛, 张选洲, 常胜江 2016 物理学报 65 080702
Google Scholar
Yang L, Fan F, Chen M, Zhang X Z, Chang S J 2016 Acta Phys. Sin. 65 080702
Google Scholar
[43] Wang Y Y, Wang G Q, Xu D G, Jiang B Z, Ge M L, Wu L M, Yang C Y, Mu N, Wang S, Chang C, Chen T N, Feng H, Yao J Q 2020 Biomed. Opt. Express 11 4085
Google Scholar
[44] Wu K J, Qi C H, Zhu Z, Wang C L, Song B, Chang C 2020 J. Phys. Chem. Lett. 11 7002
Google Scholar
[45] Zhu Z J, Zhang J B, Song Y S, Chang C, Ren G H, Shen J X, Zhang Z C, Ji T, Chen M, Zhao H W 2020 Analyst 145 6006
Google Scholar
[46] Tang C, Yang J, Wang Y D, Cheng J, Li X L, Chang C, Hu J, Lu J H 2021 Sens. Actuatosr, B 329 129113
Google Scholar
[47] He M H, Zeng J F, Zhang X, Zhu X S, Jing C B, Chang C, Shi Y W 2021 Opt. Express 29 8430
Google Scholar
[48] Li Y M, Chang C, Zhu Z, Sun L, Fan C H 2021 J. Am. Chem. Soc. 143 4311
Google Scholar
[49] Su Y P, Zheng X P, Deng X J 2017 J. Infrared Millimeter Terahertz Waves 38 972
Google Scholar
[50] Li Z J, Rothbart N, Deng X J, Geng H, Zheng X P, Neumaier P, Hubers H W 2020 Chemom. Intell. Lab. Syst. 206 104129
Google Scholar
[51] Shi C C, Ma Y T, Zhang J, Wei D S, Wang H B, Peng X Y, Tang M J, Yan S H, Zu G K, Du C L, Cui H L 2018 Biomed. Opt. Express 9 1350
Google Scholar
[52] Yu M, Yan S H, Sun Y Q, Sheng W, Tang F, Peng X Y, Hu Y 2019 Sensors 19 1148
Google Scholar
[53] Sheng W, Tang F, Zhang Z L, Chen Y P, Peng X Y, Sheng Z M 2021 Opt. Express 29 8676
Google Scholar
[54] Wang Y Y, Wang G Q, Xu D G, Jiang B Z, Ge M L, Wu L M, Yang C A Y, Mu N, Wang S, Chen T N, Chang C, Feng H, Yao J Q 2020 Conference on Infrared, Millimeter-Wave, and Terahertz Technologies VII Electrical Network, October 12–16, 2020 p1155919
[55] 王与烨, 孙忠成, 徐德刚, 姜智南, 穆宁, 杨川燕, 陈图南, 冯华, 姚建铨 2020 光学学报 40 208
Google Scholar
Wang Y Y, Sun Z C, Xu D G, Jiang Z N, Mu N, Yang C Y, Chen T, Fenh H, Yao J Q 2020 Acta Opt. Sin. 40 208
Google Scholar
[56] Wu L M, Liao B, Xu D G, Wang Y Y, Ge M L, Zhang C N, Li J H, Sun Z C, Chen T N, Feng H, Yao J Q 2020 J. Infrared Millimeter Waves 39 553
Google Scholar
[57] Zhang J, Mu N, Liu L, Xie J, Feng H, Yao J, Chen T, Zhu W 2021 Biosens. Bioelectron. 185 113241
Google Scholar
[58] Duan F, Wang Y Y, Xu D G, Shi J, Chen L Y, Cui L, Bai Y H, Xu Y, Yuan J, Chang C 2019 World J. Gastrointest. Oncol. 11 153
Google Scholar
[59] Withayachumnankul W, Abbott D 2009 IEEE Photonics J. 1 99
Google Scholar
[60] Chen H T, Padilla W J, Zide J, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597
Google Scholar
[61] Tao H, Padilla W J, Zhang X, Averitt R D 2011 IEEE J. Sel. Top. Quantum Electron. 17 92
Google Scholar
[62] Singh R, Cao W, Al-Naib I, Cong L Q, Withayachumnankul W, Zhang W L 2014 Appl. Phys. Lett. 105 171101
Google Scholar
[63] Yang Y M, Huang R, Cong L Q, Zhu Z H, Gu J Q, Tian Z, Singh R, Zhang S A, Han J G, Zhang W L 2011 Appl. Phys. Lett. 98 121114
Google Scholar
[64] Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J 2009 Nat. Photonics 3 148
Google Scholar
[65] Horestani A K, Fumeaux C, Al-Sarawi S F, Abbott D 2013 IEEE Sens. J. 13 1153
Google Scholar
[66] Cao P F, Wu Y Y, Wang Z L, Li Y, Zhang J, Liu Q, Cheng L, Niu T M 2020 IEEE Access 8 219525
Google Scholar
[67] Taleb F, Al-Naib I, Koch M 2020 Sensors 20 2265
Google Scholar
[68] Karmakar S, Kumar D, Varshney R K, Chowdhury D R 2020 J. Phys. D: Appl. Phys. 53 415101
Google Scholar
[69] Wang J L, Wang X, Han D 2019 J. Infrared Millimeter Waves 38 722
Google Scholar
[70] Wang G Q, Zhu F J, Lang T T, Liu J J, Hong Z, Qin J Y 2021 Nanoscale Res. Lett. 16 109
Google Scholar
[71] Xu W D, Xie L J, Zhu J F, Tang L H, Singh R, Wang C, Ma Y G, Chen H T, Ying Y B 2019 Carbon 141 247
Google Scholar
[72] Ma Y, Chen Q, Khalid A, Saha S C, Cumming D R S 2010 Opt. Lett. 35 469
Google Scholar
[73] Wang J, Fan C, He J, Ding P, Liang E, Xue Q 2013 Opt. Express 21 2236
Google Scholar
[74] Yang M S, Zhang Z, Liang L J, Yan X, Wei D Q, Song X X, Zhang H T, Lu Y Y, Wang M, Yao J Q 2019 Appl. Opt. 58 6268
Google Scholar
[75] Bui T S, Dao T D, Dang L H, Vu L D, Ohi A, Nabatame T, Lee Y P, Nagao T, Hoang C V 2016 Sci. Rep. 6 32123
Google Scholar
[76] Liu W, Fan F, Chang S, Hou J, Chen M, Wang X, Bai J 2017 Opt. Commun. 405 17
Google Scholar
[77] Lee D K, Kang J H, Kwon J, Lee J S, Lee S, Woo D H, Kim J H, Song C S, Park Q H, Seo M 2017 Sci. Rep. 7 8146
Google Scholar
[78] Cui Z, Wang Y, Yue L, Zhao X, Zhang D, Yao Z, Zhang X, Hou L, Zhang X 2021 IEEE Trans. Terahertz Sci. 11 626
Google Scholar
[79] Yu Y B, Lin Y S 2019 Results Phys. 13 102321
Google Scholar
[80] Wang Y, Cui Z, Zhu D, Yue L 2019 Phys. Status Solidi A 216 1800940
Google Scholar
[81] Zhao L, Liu H, He Z, Dong S 2018 Opt. Express 26 12838
Google Scholar
[82] Keller J, Maissen C, Haase J, Paravicini-Bagliani G L, Valmorra F, Palomo J, Mangeney J, Tignon J, Dhillon S S, Scalari G, Faist J 2017 Adv. Opt. Mater. 5 1600884
Google Scholar
[83] Wang G Z, Wang B X 2015 J. Lightwave Technol. 33 5151
Google Scholar
[84] Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111
Google Scholar
[85] Lei D Y, Appavoo K, Ligmajer F, Sonnefraud Y, Haglund R F, Maier S A 2015 ACS Photonics 2 1306
Google Scholar
[86] Tittl A, Michel A K, Schaferling M, Yin X, Gholipour B, Cui L, Wuttig M, Taubner T, Neubrech F, Giessen H 2015 Adv. Mater. 27 4597
Google Scholar
[87] Zhong M 2020 Opt. Laser Technol. 127 106142
Google Scholar
[88] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218
Google Scholar
[89] Jia R, Gao Y, Xu Q, Feng X, Wang Q, Gu J, Tian Z, Ouyang C, Han J, Zhang W 2020 Adv. Opt. Mater. 9 2001403
Google Scholar
[90] Li L, Jun Cui T, Ji W, Liu S, Ding J, Wan X, Bo Li Y, Jiang M, Qiu C W, Zhang S 2017 Nat. Commun. 8 197
Google Scholar
[91] Liu W, Yang Q, Xu Q, Jiang X, Wu T, Wang K, Gu J, Han J, Zhang W 2021 Adv. Opt. Mater. 9 2100506
Google Scholar
[92] Ma Q, Cui T J 2020 PhotoniX 1 1
Google Scholar
[93] Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426
Google Scholar
[94] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333
Google Scholar
[95] Zhang H, Zhang X, Xu Q, Tian C, Wang Q, Xu Y, Li Y, Gu J, Tian Z, Ouyang C, Zhang X, Hu C, Han J, Zhang W 2017 Adv. Opt. Mater. 6 1700773
Google Scholar
[96] Zhang Z, Zhang X, Xu Y, Chen X, Feng X, Liu M, Xu Q, Kang M, Han J, Zhang W 2020 Adv. Opt. Mater. 9 2001620
Google Scholar
[97] Ako R T, Lee W S L, Atakaramians S, Bhaskaran M, Sriram S, Withayachumnankul W 2020 APL Photonics 5 046101
Google Scholar
[98] Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2014 Appl. Phys. Lett. 105 181111
Google Scholar
[99] Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE Trans. Antennas Propag. 63 3522
Google Scholar
[100] Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908
Google Scholar
[101] Lee S, Kim W T, Kang J H, Kang B J, Rotermund F, Park Q H 2019 ACS Appl. Mater. Interfaces 11 7655
Google Scholar
[102] Liu W, Chen S, Li Z, Cheng H, Yu P, Li J, Tian J 2015 Opt. Lett. 40 3185
Google Scholar
[103] Zhao J, Ouyang C, Chen X, Li Y, Zhang C, Feng L, Jin B, Ma J, Liu Y, Zhang S, Xu Q, Han J, Zhang W 2021 Opt. Express 29 21738
Google Scholar
[104] Yin X, Schaferling M, Michel A K, Tittl A, Wuttig M, Taubner T, Giessen H 2015 Nano. Lett. 15 4255
Google Scholar
[105] Yin X, Steinle T, Huang L, Taubner T, Wuttig M, Zentgraf T, Giessen H 2017 Light Sci. Appl. 6 e17016
Google Scholar
[106] Qu Y, Li Q, Du K, Cai L, Lu J, Qiu M 2017 Laser Photonics Rev. 11 1700091
Google Scholar
[107] Chen Y G, Kao T S, Ng B, Li X, Luo X G, Luk'yanchuk B, Maier S A, Hong M H 2013 Opt. Express 21 13691
Google Scholar
[108] Chaudhary K, Tamagnone M, Yin X, Spagele C M, Oscurato S L, Li J, Persch C, Li R, Rubin N A, Jauregui L A, Watanabe K, Taniguchi T, Kim P, Wuttig M, Edgar J H, Ambrosio A, Capasso F 2019 Nat. Commun. 10 4487
Google Scholar
[109] Xu Z, Li Q, Du K, Long S, Yang Y, Cao X, Luo H, Zhu H, Ghosh P, Shen W, Qiu M 2019 Laser Photonics Rev. 14 1900162
Google Scholar
[110] Gholipour B, Zhang J, MacDonald K F, Hewak D W, Zheludev N I 2013 Adv. Mater. 25 3050
Google Scholar
[111] Gutruf P, Zou C, Withayachumnankul W, Bhaskaran M, Sriram S, Fumeaux C 2016 ACS Nano 10 133
Google Scholar
[112] Qin J, Deng L, Kang T, Nie L, Feng H, Wang H, Yang R, Liang X, Tang T, Shen J, Li C, Wang H, Luo Y, Armelles G, Bi L 2020 ACS Nano 14 2808
Google Scholar
[113] Yang X, Tian Z, Chen X, Hu M, Yi Z, Ouyang C, Gu J, Han J, Zhang W 2020 Appl. Phys. Lett. 116 241106
Google Scholar
[114] Li T, Fan F, Ji Y, Tan Z, Mu Q, Chang S 2019 Opt. Lett. 45 1
Google Scholar
[115] Liu X, Wang Q, Zhang X, Li H, Xu Q, Xu Y, Chen X, Li S, Liu M, Tian Z, Zhang C, Zou C, Han J, Zhang W 2019 Adv. Opt. Mater. 7 1900175
Google Scholar
[116] Mu Q, Fan F, Chen S, Xu S, Xiong C, Zhang X, Wang X, Chang S 2019 Photonics Res. 7 325
Google Scholar
[117] Cui T, Bai B, Sun H B 2019 Adv. Funct. Mater. 29 1806692
Google Scholar
[118] Che Y, Wang X, Song Q, Zhu Y, Xiao S 2020 Nanophotonics 9 4407
Google Scholar
[119] Tseng M L, Yang J, Semmlinger M, Zhang C, Nordlander P, Halas N J 2017 Nano Lett. 17 6034
Google Scholar
[120] Liu X, Padilla W J 2013 Adv. Opt. Mater. 1 559
Google Scholar
[121] Roy T, Zhang S, Jung I W, Troccoli M, Capasso F, Lopez D 2018 APL Photonics 3 021302
Google Scholar
[122] Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraji-Dana M, Faraon A 2018 Nat. Commun. 9 812
Google Scholar
[123] Zhu W M, Liu A Q, Zhang X M, Tsai D P, Bourouina T, Teng J H, Zhang X H, Guo H C, Tanoto H, Mei T, Lo G Q, Kwong D L 2011 Adv. Mater. 23 1792
Google Scholar
[124] Reeves J B, Jayne R K, Stark T J, Barrett L K, White A E, Bishop D J 2018 Nano Lett. 18 2802
Google Scholar
[125] Jiang M, Hu F, Qian Y, Zhang L, Zhang W, Han J 2020 J. Phys. D: Appl. Phys. 53 065107
Google Scholar
[126] Shah S I H, Sarkar A, Phon R, Lim S 2020 Adv. Opt. Mater. 8 2001180
Google Scholar
[127] Fan F, Gu W H, Wang X H, Chang S J 2013 Appl. Phys. Lett. 102 121113
Google Scholar
[128] Xie L, Gao W, Shu J, Ying Y, Kono J 2015 Sci. Rep. 5 8671
Google Scholar
[129] Park S J, Cha S H, Shin G A, Ahn Y H 2017 Biomed. Opt. Express 8 3551
Google Scholar
[130] Ahmadivand A, Gerislioglu B, Tomitaka A, Manickam P, Kaushik A, Bhansali S, Nair M, Pala N 2018 Biomed. Opt. Express 9 373
Google Scholar
[131] Lan F, Luo F, Mazumder P, Yang Z, Meng L, Bao Z, Zhou J, Zhang Y, Liang S, Shi Z, Khan A R, Zhang Z, Wang L, Yin J, Zeng H 2019 Biomed. Opt. Express 10 3789
Google Scholar
[132] Yang M, Liang L, Zhang Z, Xin Y, Wei D, Song X, Zhang H, Lu Y, Wang M, Zhang M, Wang T, Yao J 2019 Opt. Express 27 19520
Google Scholar
[133] Zhou H, Yang C, Hu D, Li D, Hui X, Zhang F, Chen M, Mu X 2019 Appl. Phys. Lett. 115 143507
Google Scholar
[134] Huang S T, Hsu S F, Tang K Y, Yen T J, Yao D J 2020 Micromachines 11 74
Google Scholar
[135] Nie P, Zhu D, Cui Z, Qu F, Lin L, Wang Y 2020 Sens. Actuators, B 307 127642
Google Scholar
[136] Qi Y, Zhang Y, Liu C, Zhang T, Zhang B, Wang L, Deng X, Bai Y, Wang X 2020 Results Phys. 16 103012
Google Scholar
[137] Wang R, Xu W, Chen D, Zhou R, Wang Q, Gao W, Kono J, Xie L, Ying Y 2020 ACS Appl. Mater. Interfaces 12 40629
Google Scholar
[138] Wang Y, Cui Z, Zhang X, Zhang X, Zhu Y, Chen S, Hu H 2020 ACS Appl. Mater. Interfaces 12 52082
Google Scholar
[139] Wang Y, Zhu D, Cui Z, Yue L, Zhang X, Hou L, Zhang K, Hu H 2020 IEEE Trans. Terahertz Sci. Technol. 10 599
Google Scholar
[140] Yue L, Wang Y, Cui Z, Zhang X, Zhu Y, Zhang X, Chen S, Wang X, Zhang K 2021 Opt. Express 29 13563
Google Scholar
[141] Hou X F, Chen X Y, Li T M, Li Y Y, Tian Z, Wang M W 2021 Opt. Mater. Express 11 2268
Google Scholar
[142] Tang M J, Zhang M K, Yan S H, Xia L P, Yang Z B, Du C L, Cui H L, Wei D S 2018 PLos One 13 e0191515
Google Scholar
[143] He Z H, Li L Q, Ma H Q, Pu L H, Xu H, Yi Z, Cao X L, Cui W 2021 Results Phys. 21 103795
Google Scholar
[144] Miyamaru F, Hattori K, Shiraga K, Kawashima S, Suga S, Nishida T, Takeda M W, Ogawa Y 2014 J. Infrared Millimeter Terahertz Waves 35 198
Google Scholar
[145] Cong L Q, Tan S Y, Yahiaoui R, Yan F P, Zhang W L, Singh R 2015 Appl. Phys. Lett. 106 31107
Google Scholar
[146] Al-Naib I 2017 IEEE J. Sel. Top. Quantum Electron. 23 4700405
Google Scholar
[147] Zhang C H, Liang L J, Ding L, Jin B B, Hou Y Y, Li C, Jiang L, Liu W W, Hu W, Lu Y Q, Kang L, Xu W W, Chen J, Wu P H 2016 Appl. Phys. Lett. 108 241105
Google Scholar
[148] Chen M, Singh L, Xu N N, Singh R, Zhang W L, Xie L J 2017 Opt. Express 25 14089
Google Scholar
[149] Liu Y, Tang M J, Xia L P, Yu W J, Peng J, Zhang Y, de la Chapelle M L, Yang K, Cui H L, Fu W L 2017 RSC Adv. 7 53963
Google Scholar
[150] Xu W D, Xie L J, Zhu J F, Wang W, Ye Z Z, Ma Y G, Tsai C Y, Chen S M, Ying Y B 2017 Food Chem. 218 330
Google Scholar
[151] Cheng D, He X, Huang X L, Zhang B, Liu G, Shu G X, Fang C, Wang J X, Luo Y 2018 Int. J. RF Microwave Comput. Aided Eng. 28 e21448
Google Scholar
[152] Kim H S, Cha S H, Roy B, Kim S, Ahn Y H 2018 Opt. Express 26 33575
Google Scholar
[153] Qin B, Li Z, Hu F, Hu C, Chen T, Zhang H, Zhao Y 2018 IEEE Trans. Terahertz Sci. Technol. 8 149
Google Scholar
[154] Yang Y, Xu D, Zhang W 2018 Opt. Express 26 31589
Google Scholar
[155] Zhang H, Li Z, Hu F R, Qin B Y, Zhao Y H, Chen T, Hu C 2018 Spectrosc. Lett. 51 174
Google Scholar
[156] Jauregui-Lopez I, Rodriguez-Ulibarri P, Kuznetsov S A, Quemada C, Beruete M 2019 Sensors 19 4396
Google Scholar
[157] Nejad H E, Mir A, Armani A 2019 IEEE Sens. J. 19 4874
Google Scholar
[158] Yan X, Yang M S, Zhang Z, Liang L J, Wei D Q, Wang M, Zhang M J, Wang T, Liu L H, Xie J H, Yao J Q 2019 Biosens. Bioelectron. 126 485
Google Scholar
[159] Zhao X, Lin Z Q, Wang Y X, Yang X, Yang K, Zhang Y, Peng J, de la Chapelle M L, Zhang L Q, Fu W L 2019 Biomed. Opt. Express 10 1196
Google Scholar
[160] Al-Naib I 2020 Crystals 10 372
Google Scholar
[161] Cheng D, Zhang B, Liu G, Wang J X, Luo Y 2020 Int. J. Numer. Modell. Electron. 33 e2529
Google Scholar
[162] Gu H Y, Shi C J, Wu X, Peng Y 2020 Analyst 145 6705
Google Scholar
[163] Liu L, Li T F, Liu Z X, Fan F, Yuan H F, Zhang Z Y, Chang S J, Zhang X D 2020 Biomed. Opt. Express 11 2416
Google Scholar
[164] Ou H L, Lu F Y, Xu Z F, Lin Y S 2020 Nanomaterials 10 1038
Google Scholar
[165] Tang M J, Xia L P, Wei D S, Yan S H, Zhang M K, Yang Z B, Wang H B, Du C L, Cui H L 2020 Spectrochim. Acta, Part A 228 117736
Google Scholar
[166] Zhang Y X, Ye Y X, Song X X, Yang M S, Ren Y P, Ren X D, Liang L J, Yao J Q 2020 Mater. Res. Express 7 095801
Google Scholar
[167] Zhao R, Zou B, Zhang G L, Xu D Q, Yang Y P 2020 J. Phys. D: Appl. Phys. 53 195401
Google Scholar
[168] Zhong Y J, Du L H, Liu Q, Zhu L G, Zhang B 2020 Opt. Commun. 465 125508
Google Scholar
[169] Yang J, Qi L M, Li B, Wu L Q, Shi D, Uqaili J A, Tao X 2021 Results Phys. 26 104332
Google Scholar
[170] Qin J Y, Xie L J, Ying Y B 2016 Food Chem. 211 300
Google Scholar
[171] Tao H, Chieffo L R, Brenckle M A, Siebert S M, Liu M K, Strikwerda A C, Fan K B, Kaplan D L, Zhang X, Averitt R D, Omenetto F C 2011 Adv. Mater. 23 3197
Google Scholar
[172] Wang Y, Cui Z J, Zhu D Y, Wang X M, Chen S G, Nie P C 2019 Opt. Express 27 14133
Google Scholar
[173] Hong J T, Jun S W, Cha S H, Park J Y, Lee S, Shin G A, Ahn Y H 2018 Sci. Rep. 8 15536
Google Scholar
[174] Wang Y L, Han Z H, Du Y, Qin J Y 2021 Nanophotonics 10 1295
Google Scholar
[175] Zhu J F, Jiang S, Xie Y N, Li F J, Du L H, Meng K, Zhu L G, Zhou J 2020 Opt. Lett. 45 2335
Google Scholar
[176] Li Q, Cong L Q, Singh R J, Xu N N, Cao W, Zhang X Q, Tian Z, Du L L, Han J G, Zhang W L 2016 Nanoscale 8 17278
Google Scholar
[177] Keshavarz A, Vafapour Z 2019 IEEE Sens. J. 19 5161
Google Scholar
[178] Asgari S, Granpayeh N, Fabritius T 2020 Opt. Commun. 474 126080
Google Scholar
[179] Cai Y J, Guo Y B, Zhou Y G, Wang Y, Zhu J F, Chen C Y 2020 J. Phys. D: Appl. Phys. 53 015105
Google Scholar
[180] Amin M, Siddiqui O, Abutarboush H, Farhat M, Ramzan R 2021 Carbon 176 580
Google Scholar
[181] Lee S H, Choe J H, Kim C, Bae S, Kim J S, Park Q H, Seo M 2020 Sens. Actuators, B 310 127841
Google Scholar
[182] Lee D K, Kang J H, Lee J S, Kim H S, Kim C, Kim J H, Lee T, Son J H, Park Q H, Seo M 2015 Sci. Rep. 5 15459
Google Scholar
[183] Han B, Han Z, Qin J, Wang Y, Zhao Z 2019 Talanta 192 1
Google Scholar
[184] Wang R, Wu Q, Zhang Y, Xu X, Zhang Q, Zhao W, Zhang B, Cai W, Yao J, Xu J 2019 Appl. Phys. Lett. 114 121102
Google Scholar
[185] Xu W, Xie L, Zhu J, Xu X, Ye Z, Wang C, Ma Y, Ying Y 2016 ACS Photonics 3 2308
Google Scholar
[186] Wu X, Quan B, Pan X, Xu X, Lu X, Gu C, Wang L 2013 Biosens. Bioelectron. 42 626
Google Scholar
[187] Cheng R J, Xu L, Yu X, Zou L E, Shen Y, Deng X H 2020 Opt. Commun. 473 125850
Google Scholar
[188] Yang K, Yu W J, Huang G R, Zhou J, Yang X, Fu W L 2020 RSC Adv. 10 26824
Google Scholar
[189] Ahmadivand A, Gerislioglu B, Ramezani Z, Kaushik A, Manickam P, Ghoreishi S A 2021 Biosens. Bioelectron. 177 112971
Google Scholar
[190] Yang K, Li J N, de la Chapelle M L, Huang G R, Wang Y X, Zhang J B, Xu D G, Yao J Q, Yang X, Fu W L 2021 Biosens. Bioelectron. 175 112874
Google Scholar
[191] Zhan X Y, Yang S, Huang G R, Yang L H, Zhang Y, Tian H Y, Xie F X, de la Chapelle M L, Yang X, Fu W L 2021 Biosens. Bioelectron. 188 113314
Google Scholar
[192] Park S J, Hong J T, Choi S J, Kim H S, Park W K, Han S T, Park J Y, Lee S, Kim D S, Ahn Y H 2014 Sci. Rep. 4 4988
Google Scholar
[193] Ahmadivand A, Gerislioglu B, Manickam P, Kaushik A, Bhansali S, Nair M, Pala N 2017 ACS Sens. 2 1359
Google Scholar
[194] Liu K, Zhang R, Liu Y, Chen X, Li K, Pickwell-Macpherson E 2021 Biomed. Opt. Express 12 1559
Google Scholar
[195] Hu X, Xu G, Wen L, Wang H, Zhao Y, Zhang Y, Cumming D R S, Chen Q 2016 Laser Photonics Rev. 10 962
Google Scholar
[196] Kim H K, Lee D, Lim S 2016 Sensors 16 1246
Google Scholar
[197] Hu F, Guo E, Xu X, Li P, Xu X, Yin S, Wang Y, Chen T, Yin X, Zhang W 2017 Opt. Commun. 388 62
Google Scholar
[198] Zhao X, Zhang M, Wei D, Wang Y, Yan S, Liu M, Yang X, Yang K, Cui H L, Fu W 2017 Biomed. Opt. Express 8 4427
Google Scholar
[199] Salim A, Lim S 2018 Sensors 18 232
Google Scholar
[200] Govind G, Akhtar M J 2019 IEEE Sens. J. 19 11900
Google Scholar
[201] He G, Lan F, Mazumder P, Wang L, Zeng H, Yang Z, Yin J, Shi Z, Xiao B 2019 IEEE Photonics and Electromagnetics Research Symposium Xiamen, China, December 17−20, 2019 p260
[202] Serita K, Murakami H, Kawayama I, Tonouchi M 2019 Photonics 6 12
Google Scholar
[203] Alfihed S, Holzman J F, Foulds I G 2020 Biosens. Bioelectron. 165 112393
Google Scholar
[204] Fan F, Zhong C, Zhang Z, Li S, Chang S 2021 Nanoscale Adv. 3 4790
Google Scholar
[205] Xu J, Liao D, Gupta M, Zhu Y, Zhuang S, Singh R, Chen L 2021 Adv. Opt. Mater. 9 2100024
Google Scholar
[206] Zhou R, Wang C, Huang Y, Huang K, Wang Y, Xu W, Xie L, Ying Y 2021 Biosens. Bioelectron. 188 113336
Google Scholar
[207] Shih K, Pitchappa P, Jin L, Chen C H, Singh R, Lee C 2018 Appl. Phys. Lett. 113 071105
Google Scholar
[208] Geng Z, Zhang X, Fan Z, Lv X, Chen H 2017 Sci. Rep. 7 16378
Google Scholar
[209] Zhou J, Zhao X, Huang G, Yang X, Zhang Y, Zhan X, Tian H, Xiong Y, Wang Y, Fu W 2021 ACS Sens. 6 1884
Google Scholar
[210] Zhang Z Y, Fan F, Li T F, Ji Y Y, Chang S J 2020 Chin. Phys. B 29 078707
Google Scholar
[211] Zhang Z, Zhong C, Fan F, Liu G, Chang S 2021 Sens. Actuators, B 330 129315
Google Scholar
[212] Duan G W, Schalch J, Zhao X G, Zhang J D, Averitt R D, Zhang X 2018 Sens. Actuators, A 280 303
Google Scholar
[213] Lee D K, Kim G, Kim C, Jhon Y M, Kim J H, Lee T, Son J H, Seo M 2016 IEEE Trans. Terahertz Sci. Technol. 6 389
Google Scholar
[214] Lee S H, Shin S, Roh Y, Oh S J, Lee S H, Song H S, Ryu Y S, Kim Y K, Seo M 2020 Biosens. Bioelectron. 170 112663
Google Scholar
[215] Jahani Y, Arvelo E R, Yesilkoy F, Koshelev K, Cianciaruso C, De Palma M, Kivshar Y, Altug H 2021 Nat. Commun. 12 3246
Google Scholar
[216] John-Herpin A, Kavungal D, von Mucke L, Altug H 2021 Adv. Mater. 33 2006054
Google Scholar
-
图 2 金属基太赫兹超材料生物传感器 (a) 用于检测细胞凋亡的周期性同心金圆环结构太赫兹超材料[147]; (b)可实现葡萄糖溶液和尿素检测的金属太赫兹谐振器[171]; (c) 用于农药浓度传感的多频带太赫兹超材料吸收器[172]; (d) 用于病毒检测的银纳米线太赫兹超材料[173]
Fig. 2. Metal-based terahertz metamaterial biosensors: (a) Periodic concentric gold ring terahertz metamaterial for cell apoptosis sensing[147]; (b) metal-base terahertz resonator for glucose and urea detection[171]; (c) multiband terahertz metamaterial absorber for pesticide concentration sensing[172]; (d) silver nanowires terahertz metamaterial for virus detection[173].
图 3 全硅太赫兹超材料传感器 (a)基于周期性同轴环和圆柱结构的太赫兹超材料吸收器, 可实现对毒死蜱溶液的灵敏检测[135]; (b) 单带全硅太赫兹超材料传感器, 用于2, 4-D农药检测[139]; (c) 一种可用于毒死蜱检测的全硅光栅结构的太赫兹超材料吸收器[140]
Fig. 3. All-silicon terahertz metamaterial sensors: (a) Terahertz metamaterial absorber based on periodic coaxial ring and cylindrical structure for the sensitive detection of chlorpyrifos solution[135]; (b) single-band all-silicon terahertz metamaterial absorbers for 2, 4-D pesticide sensing[139]; (c) an all-silicon grating metamaterial absorber for chlorpyrifos detection [140].
图 4 碳基太赫兹超材料传感器 (a) 石墨烯复合纳米槽基太赫兹超材料, 用于识别单链DNA (ssDNA)[181]; (b) 一种碳纳米管超材料, 可用于农药浓度检测[138]
Fig. 4. Carbon-based terahertz metamaterial sensors: (a) Graphene composite nanoslot-based terahertz metamaterial for ssDNA detection[181]; (b) a carbon nanotubes metamaterial which can be used for pesticide concentration detection[138].
图 5 基于指纹光谱的太赫兹超材料传感器 (a) 利用金属狭缝天线对不同种类碳水化合物进行区分和定量检测[182]; (b) 用于检测果糖和L-组氨酸的金属超材料[185]
Fig. 5. Terahertz metamaterial sensor based on fingerprint spectrum: (a) Using nano-antenna array to distinguish and quantitatively detect different types of carbohydrates[182]; (b) metal-based metamaterials for detection of fructose and L-histidine[185].
图 6 与抗体结合的太赫兹超材料传感器 (a) 使用大肠杆菌抗体做表面修饰的超材料, 实现在水环境中对大肠杆菌进行特异性检测[192]; (b) 用于特异性检测ZIKV的超材料[193]; (c) 将抗体修饰的GNPs引入超材料来实现EGFR的特异性检测[194]
Fig. 6. Terahertz metamaterial sensor combined with antibody: (a) Specific detection of E. coli in water environment realized by metamaterial with surface modification of E. coli antibody[192]; (b) metamaterial for the specific detection of ZIKV[193]; (c) antibody-modified GNPs are introduced into the metamaterial to achieve specific detection of EGFR[194].
图 7 集成微流体的太赫兹超材料生物传感器 (a)纳米流体太赫兹超材料传感器用于醇水混合物和三磷酸腺苷(ATP)检测[207]; 用SRR (b) 和Fano谐振器(c)制作的THz超材料芯片的扫描电子显微镜图像及模拟电场分布[207]; (d)集成微流体的太赫兹超材料生物传感器用于早期肝癌生物标志物检测[208]
Fig. 7. THz metamaterials biosensor chip integrated with microfluidics. (a) Nanofluidic THz metamaterial sensor and its cross-sectional device structure for alcohol-water mixture and adenosine triphosphate (ATP)[207]. Scanning electron microscopic image of the fabricated THz metamaterial chip with SRR (b) and Fano resonator (c) and their simulated electric field distribution[207]. (d) THz metamaterials biosensor chip integrated with microfluidics for liver cancer biomarker testing[208].
图 8 太赫兹超材料生化传感检测技术中的新方法 (a) 利用适体水凝胶功能化太赫兹超材料制成的分子特异性太赫兹生物传感器[209]; (b) 应用于太赫兹偏振转换和薄膜厚度检测的双层手性超材料[210]
Fig. 8. New methods in terahertz metamaterial biochemical sensing and detection: (a) Molecule-specific THz biosensor was fabricated from an aptamer hydrogel-functionalized THz metamaterial[209]; (b) double-layer chiral metamaterial for terahertz polarization conversion and film thickness detection[210].
表 1 各种太赫兹超材料生物化学传感器对比
Table 1. List of various THz metamaterial biochemical sensors.
传感检测
实现方式核心
材料功能 性能 文献 直接滴加 金属 黄曲霉毒素B1和B2 最小剂量为5 μL [167] 滴加-干燥 金属 牛血清蛋白浓度检测 最低检测浓度为0.1 mg/mL, 17.6 mg/mL
浓度引起的频移量为137 GHz[141] 滴加-干燥 全金属结构 牛血清蛋白检测 灵敏度为72.81 GHz/(ng/mm2),
检测限为0.035 mg/mL[70] 滴加-干燥 硅 毒死蜱浓度检测 最低浓度20 ppt [140] 滴加-干燥 碳纳米管 2, 4-D 和毒死蜱浓度检测 最低检测量10 ng,
灵敏度为1.38 × 10–2/ppm (2, 4-d)
2.0 × 10–3/ppm (毒死蜱)[138] 特异性抗体修饰 金属 恶性神经胶质瘤细胞检测 最大灵敏度248.75 kHz/(cell mL–1) [57] 特异性抗体修饰 金属 癌胚抗原浓度的检测 检测限为0.1 ng/mL [37] 微流通道 金属 乙醇-水混合物浓度检测 124.3 GHz/RIU [205] 衰减全反射 金属 水环境蔗糖溶液浓度检测 最低检测浓度为0.03125 mol/L [168] 使用石墨烯-超表面混合结构, 微流通道-特异性结合 石墨烯 DNA检测 100 nmol/L DNA 溶液 [206] 特异性适体水凝胶 金属 水环境特异性h-TB检测 检测限为0.40 pmol/L [209] 金纳米颗粒-RCA 金属 金黄色酿脓葡萄球菌 检测限为0.08 pg/mL [188] 石墨烯超表面
手性传感石墨烯 禽流感病毒检测 对H1N1, H5N2, N9N2三种不同类型
禽流感病毒特异性识别[180] 手性传感 金属 纳米颗粒浓度 灵敏度为5.5 GHz%–1 [204] -
[1] Tonouchi M 2007 Nat. Photonics 1 97
Google Scholar
[2] Seo M, Park H R 2020 Adv. Opt. Mater. 8 1900662
Google Scholar
[3] Danciu M, Alexa-Stratulat T, Stefanescu C, Dodi G, Tamba B I, Mihai C T, Stanciu G D, Luca A, Spiridon I A, Ungureanu L B 2019 Materials 12 1519
Google Scholar
[4] Hua C, Chen T H, Tseng T F, Lu J T, Sun C K 2011 Opt. Express 19 21552
Google Scholar
[5] Yao Z H, Huang Y Y, Zhu L P, Obraztsov P A, Du W Y, Zhang L H, Xu X L 2019 Nanoscale 11 16614
Google Scholar
[6] 王与烨, 陈霖宇, 徐德刚, 陈图南, 冯华, 姚建铨 2019 光学学报 39 0317002
Google Scholar
Wang Y Y, Chen L Y, Xu D G, Chen T N, Feng H, Yao J Q 2019 Acta Opt. Sin. 39 0317002
Google Scholar
[7] Gong A, Qiu Y, Chen X, Zhao Z, Xia L, Shao Y 2019 Appl. Spectrosc. Rev. 55 1
Google Scholar
[8] Shi W, Wang Y Z, Hou L, Ma C, Yang L, Dong C G, Wang Z Q, Wang H Q, Guo J, Li J 2020 J. Biophotonics 14 e202000237
Google Scholar
[9] 何明霞, 陈涛 2012 电子测量与仪器学报 26 471
Google Scholar
He M X, Chen T 2012 J. Electr. Measur. Instr. 26 471
Google Scholar
[10] 何明霞, 郭帅 2012 电子测量与仪器学报 26 663
Google Scholar
He M X, Guo S 2012 J. Electr. Measur. Instr. 26 663
Google Scholar
[11] Kitagami H, Kondo S, Hirano S, Kawakami H, Tanaka M 2007 Pancreas 35 42
Google Scholar
[12] Cao Y, Guo T, Wang X, Sun D, Ran Y, Feng X, Guan B O 2015 Opt. Express 23 27061
Google Scholar
[13] Trepanier M, Zhang D M, Filippenko L V, Koshelets V P, Anlage S M 2019 AIP Adv. 9 105320
Google Scholar
[14] Cao Y, Wang X D, Guo T, Ran Y, Feng X H, Guan B O, Yao J P 2017 Sens. Actuators. B 245 583
Google Scholar
[15] Kim H Y, Sato S, Takenaka S, Lee M H 2018 Sensors 18 2933
Google Scholar
[16] Bahar A A M, Zakaria Z, Arshad M K M, Alahnomi R A, Abu-Khadrah A I, Sam W Y 2019 Int. J. RF Technol. Res. Appl. 29 e21801
Google Scholar
[17] Bahar A A M, Zakaria Z, Arshad M K M, Isa A A M, Dasril Y, Alahnomi R A 2019 2019 Sci. Rep. 9 5467
Google Scholar
[18] Pandit N, Jaiswal R K, Pathak N P 2020 Electron. Lett. 56 185
Google Scholar
[19] Bunaciu A A, Hoang V D, Aboul-Enein H Y 2015 Crit. Rev. Anal. Chem. 45 156
Google Scholar
[20] Jin T, Lin P T 2018 IEEE Conference on Lasers and Electro-Optics (CLEO) San Jose, California, USA, May 13–18, 2018 p18024339
[21] Zhao Y, Lu Y F, Zhu Y K, Wu Y C, Zhai M Y, Wang X, Yin J H 2019 Infrared Phys. Technol. 98 236
Google Scholar
[22] Chen G C, Cao Y H, Tang Y X, Yang X, Liu Y Y, Huang D H, Zhang Y J, Li C Y, Wang Q B 2020 Adv. Sci. 7 1903783
Google Scholar
[23] Aydin K, Ferry V E, Briggs R M, Atwater H A 2011 Nat. Commun. 2 517
Google Scholar
[24] Ding L J, Jiang D, Wen Z R, Xu Y H, Guo Y S, Ding C F, Wang K 2020 Biosens. Bioelectron. 150 111867
Google Scholar
[25] 李芬, 赵跃进, 孔令琴, 刘明, 董立泉, 惠梅, 刘小华 2020 光学学报 40 229
Google Scholar
Li F, Zhao Y J, Kong L Q, Liu M, Dong L Q, Hui M, Liu X H 2020 Acta Opt. Sin. 40 229
Google Scholar
[26] Zhang M, Jia Z H, Lv X Y, Huang X H 2020 IEEE Sens. J. 20 12184
Google Scholar
[27] Zhang Y, Wang Q, Liu D M, Wang Q, Li T, Wang Z 2020 Appl. Surf. Sci. 521 146434
Google Scholar
[28] Wang S, Wang M K, Liu Y C, Meng X Y, Ye Y, Song X W, Liang Z Q 2021 Sens. Actuators, B 326 128808
Google Scholar
[29] Xia Y K, Chen T T, Zhang L, Zhang X L, Shi W H, Chen G Y, Chen W Q, Lan J M, Li C Y, Sun W M, Chen J H 2021 Biosens. Bioelectron. 173 112834
Google Scholar
[30] Wang P, He M X 2020 Conference on Infrared, Millimeter-Wave, and Terahertz Technologies VII Electrical Network, October 12–16, 2020 p115590W
[31] Herring G K, Hesselink L 2021 Appl. Phys. Lett. 118 261105
Google Scholar
[32] Zhuang R Z, Wang X J, Ma W B, Wu Y H, Chen X, Tang L H, Zhu Haiming, Liu J Y, Wu L L, Zhou W, Liu X, Yang Y 2019 Nat. Photonics 13 602
Google Scholar
[33] Toyama M, Mori T, Takahashi J, Iwahashi H 2018 Radiat. Phys. Chem. 146 11
Google Scholar
[34] Dai X J, Sivasubramanian K, Xing L 2019 Conference on Molecular-Guided Surgery-Molecules, Devices, and Applications V San Francisco, California, USA, Febuary 02–04, 2019 p1086218
[35] Guilherme Buzanich A 2021 X-Ray Spectrom. 1 1
Google Scholar
[36] Lu L, Sun M Z, Lu Q Y, Wu T, Huang B L 2021 Nano Energy 79 105437
Google Scholar
[37] Lin S J, Xu X L, Hu F R, Chen Z C, Wang Y L, Zhang L H, Peng Z Y, Li D X, Zeng L Z, Chen Y, Wang Z Y 2021 IEEE J. Sel. Top. Quantum Electron. 27 7
Google Scholar
[38] Hou L, Shi W, Dong C G, Yang L, Wang Y Z, Wang H Q, Hang Y H, Xue F 2020 Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 246 119044
Google Scholar
[39] Zhu Z J, Cheng C, Chang C, Ren G H, Zhang J B, Peng Y, Han J G, Zhao H W 2019 Analyst 144 2504
Google Scholar
[40] Yang J, Tang C, Wang Y D, Chang C, Zhang J B, Hu J, Lu J H 2019 Chem. Commun. 55 15141
Google Scholar
[41] Xiang Z X, Tang C X, Chang C, Liu G Z 2020 Sci. Bull. 65 308
Google Scholar
[42] 杨磊, 范飞, 陈猛, 张选洲, 常胜江 2016 物理学报 65 080702
Google Scholar
Yang L, Fan F, Chen M, Zhang X Z, Chang S J 2016 Acta Phys. Sin. 65 080702
Google Scholar
[43] Wang Y Y, Wang G Q, Xu D G, Jiang B Z, Ge M L, Wu L M, Yang C Y, Mu N, Wang S, Chang C, Chen T N, Feng H, Yao J Q 2020 Biomed. Opt. Express 11 4085
Google Scholar
[44] Wu K J, Qi C H, Zhu Z, Wang C L, Song B, Chang C 2020 J. Phys. Chem. Lett. 11 7002
Google Scholar
[45] Zhu Z J, Zhang J B, Song Y S, Chang C, Ren G H, Shen J X, Zhang Z C, Ji T, Chen M, Zhao H W 2020 Analyst 145 6006
Google Scholar
[46] Tang C, Yang J, Wang Y D, Cheng J, Li X L, Chang C, Hu J, Lu J H 2021 Sens. Actuatosr, B 329 129113
Google Scholar
[47] He M H, Zeng J F, Zhang X, Zhu X S, Jing C B, Chang C, Shi Y W 2021 Opt. Express 29 8430
Google Scholar
[48] Li Y M, Chang C, Zhu Z, Sun L, Fan C H 2021 J. Am. Chem. Soc. 143 4311
Google Scholar
[49] Su Y P, Zheng X P, Deng X J 2017 J. Infrared Millimeter Terahertz Waves 38 972
Google Scholar
[50] Li Z J, Rothbart N, Deng X J, Geng H, Zheng X P, Neumaier P, Hubers H W 2020 Chemom. Intell. Lab. Syst. 206 104129
Google Scholar
[51] Shi C C, Ma Y T, Zhang J, Wei D S, Wang H B, Peng X Y, Tang M J, Yan S H, Zu G K, Du C L, Cui H L 2018 Biomed. Opt. Express 9 1350
Google Scholar
[52] Yu M, Yan S H, Sun Y Q, Sheng W, Tang F, Peng X Y, Hu Y 2019 Sensors 19 1148
Google Scholar
[53] Sheng W, Tang F, Zhang Z L, Chen Y P, Peng X Y, Sheng Z M 2021 Opt. Express 29 8676
Google Scholar
[54] Wang Y Y, Wang G Q, Xu D G, Jiang B Z, Ge M L, Wu L M, Yang C A Y, Mu N, Wang S, Chen T N, Chang C, Feng H, Yao J Q 2020 Conference on Infrared, Millimeter-Wave, and Terahertz Technologies VII Electrical Network, October 12–16, 2020 p1155919
[55] 王与烨, 孙忠成, 徐德刚, 姜智南, 穆宁, 杨川燕, 陈图南, 冯华, 姚建铨 2020 光学学报 40 208
Google Scholar
Wang Y Y, Sun Z C, Xu D G, Jiang Z N, Mu N, Yang C Y, Chen T, Fenh H, Yao J Q 2020 Acta Opt. Sin. 40 208
Google Scholar
[56] Wu L M, Liao B, Xu D G, Wang Y Y, Ge M L, Zhang C N, Li J H, Sun Z C, Chen T N, Feng H, Yao J Q 2020 J. Infrared Millimeter Waves 39 553
Google Scholar
[57] Zhang J, Mu N, Liu L, Xie J, Feng H, Yao J, Chen T, Zhu W 2021 Biosens. Bioelectron. 185 113241
Google Scholar
[58] Duan F, Wang Y Y, Xu D G, Shi J, Chen L Y, Cui L, Bai Y H, Xu Y, Yuan J, Chang C 2019 World J. Gastrointest. Oncol. 11 153
Google Scholar
[59] Withayachumnankul W, Abbott D 2009 IEEE Photonics J. 1 99
Google Scholar
[60] Chen H T, Padilla W J, Zide J, Gossard A C, Taylor A J, Averitt R D 2006 Nature 444 597
Google Scholar
[61] Tao H, Padilla W J, Zhang X, Averitt R D 2011 IEEE J. Sel. Top. Quantum Electron. 17 92
Google Scholar
[62] Singh R, Cao W, Al-Naib I, Cong L Q, Withayachumnankul W, Zhang W L 2014 Appl. Phys. Lett. 105 171101
Google Scholar
[63] Yang Y M, Huang R, Cong L Q, Zhu Z H, Gu J Q, Tian Z, Singh R, Zhang S A, Han J G, Zhang W L 2011 Appl. Phys. Lett. 98 121114
Google Scholar
[64] Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J 2009 Nat. Photonics 3 148
Google Scholar
[65] Horestani A K, Fumeaux C, Al-Sarawi S F, Abbott D 2013 IEEE Sens. J. 13 1153
Google Scholar
[66] Cao P F, Wu Y Y, Wang Z L, Li Y, Zhang J, Liu Q, Cheng L, Niu T M 2020 IEEE Access 8 219525
Google Scholar
[67] Taleb F, Al-Naib I, Koch M 2020 Sensors 20 2265
Google Scholar
[68] Karmakar S, Kumar D, Varshney R K, Chowdhury D R 2020 J. Phys. D: Appl. Phys. 53 415101
Google Scholar
[69] Wang J L, Wang X, Han D 2019 J. Infrared Millimeter Waves 38 722
Google Scholar
[70] Wang G Q, Zhu F J, Lang T T, Liu J J, Hong Z, Qin J Y 2021 Nanoscale Res. Lett. 16 109
Google Scholar
[71] Xu W D, Xie L J, Zhu J F, Tang L H, Singh R, Wang C, Ma Y G, Chen H T, Ying Y B 2019 Carbon 141 247
Google Scholar
[72] Ma Y, Chen Q, Khalid A, Saha S C, Cumming D R S 2010 Opt. Lett. 35 469
Google Scholar
[73] Wang J, Fan C, He J, Ding P, Liang E, Xue Q 2013 Opt. Express 21 2236
Google Scholar
[74] Yang M S, Zhang Z, Liang L J, Yan X, Wei D Q, Song X X, Zhang H T, Lu Y Y, Wang M, Yao J Q 2019 Appl. Opt. 58 6268
Google Scholar
[75] Bui T S, Dao T D, Dang L H, Vu L D, Ohi A, Nabatame T, Lee Y P, Nagao T, Hoang C V 2016 Sci. Rep. 6 32123
Google Scholar
[76] Liu W, Fan F, Chang S, Hou J, Chen M, Wang X, Bai J 2017 Opt. Commun. 405 17
Google Scholar
[77] Lee D K, Kang J H, Kwon J, Lee J S, Lee S, Woo D H, Kim J H, Song C S, Park Q H, Seo M 2017 Sci. Rep. 7 8146
Google Scholar
[78] Cui Z, Wang Y, Yue L, Zhao X, Zhang D, Yao Z, Zhang X, Hou L, Zhang X 2021 IEEE Trans. Terahertz Sci. 11 626
Google Scholar
[79] Yu Y B, Lin Y S 2019 Results Phys. 13 102321
Google Scholar
[80] Wang Y, Cui Z, Zhu D, Yue L 2019 Phys. Status Solidi A 216 1800940
Google Scholar
[81] Zhao L, Liu H, He Z, Dong S 2018 Opt. Express 26 12838
Google Scholar
[82] Keller J, Maissen C, Haase J, Paravicini-Bagliani G L, Valmorra F, Palomo J, Mangeney J, Tignon J, Dhillon S S, Scalari G, Faist J 2017 Adv. Opt. Mater. 5 1600884
Google Scholar
[83] Wang G Z, Wang B X 2015 J. Lightwave Technol. 33 5151
Google Scholar
[84] Wen Q Y, Zhang H W, Xie Y S, Yang Q H, Liu Y L 2009 Appl. Phys. Lett. 95 241111
Google Scholar
[85] Lei D Y, Appavoo K, Ligmajer F, Sonnefraud Y, Haglund R F, Maier S A 2015 ACS Photonics 2 1306
Google Scholar
[86] Tittl A, Michel A K, Schaferling M, Yin X, Gholipour B, Cui L, Wuttig M, Taubner T, Neubrech F, Giessen H 2015 Adv. Mater. 27 4597
Google Scholar
[87] Zhong M 2020 Opt. Laser Technol. 127 106142
Google Scholar
[88] Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light Sci. Appl. 3 e218
Google Scholar
[89] Jia R, Gao Y, Xu Q, Feng X, Wang Q, Gu J, Tian Z, Ouyang C, Han J, Zhang W 2020 Adv. Opt. Mater. 9 2001403
Google Scholar
[90] Li L, Jun Cui T, Ji W, Liu S, Ding J, Wan X, Bo Li Y, Jiang M, Qiu C W, Zhang S 2017 Nat. Commun. 8 197
Google Scholar
[91] Liu W, Yang Q, Xu Q, Jiang X, Wu T, Wang K, Gu J, Han J, Zhang W 2021 Adv. Opt. Mater. 9 2100506
Google Scholar
[92] Ma Q, Cui T J 2020 PhotoniX 1 1
Google Scholar
[93] Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426
Google Scholar
[94] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333
Google Scholar
[95] Zhang H, Zhang X, Xu Q, Tian C, Wang Q, Xu Y, Li Y, Gu J, Tian Z, Ouyang C, Zhang X, Hu C, Han J, Zhang W 2017 Adv. Opt. Mater. 6 1700773
Google Scholar
[96] Zhang Z, Zhang X, Xu Y, Chen X, Feng X, Liu M, Xu Q, Kang M, Han J, Zhang W 2020 Adv. Opt. Mater. 9 2001620
Google Scholar
[97] Ako R T, Lee W S L, Atakaramians S, Bhaskaran M, Sriram S, Withayachumnankul W 2020 APL Photonics 5 046101
Google Scholar
[98] Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2014 Appl. Phys. Lett. 105 181111
Google Scholar
[99] Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE Trans. Antennas Propag. 63 3522
Google Scholar
[100] Hao J, Yuan Y, Ran L, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908
Google Scholar
[101] Lee S, Kim W T, Kang J H, Kang B J, Rotermund F, Park Q H 2019 ACS Appl. Mater. Interfaces 11 7655
Google Scholar
[102] Liu W, Chen S, Li Z, Cheng H, Yu P, Li J, Tian J 2015 Opt. Lett. 40 3185
Google Scholar
[103] Zhao J, Ouyang C, Chen X, Li Y, Zhang C, Feng L, Jin B, Ma J, Liu Y, Zhang S, Xu Q, Han J, Zhang W 2021 Opt. Express 29 21738
Google Scholar
[104] Yin X, Schaferling M, Michel A K, Tittl A, Wuttig M, Taubner T, Giessen H 2015 Nano. Lett. 15 4255
Google Scholar
[105] Yin X, Steinle T, Huang L, Taubner T, Wuttig M, Zentgraf T, Giessen H 2017 Light Sci. Appl. 6 e17016
Google Scholar
[106] Qu Y, Li Q, Du K, Cai L, Lu J, Qiu M 2017 Laser Photonics Rev. 11 1700091
Google Scholar
[107] Chen Y G, Kao T S, Ng B, Li X, Luo X G, Luk'yanchuk B, Maier S A, Hong M H 2013 Opt. Express 21 13691
Google Scholar
[108] Chaudhary K, Tamagnone M, Yin X, Spagele C M, Oscurato S L, Li J, Persch C, Li R, Rubin N A, Jauregui L A, Watanabe K, Taniguchi T, Kim P, Wuttig M, Edgar J H, Ambrosio A, Capasso F 2019 Nat. Commun. 10 4487
Google Scholar
[109] Xu Z, Li Q, Du K, Long S, Yang Y, Cao X, Luo H, Zhu H, Ghosh P, Shen W, Qiu M 2019 Laser Photonics Rev. 14 1900162
Google Scholar
[110] Gholipour B, Zhang J, MacDonald K F, Hewak D W, Zheludev N I 2013 Adv. Mater. 25 3050
Google Scholar
[111] Gutruf P, Zou C, Withayachumnankul W, Bhaskaran M, Sriram S, Fumeaux C 2016 ACS Nano 10 133
Google Scholar
[112] Qin J, Deng L, Kang T, Nie L, Feng H, Wang H, Yang R, Liang X, Tang T, Shen J, Li C, Wang H, Luo Y, Armelles G, Bi L 2020 ACS Nano 14 2808
Google Scholar
[113] Yang X, Tian Z, Chen X, Hu M, Yi Z, Ouyang C, Gu J, Han J, Zhang W 2020 Appl. Phys. Lett. 116 241106
Google Scholar
[114] Li T, Fan F, Ji Y, Tan Z, Mu Q, Chang S 2019 Opt. Lett. 45 1
Google Scholar
[115] Liu X, Wang Q, Zhang X, Li H, Xu Q, Xu Y, Chen X, Li S, Liu M, Tian Z, Zhang C, Zou C, Han J, Zhang W 2019 Adv. Opt. Mater. 7 1900175
Google Scholar
[116] Mu Q, Fan F, Chen S, Xu S, Xiong C, Zhang X, Wang X, Chang S 2019 Photonics Res. 7 325
Google Scholar
[117] Cui T, Bai B, Sun H B 2019 Adv. Funct. Mater. 29 1806692
Google Scholar
[118] Che Y, Wang X, Song Q, Zhu Y, Xiao S 2020 Nanophotonics 9 4407
Google Scholar
[119] Tseng M L, Yang J, Semmlinger M, Zhang C, Nordlander P, Halas N J 2017 Nano Lett. 17 6034
Google Scholar
[120] Liu X, Padilla W J 2013 Adv. Opt. Mater. 1 559
Google Scholar
[121] Roy T, Zhang S, Jung I W, Troccoli M, Capasso F, Lopez D 2018 APL Photonics 3 021302
Google Scholar
[122] Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraji-Dana M, Faraon A 2018 Nat. Commun. 9 812
Google Scholar
[123] Zhu W M, Liu A Q, Zhang X M, Tsai D P, Bourouina T, Teng J H, Zhang X H, Guo H C, Tanoto H, Mei T, Lo G Q, Kwong D L 2011 Adv. Mater. 23 1792
Google Scholar
[124] Reeves J B, Jayne R K, Stark T J, Barrett L K, White A E, Bishop D J 2018 Nano Lett. 18 2802
Google Scholar
[125] Jiang M, Hu F, Qian Y, Zhang L, Zhang W, Han J 2020 J. Phys. D: Appl. Phys. 53 065107
Google Scholar
[126] Shah S I H, Sarkar A, Phon R, Lim S 2020 Adv. Opt. Mater. 8 2001180
Google Scholar
[127] Fan F, Gu W H, Wang X H, Chang S J 2013 Appl. Phys. Lett. 102 121113
Google Scholar
[128] Xie L, Gao W, Shu J, Ying Y, Kono J 2015 Sci. Rep. 5 8671
Google Scholar
[129] Park S J, Cha S H, Shin G A, Ahn Y H 2017 Biomed. Opt. Express 8 3551
Google Scholar
[130] Ahmadivand A, Gerislioglu B, Tomitaka A, Manickam P, Kaushik A, Bhansali S, Nair M, Pala N 2018 Biomed. Opt. Express 9 373
Google Scholar
[131] Lan F, Luo F, Mazumder P, Yang Z, Meng L, Bao Z, Zhou J, Zhang Y, Liang S, Shi Z, Khan A R, Zhang Z, Wang L, Yin J, Zeng H 2019 Biomed. Opt. Express 10 3789
Google Scholar
[132] Yang M, Liang L, Zhang Z, Xin Y, Wei D, Song X, Zhang H, Lu Y, Wang M, Zhang M, Wang T, Yao J 2019 Opt. Express 27 19520
Google Scholar
[133] Zhou H, Yang C, Hu D, Li D, Hui X, Zhang F, Chen M, Mu X 2019 Appl. Phys. Lett. 115 143507
Google Scholar
[134] Huang S T, Hsu S F, Tang K Y, Yen T J, Yao D J 2020 Micromachines 11 74
Google Scholar
[135] Nie P, Zhu D, Cui Z, Qu F, Lin L, Wang Y 2020 Sens. Actuators, B 307 127642
Google Scholar
[136] Qi Y, Zhang Y, Liu C, Zhang T, Zhang B, Wang L, Deng X, Bai Y, Wang X 2020 Results Phys. 16 103012
Google Scholar
[137] Wang R, Xu W, Chen D, Zhou R, Wang Q, Gao W, Kono J, Xie L, Ying Y 2020 ACS Appl. Mater. Interfaces 12 40629
Google Scholar
[138] Wang Y, Cui Z, Zhang X, Zhang X, Zhu Y, Chen S, Hu H 2020 ACS Appl. Mater. Interfaces 12 52082
Google Scholar
[139] Wang Y, Zhu D, Cui Z, Yue L, Zhang X, Hou L, Zhang K, Hu H 2020 IEEE Trans. Terahertz Sci. Technol. 10 599
Google Scholar
[140] Yue L, Wang Y, Cui Z, Zhang X, Zhu Y, Zhang X, Chen S, Wang X, Zhang K 2021 Opt. Express 29 13563
Google Scholar
[141] Hou X F, Chen X Y, Li T M, Li Y Y, Tian Z, Wang M W 2021 Opt. Mater. Express 11 2268
Google Scholar
[142] Tang M J, Zhang M K, Yan S H, Xia L P, Yang Z B, Du C L, Cui H L, Wei D S 2018 PLos One 13 e0191515
Google Scholar
[143] He Z H, Li L Q, Ma H Q, Pu L H, Xu H, Yi Z, Cao X L, Cui W 2021 Results Phys. 21 103795
Google Scholar
[144] Miyamaru F, Hattori K, Shiraga K, Kawashima S, Suga S, Nishida T, Takeda M W, Ogawa Y 2014 J. Infrared Millimeter Terahertz Waves 35 198
Google Scholar
[145] Cong L Q, Tan S Y, Yahiaoui R, Yan F P, Zhang W L, Singh R 2015 Appl. Phys. Lett. 106 31107
Google Scholar
[146] Al-Naib I 2017 IEEE J. Sel. Top. Quantum Electron. 23 4700405
Google Scholar
[147] Zhang C H, Liang L J, Ding L, Jin B B, Hou Y Y, Li C, Jiang L, Liu W W, Hu W, Lu Y Q, Kang L, Xu W W, Chen J, Wu P H 2016 Appl. Phys. Lett. 108 241105
Google Scholar
[148] Chen M, Singh L, Xu N N, Singh R, Zhang W L, Xie L J 2017 Opt. Express 25 14089
Google Scholar
[149] Liu Y, Tang M J, Xia L P, Yu W J, Peng J, Zhang Y, de la Chapelle M L, Yang K, Cui H L, Fu W L 2017 RSC Adv. 7 53963
Google Scholar
[150] Xu W D, Xie L J, Zhu J F, Wang W, Ye Z Z, Ma Y G, Tsai C Y, Chen S M, Ying Y B 2017 Food Chem. 218 330
Google Scholar
[151] Cheng D, He X, Huang X L, Zhang B, Liu G, Shu G X, Fang C, Wang J X, Luo Y 2018 Int. J. RF Microwave Comput. Aided Eng. 28 e21448
Google Scholar
[152] Kim H S, Cha S H, Roy B, Kim S, Ahn Y H 2018 Opt. Express 26 33575
Google Scholar
[153] Qin B, Li Z, Hu F, Hu C, Chen T, Zhang H, Zhao Y 2018 IEEE Trans. Terahertz Sci. Technol. 8 149
Google Scholar
[154] Yang Y, Xu D, Zhang W 2018 Opt. Express 26 31589
Google Scholar
[155] Zhang H, Li Z, Hu F R, Qin B Y, Zhao Y H, Chen T, Hu C 2018 Spectrosc. Lett. 51 174
Google Scholar
[156] Jauregui-Lopez I, Rodriguez-Ulibarri P, Kuznetsov S A, Quemada C, Beruete M 2019 Sensors 19 4396
Google Scholar
[157] Nejad H E, Mir A, Armani A 2019 IEEE Sens. J. 19 4874
Google Scholar
[158] Yan X, Yang M S, Zhang Z, Liang L J, Wei D Q, Wang M, Zhang M J, Wang T, Liu L H, Xie J H, Yao J Q 2019 Biosens. Bioelectron. 126 485
Google Scholar
[159] Zhao X, Lin Z Q, Wang Y X, Yang X, Yang K, Zhang Y, Peng J, de la Chapelle M L, Zhang L Q, Fu W L 2019 Biomed. Opt. Express 10 1196
Google Scholar
[160] Al-Naib I 2020 Crystals 10 372
Google Scholar
[161] Cheng D, Zhang B, Liu G, Wang J X, Luo Y 2020 Int. J. Numer. Modell. Electron. 33 e2529
Google Scholar
[162] Gu H Y, Shi C J, Wu X, Peng Y 2020 Analyst 145 6705
Google Scholar
[163] Liu L, Li T F, Liu Z X, Fan F, Yuan H F, Zhang Z Y, Chang S J, Zhang X D 2020 Biomed. Opt. Express 11 2416
Google Scholar
[164] Ou H L, Lu F Y, Xu Z F, Lin Y S 2020 Nanomaterials 10 1038
Google Scholar
[165] Tang M J, Xia L P, Wei D S, Yan S H, Zhang M K, Yang Z B, Wang H B, Du C L, Cui H L 2020 Spectrochim. Acta, Part A 228 117736
Google Scholar
[166] Zhang Y X, Ye Y X, Song X X, Yang M S, Ren Y P, Ren X D, Liang L J, Yao J Q 2020 Mater. Res. Express 7 095801
Google Scholar
[167] Zhao R, Zou B, Zhang G L, Xu D Q, Yang Y P 2020 J. Phys. D: Appl. Phys. 53 195401
Google Scholar
[168] Zhong Y J, Du L H, Liu Q, Zhu L G, Zhang B 2020 Opt. Commun. 465 125508
Google Scholar
[169] Yang J, Qi L M, Li B, Wu L Q, Shi D, Uqaili J A, Tao X 2021 Results Phys. 26 104332
Google Scholar
[170] Qin J Y, Xie L J, Ying Y B 2016 Food Chem. 211 300
Google Scholar
[171] Tao H, Chieffo L R, Brenckle M A, Siebert S M, Liu M K, Strikwerda A C, Fan K B, Kaplan D L, Zhang X, Averitt R D, Omenetto F C 2011 Adv. Mater. 23 3197
Google Scholar
[172] Wang Y, Cui Z J, Zhu D Y, Wang X M, Chen S G, Nie P C 2019 Opt. Express 27 14133
Google Scholar
[173] Hong J T, Jun S W, Cha S H, Park J Y, Lee S, Shin G A, Ahn Y H 2018 Sci. Rep. 8 15536
Google Scholar
[174] Wang Y L, Han Z H, Du Y, Qin J Y 2021 Nanophotonics 10 1295
Google Scholar
[175] Zhu J F, Jiang S, Xie Y N, Li F J, Du L H, Meng K, Zhu L G, Zhou J 2020 Opt. Lett. 45 2335
Google Scholar
[176] Li Q, Cong L Q, Singh R J, Xu N N, Cao W, Zhang X Q, Tian Z, Du L L, Han J G, Zhang W L 2016 Nanoscale 8 17278
Google Scholar
[177] Keshavarz A, Vafapour Z 2019 IEEE Sens. J. 19 5161
Google Scholar
[178] Asgari S, Granpayeh N, Fabritius T 2020 Opt. Commun. 474 126080
Google Scholar
[179] Cai Y J, Guo Y B, Zhou Y G, Wang Y, Zhu J F, Chen C Y 2020 J. Phys. D: Appl. Phys. 53 015105
Google Scholar
[180] Amin M, Siddiqui O, Abutarboush H, Farhat M, Ramzan R 2021 Carbon 176 580
Google Scholar
[181] Lee S H, Choe J H, Kim C, Bae S, Kim J S, Park Q H, Seo M 2020 Sens. Actuators, B 310 127841
Google Scholar
[182] Lee D K, Kang J H, Lee J S, Kim H S, Kim C, Kim J H, Lee T, Son J H, Park Q H, Seo M 2015 Sci. Rep. 5 15459
Google Scholar
[183] Han B, Han Z, Qin J, Wang Y, Zhao Z 2019 Talanta 192 1
Google Scholar
[184] Wang R, Wu Q, Zhang Y, Xu X, Zhang Q, Zhao W, Zhang B, Cai W, Yao J, Xu J 2019 Appl. Phys. Lett. 114 121102
Google Scholar
[185] Xu W, Xie L, Zhu J, Xu X, Ye Z, Wang C, Ma Y, Ying Y 2016 ACS Photonics 3 2308
Google Scholar
[186] Wu X, Quan B, Pan X, Xu X, Lu X, Gu C, Wang L 2013 Biosens. Bioelectron. 42 626
Google Scholar
[187] Cheng R J, Xu L, Yu X, Zou L E, Shen Y, Deng X H 2020 Opt. Commun. 473 125850
Google Scholar
[188] Yang K, Yu W J, Huang G R, Zhou J, Yang X, Fu W L 2020 RSC Adv. 10 26824
Google Scholar
[189] Ahmadivand A, Gerislioglu B, Ramezani Z, Kaushik A, Manickam P, Ghoreishi S A 2021 Biosens. Bioelectron. 177 112971
Google Scholar
[190] Yang K, Li J N, de la Chapelle M L, Huang G R, Wang Y X, Zhang J B, Xu D G, Yao J Q, Yang X, Fu W L 2021 Biosens. Bioelectron. 175 112874
Google Scholar
[191] Zhan X Y, Yang S, Huang G R, Yang L H, Zhang Y, Tian H Y, Xie F X, de la Chapelle M L, Yang X, Fu W L 2021 Biosens. Bioelectron. 188 113314
Google Scholar
[192] Park S J, Hong J T, Choi S J, Kim H S, Park W K, Han S T, Park J Y, Lee S, Kim D S, Ahn Y H 2014 Sci. Rep. 4 4988
Google Scholar
[193] Ahmadivand A, Gerislioglu B, Manickam P, Kaushik A, Bhansali S, Nair M, Pala N 2017 ACS Sens. 2 1359
Google Scholar
[194] Liu K, Zhang R, Liu Y, Chen X, Li K, Pickwell-Macpherson E 2021 Biomed. Opt. Express 12 1559
Google Scholar
[195] Hu X, Xu G, Wen L, Wang H, Zhao Y, Zhang Y, Cumming D R S, Chen Q 2016 Laser Photonics Rev. 10 962
Google Scholar
[196] Kim H K, Lee D, Lim S 2016 Sensors 16 1246
Google Scholar
[197] Hu F, Guo E, Xu X, Li P, Xu X, Yin S, Wang Y, Chen T, Yin X, Zhang W 2017 Opt. Commun. 388 62
Google Scholar
[198] Zhao X, Zhang M, Wei D, Wang Y, Yan S, Liu M, Yang X, Yang K, Cui H L, Fu W 2017 Biomed. Opt. Express 8 4427
Google Scholar
[199] Salim A, Lim S 2018 Sensors 18 232
Google Scholar
[200] Govind G, Akhtar M J 2019 IEEE Sens. J. 19 11900
Google Scholar
[201] He G, Lan F, Mazumder P, Wang L, Zeng H, Yang Z, Yin J, Shi Z, Xiao B 2019 IEEE Photonics and Electromagnetics Research Symposium Xiamen, China, December 17−20, 2019 p260
[202] Serita K, Murakami H, Kawayama I, Tonouchi M 2019 Photonics 6 12
Google Scholar
[203] Alfihed S, Holzman J F, Foulds I G 2020 Biosens. Bioelectron. 165 112393
Google Scholar
[204] Fan F, Zhong C, Zhang Z, Li S, Chang S 2021 Nanoscale Adv. 3 4790
Google Scholar
[205] Xu J, Liao D, Gupta M, Zhu Y, Zhuang S, Singh R, Chen L 2021 Adv. Opt. Mater. 9 2100024
Google Scholar
[206] Zhou R, Wang C, Huang Y, Huang K, Wang Y, Xu W, Xie L, Ying Y 2021 Biosens. Bioelectron. 188 113336
Google Scholar
[207] Shih K, Pitchappa P, Jin L, Chen C H, Singh R, Lee C 2018 Appl. Phys. Lett. 113 071105
Google Scholar
[208] Geng Z, Zhang X, Fan Z, Lv X, Chen H 2017 Sci. Rep. 7 16378
Google Scholar
[209] Zhou J, Zhao X, Huang G, Yang X, Zhang Y, Zhan X, Tian H, Xiong Y, Wang Y, Fu W 2021 ACS Sens. 6 1884
Google Scholar
[210] Zhang Z Y, Fan F, Li T F, Ji Y Y, Chang S J 2020 Chin. Phys. B 29 078707
Google Scholar
[211] Zhang Z, Zhong C, Fan F, Liu G, Chang S 2021 Sens. Actuators, B 330 129315
Google Scholar
[212] Duan G W, Schalch J, Zhao X G, Zhang J D, Averitt R D, Zhang X 2018 Sens. Actuators, A 280 303
Google Scholar
[213] Lee D K, Kim G, Kim C, Jhon Y M, Kim J H, Lee T, Son J H, Seo M 2016 IEEE Trans. Terahertz Sci. Technol. 6 389
Google Scholar
[214] Lee S H, Shin S, Roh Y, Oh S J, Lee S H, Song H S, Ryu Y S, Kim Y K, Seo M 2020 Biosens. Bioelectron. 170 112663
Google Scholar
[215] Jahani Y, Arvelo E R, Yesilkoy F, Koshelev K, Cianciaruso C, De Palma M, Kivshar Y, Altug H 2021 Nat. Commun. 12 3246
Google Scholar
[216] John-Herpin A, Kavungal D, von Mucke L, Altug H 2021 Adv. Mater. 33 2006054
Google Scholar
计量
- 文章访问数: 14136
- PDF下载量: 581
- 被引次数: 0