-
Liquid crystal (LC) is an excellent tunable functional material which can be controlled by the external stimulus such as electric field, magnetic field and temperature. Terahertz (THz) radiation in a frequency range of 0.1−10.0 THz, has enormous advantages such as a low photon energy, sensitivity to crystal lattice vibration, magnetic spins, hydrogen bonds, intermolecular interaction, and water, and high transparency to non-conducting materials. The THz technology, therefore, has great potential in a diverse range of applications from spectroscopy, security screening to biomedical technology and high-speed wireless communication. But the development of high-performance LC based tunable THz functional devices is still in its infancy stage. The dispersion of LC refractive index induces a comparatively low birefringence in the THz regime. The lack of transparent electrodes makes the electric tuning of LCs difficult to achieve. To achieve certain modulations requires a very thick THz layer, leading to several disadvantages such as high operating voltage, slow response and poor pre-alignment. In this paper, we first present the research progress of large birefringence LCs in THz range. A room-temperature nematic LC NJU-LDn-4 with an average birefringence greater than 0.3 in a frequency range from 0.5 to 2.5 THz is shown in detail. This kind of LC can remarkably reduce the required cell gap, thus reducing the operating voltage and response time. Then we summarize varieties of conventional THz devices based on LC. Many electrodes are used for THz range. Graphene which can be used as a perfect transparent electrode material in THz band is proposed. Not only tunable transmissive but also reflective THz waveplates are introduced. The thickness of the LC layer of the reflective one can be reduced to ~10% of that needed for the same phase shift at a given frequency in a transmissive waveplate. The same tunability as that in the transmissive type just needs half the thickness. We also introduce that LC can generate THz vortex beam based on a photopatterned large birefringence LC. In the area of LC based versatile THz metamaterial devices, the adjacent units of a metasurface layer, such as a fishnet or grating, are usually connected to each other which may cause low-quality (Q) factor and polarization sensitivity, which is undesirable. We emphasize a graphene-assisted high-efficiency tunable THz metamaterial absorber. Few-layer porous graphene is integrated onto the surface of a metasurface layer to provide a uniform static electric field to efficiently control the LC, thereby enabling flexible metamaterial designs. The THz far-field and near-field with large modulation and fast response are realized. A magnetically and electrically polarization-tunable terahertz emitter that integrates a ferromagnetic heterostructure and the large-birefringence liquid crystals is also demonstrated to be able to generate broadband THz radiation and control the polarization of THz waves perfectly as well as LC based THz reflectarray. Last but not least, a temperature-supersensitive cholesteric LC used for THz detection is shown. It can not only measure the beam profiles but also detect the power values of THz waves generated from a nonlinear crystal pumped by a table-top laser. Quantitative visualization based on not only the thermochromic but also the thermal diffusion effect, can be used conveniently and effectively at room temperature. In this review, we summarize the latest progress of liquid crystal materials and components in THz and discuss the possible prospects of the combination of liquid crystal technology and THz technology. We envision that LCs will play a unique role in THz sources, THz functional devices and THz detectors.
-
Keywords:
- liquid crystal /
- terahertz /
- metamaterial /
- graphene
[1] Tonouchi M 2007 Nat. Photon. 1 97Google Scholar
[2] 周俊, 刘盛纲 2014 现代应用物理 5 85Google Scholar
Zhou J, Liu S G 2014 Modern Appl. Phys. 5 85Google Scholar
[3] Ferguson B, Zhang X C 2002 Nat. Material 1 26
[4] 姚建铨, 迟楠, 杨鹏飞, 崔海霞, 汪静丽, 李九生, 徐德刚, 丁欣 2009 中国激光 36 2213
Yao J Q, Chi N, Yang P F, Cui H X, Wang J L, Li J S, Xu D G, Ding X 2009 Chin. J. Lasers 36 2213
[5] Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photon. 10 483Google Scholar
[6] Zhang X C, Shkurinov A, Zhang Y 2017 Nat. Photon. 11 16Google Scholar
[7] 王磊 2014 博士学位论文(南京: 南京大学)
Wang L 2014 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)
[8] https://www.advantest.com/products/terahertz-spectro scopic-imaging-systems/about-terahertz-waves [2019-4-4]
[9] de Gennes P G, Prost J 1993 The Physics of Liquid Crystals (New York: Oxford University Press) pp28−40
[10] Rao L H, Ge Z B, Wu S T, Lee S H 2009 Appl. Phys. Lett. 95 231101Google Scholar
[11] O'Neill M, Kelly S M 2003 Adv. Mater. 15 1135Google Scholar
[12] Wu S T 1986 Phys. Rev. A 33 1270Google Scholar
[13] Tsai T R, Chen C Y, Pan C L, Pan R P, Zhang X C 2003 Appl. Opt. 42 2372Google Scholar
[14] Koeberle M, Goebel T, Schoenherr D, Mueller S 2008 Microwave Conference Hamburg Harburg German, March 10−12, 2008 p146
[15] Wilk R, Vieweg N, Kopschinski O, Hasek T, Koch M 2009 J. Infrared Millim. Terahertz Waves 30 1139Google Scholar
[16] Vieweg N, Jansen C, Shakfa M K, Scheller M, Krumbholz N, Wilk R, Mikulics M, Koch M 2010 Opt. Express 18 6097Google Scholar
[17] Yang C S, Lin C J, Pan R P, Que C T, Yamamoto K, Tani M, Pan C L 2010 J. Opt. Soc. Am. B: Opt. Phys. 27 1866Google Scholar
[18] Wu S T, Yang D K 2014 Fundamentals of Liquid Crystal Devices (New York: John Wiley & Sons) pp127−148
[19] Trushkevych O, Xu H, Lu T, Zeitler J A, Rungsawang R, Gölden F, Collings N, Crossland W A 2010 Appl. Opt. 49 5212Google Scholar
[20] Vieweg N, Shakfa M K, Koch M 2011 Opt. Commun. 284 1887Google Scholar
[21] Ku C P, Shih C C, Lin C J, Pan R P, Pan C L 2011 Mol. Cryst. Liq. Cryst. 541 65Google Scholar
[22] Park H, Parrott E P, Fan F, Lim M, Han H, Chigrinov V G, Pickwell-MacPherson E 2012 Opt. Express 20 11899Google Scholar
[23] Wang L, Lin X W, Liang X, Wu J B, Hu W, Zheng Z G, Jin B B, Qin Y Q, Lu Y Q 2012 Opt. Mater. Express 2 1314Google Scholar
[24] Naftaly M, Dudley R 2013 Opt. Mater. Express 3 459Google Scholar
[25] Reuter M, Vieweg N, Fischer B M, Mikulicz M, Koch M, Garbat K, Dabrowski R 2013 APL Mater. 1 012107Google Scholar
[26] Liu Q F, Luo D, Li S X, Tian Z 2016 Liq. Cryst. 43 796Google Scholar
[27] Chodorow U, Mavrona E, Palka N, Strzezysz O, Garbat K, Saizek S, Blach J F, Apostolopoulos V, Kaczmarek M, Parka J 2017 Liq. Cryst. 44 1207Google Scholar
[28] Mavrona E, Chodorow U, Barnes M E, Parka J, Palka N 2015 AIP Adv. 5 077143Google Scholar
[29] Dziaduszek J, Dąbrowski R, Urban S, Garbat K, Glushchenko A, Czupryński K 2017 Liq. Cryst. 44 1277Google Scholar
[30] Padilla W J, Taylor A J, Highstrete C, Lee M, Averitt R D 2006 Phys. Rev. Lett. 96 107401Google Scholar
[31] Shalaby M, Peccianti M, Ozturk Y, Morandotti R 2013 Nat. Commun. 4 1558Google Scholar
[32] Ren M, Jia B, Ou J Y, Plum E, Zhang J, MacDonald K F, Nikolaenko A E, Xu J, Gu M, Zheludev N I 2011 Adv. Mater. 23 5540Google Scholar
[33] Hu F, Qian Y, Li Z, Niu J, Niu K, Xiong X, Zang W, Peng Z 2013 J. Opt. 15 055101Google Scholar
[34] Huang W, Yin X, Huang C, Wang Q, Miao T 2010 Appl. Phys. Lett. 96 261908Google Scholar
[35] Lapine M, Powell D, Gorkunov M, Shadrivov I, Marqués R 2009 Appl. Phys. Lett. 95 084105Google Scholar
[36] Wilk R, Vieweg N, Kopschinski O, Koch M 2009 Opt. Express 17 7377Google Scholar
[37] Jewell S A, Hendry E, Isaac T H, Sambles J R 2008 New J. Phys. 10 033012Google Scholar
[38] Chen C Y, Tsai T R, Pan C L, Pan R P 2003 Appl. Phys. Lett. 83 4497Google Scholar
[39] Chen C Y, Pan C L, Hsieh C F, Lin Y F, Pan R P 2006 Appl. Phys. Lett. 88 101107Google Scholar
[40] Chen H I, Pan C L, Hsieh C F, Pan R P 2008 Opt. Lett. 33 1401Google Scholar
[41] Chen C Y, Hsieh C F, Lin Y F, Pan R P, Pan C L 2004 Opt. Express 12 2625Google Scholar
[42] Yang L, Fan F, Chen M, Zhang X Z, Bai J J, Chang S J 2016 Opt. Mater. Express 6 2803Google Scholar
[43] Ge S J, Liu J C, Chen P, Hu W, Lu Y Q 2015 Chin. Opt. Lett. 13 120401
[44] Tsai T R, Chen C Y, Pan R P, Pan C L 2004 IEEE Microw. Wirel. Co. 14 77Google Scholar
[45] Hsieh C F, Pan R P, Tang T T, Chen H L, Pan C L 2006 Opt. Lett. 31 1112Google Scholar
[46] Wu H Y, Hsieh C F, Tang T T, Pan R P, Pan C L 2006 IEEE Photon. Technol. Lett. 18 1488Google Scholar
[47] Lin C J, Lin C H, Li Y T, Pan R P, Pan C L 2009 IEEE Photon. Technol. Lett. 21 730Google Scholar
[48] Lin X W, Wu J B, Hu W, Zheng Z G, Wu Z J, Zhu G, Xu F, Jin B B, Lu Y Q 2011 AIP Adv. 1 032133Google Scholar
[49] Yang C S, Tang T T, Chen P H, Pan R P, Yu P, Pan C L 2014 Opt. Lett. 39 2511Google Scholar
[50] Du Y, Tian H, Cui X, Wang X J, Lu J G, Zhou Z X 2016 Opt. Express 24 6359Google Scholar
[51] Du Y, Tian H, Cui X, Wang H, Zhou Z X 2016 J. Mater. Chem. C 4 4138Google Scholar
[52] Wu Y, Ruan X Z, Chen C H, Shin Y J, Lee Y, Niu J, Liu J, Chen Y, Yang K L, Zhang X, Ahn J H, Yang H 2013 Opt. Express 21 21395Google Scholar
[53] Wang L, Lin X W, Hu W, Shao G H, Chen P, Liang L J, Jin B B, Wu P H, Qian H, Lu Y N, Liang X, Zheng Z G, Lu Y Q 2015 Light Sci. Appl. 4 e253Google Scholar
[54] Sasaki T, Noda K, Kawatsuki N, Ono H 2015 Opt. Lett. 40 1544Google Scholar
[55] Ji Y Y, Fan F, Wang X H, Chang S J 2018 Opt. Express 26 12852Google Scholar
[56] Sasaki T, Okuyama H, Sakamoto M, Noda K, Okamoto H, Kawatsuki N, Ono H 2017 J. Appl. Phys. 121 143106Google Scholar
[57] Ji Y Y, Fan F, Chen M, Yang L, Chang S J 2017 Opt. Express 25 11405Google Scholar
[58] Wang C T, Wu C L, Zhang H W, Lin T H, Lee C K 2016 Opt. Mater. Express 6 2283Google Scholar
[59] Yu J P, Chen S, Fan F, Cheng J R, Xu S T, Wang X H, Chang S J 2018 Opt. Express 26 663Google Scholar
[60] Wang L, Ge S J, Hu W, Nakajima M, Lu Y Q 2017 Opt. Mater. Express 7 2023Google Scholar
[61] Yang J, Xia T Y, Jing S C, Deng G S, Lu H B, Fang Y, Yin Z P 2018 J. Infrared Millim. Terahertz Waves 39 439Google Scholar
[62] Ge S J, Chen P, Shen Z X, Sun W F, Wang X K, Hu W, Zhang Y, Lu Y Q 2017 Opt. Express 25 12349Google Scholar
[63] Ge S J, Shen Z X, Chen P, Liang X, Wang X K, Hu W, Zhang Y, Lu Y Q 2017 Crystals 7 314Google Scholar
[64] Shrekenhamer D, Chen W C, Padilla W J 2013 Phys. Rev. Lett. 110 177403Google Scholar
[65] Savo S, Shrekenhamer D, Padilla W J 2014 Adv. Opt. Mater. 2 275Google Scholar
[66] Isić G, Vasić B, Zografopoulos D C, Beccherelli R, Gajić R 2015 Phys. Rev. Appl. 3 064007Google Scholar
[67] Yang L, Fan F, Chen M, Zhang X, Chang S J 2017 Opt. Commun. 382 42Google Scholar
[68] Lu H B, Jing S C, Xia T Y, Yang J, Yin Z P, Deng G S 2017 IEICE Elect. Express 14 20170469Google Scholar
[69] Vasić B, Zografopoulos D C, Isić G, Beccherelli R, Gajić R 2017 Nanotechnology 28 124002Google Scholar
[70] Wang P Y, Jin T, Meng F Y, Lyu Y L, Erni D, Wu Q, Zhu L 2018 Opt. Express 26 12318Google Scholar
[71] Wang J, Tian H, Wang Y, Li X Y, Cao Y J, Li L, Liu J L, Zhou Z X 2018 Opt. Express 26 5769Google Scholar
[72] Yin Z P, Lu Y J, Xia T Y, Lai W, Yang J, Lu H B, Deng G H 2018 RSC Adv. 8 4197Google Scholar
[73] Wang R X, Li L, Liu J L, Yan F, Tian F J, Tian H, Zhang J Z, Sun W M 2017 Opt. Express 25 32280Google Scholar
[74] Wang L, Nakajima M, Ge S J, Lu Y Q 2017 Opt. Express 25 23873Google Scholar
[75] Wang L, Ge S J, Chen Z X, Hu W, Lu Y Q 2016 Chin. Phys. B 25 094222
[76] Shen Z X, Zhou S H, Ge S J, Duan W, Chen P, Wang L, Hu W, Lu Y Q 2018 Opt. Lett. 43 4695Google Scholar
[77] Qiu H S, Wang L, Shen Z X, Kato K, Sarukura N, Yoshimura M, Hu W, Lu Y Q, Nakajima M 2018 Appl. Phys. Express 11 092101Google Scholar
[78] Hu W F, Robert C, Jos É A E, Raymond D, Harold G, Vincent F, Norman G, 2008 IEEE Trans. Antennas Propag. 56 3112Google Scholar
[79] Gerardo P P, Barba M, Encinar J A, Cahill R, Dickie R, Baine P M 2015 IEEE Trans. Antennas Propag. 63 3722Google Scholar
[80] Fuscaldo W, Burghignoli P, Baccarelli P, Galli A 2017 IEEE Trans. Antennas Propag. 65 1651Google Scholar
[81] Kahn F J 1970 Phys. Rev. Lett. 24 209Google Scholar
[82] Inoue Y, Moritake H 2016 Opt. Express 24 23027Google Scholar
[83] Kim H, Kobashi J, Maeda Y, Ozaki M, Maeda Y 2016 Opt. Mater. Express 6 1138Google Scholar
[84] Xianyu H, Faris S, Crawford G P 2004 Appl. Opt. 43 5006Google Scholar
[85] Hsiao Y C, Wei L 2013 Opt. Express 21 23927Google Scholar
[86] Wang L, Urbas A M, Li Q 2018 Adv. Mater. 1801335Google Scholar
[87] Schwartz M, Lenzini G, Geng Y, Rønne P B, Ryan P Y A, Lagerwall J P F 2018 Adv. Mater. 30 1707382Google Scholar
[88] Kang B, Takano K, Nakajima M, Hangyo M, Takano K, Tadokoro Y 2015 Opt. Lett. 40 4456Google Scholar
[89] Keilmann F, Renk K F 1971 Appl. Phys. Lett. 18 452Google Scholar
[90] Chen I A, Park S W, Chen G, Wang C, Bethea C, Martini R, Woolard D 2013 Proc. SPIE 8624 862415
[91] Wang L, Qiu H S, Phan T N K, Kato K, Kang B, Takano K, Lu Y Q, Chen L J, Lü P, Yu K H, Wei W, Jin B B, Nakajima M 2018 Appl. Sci. 8 2580Google Scholar
-
图 3 液晶THz波片 (a) 结构图;(b) 石墨烯传输特性;(c) 电调THz偏振态;(d) 双层液晶器件[53]
Fig. 3. Tunable THz waveplate: (a) The cell is composed of a front fused silica substrate covered with a subwavelength metal wire grid and a rear fused silica substrate covered with porous graphene, both substrates are spin coated with SD1 alignment layers, and 250-
${\text{μ}}{\rm m}$ -thick Mylar is used to separate the two substrates, NJU-LDn-4 LCs are capillary filled into the cell; (b) UVO-treated and then SD1 spin-coated CVD-grown few-layer graphene films; (c) polarization evolution at 2.1 THz: linearly polarized at 0 V, elliptically polarized at 6 V, circularly polarized at 8.8 V, elliptically polarized at 20 V and linearly polarized at 50 V (orthogonal to the polarization at 0 V); (d) schematic illustration of the double-stacked cell [53]图 4 一种反射式电控宽带可调THz液晶波片 (a) 示意图;(b) 不同电压下的THz偏振态[60]
Fig. 4. A reflective electrically controlled broadband tunable THz liquid crystal waveplate: (a) Schematic drawing; (b) polarization evolution (0−22 V) from linearly polarized to circularly polarized at 1.1 THz, to orthogonally linearly polarized at 2.2 THz[60]
图 5 (a) 液晶光轴分布理论值;(b) q = 2的THz液晶q波片在正交偏振片下的照片, 标尺为1 mm;(c) 1 THz左旋圆偏振THz波经过该波片后所测强度和(d) 相位分布[62]
Fig. 5. (a) Theoretical optical axis distribution; (b) photo under crossed polarizers of the q-plate with q = 2, the scale bar is 1 mm; (c) the measured intensity, and (d) phase distributions of the transformed component at 1.0 THz with left circular incident polarization [62]
图 6 (a) 液晶可调超材料吸收器单元;(b) 液晶在偏置电压下取向变化;(c) 吸收频率可调范围[64]
Fig. 6. (a) Rendering of a single unit cell of the liquid crystal metamaterial absorber; (b) depiction of the random alignment of liquid crystal in the unbiased case (right) and for an applied ac bias (left); (c) frequency dependent absorption A(w) for 0 V (blue solid curve) and 4 V (red dashed curve) at fmod = 1 kHz, dashed line is centered at Amax(Vbias = 0) = 2.62 THz [64]
图 7 一种石墨烯/超材料协同驱动的电控液晶可调THz波吸收器 (a) 结构示意图;(b) 十字超材料的显微图片;(c) 十字超材料电极驱动液晶指向矢分布;(d) 十字超材料和石墨烯复合电极驱动液晶指向矢分布;(e) 可调THz波吸收器的远场吸收特性和(f) 近场特性, A, 0.864 THz, 0 V; B, 0.884 THz, 10 V; C, 0.742 THz, 10 V; D, 0.742 THz, 0 V. 液晶方向在 0 V为平行, 在10 V为垂直[74]
Fig. 7. Liquid crystal tunable metamaterial/graphene absorber: (a) Schematic; (b) optical image of the metasurface (inset: a unit cell of the metasurface), P = 150
${\text{μm}}$ , lx = 120${\text{μm}}$ , ly = 100${\text{μm}}$ , w = 10${\text{μm}}$ . Simulations of the static electric field and liquid crystal director distributions shown at a plane centered in the liquid crystal layer when the operating voltage is 10 V: (c) cross-shaped electrode; and (d) metamaterial/graphene electrode with the same metal ground. Tunability of the THz resonant frequencies and hot spots of the metamaterial absorber: (e) tunable absorption of TE and TM mode; (f) electric field of the corresponding points in (e) at a plane 1${\text{μm}}$ above the cross-shaped metasurface. A, 0.864 THz, 0 V; B, 0.884 THz, 10 V; C, 0.742 THz, 10 V; D, 0.742 THz, 0 V. The orientation of liquid crystal is horizontal at 0 V while vertical at 10 V [74]图 8 集成液晶的多功能THz超材料器件 (a) 示意图;(b) 分解图, 黄色箭头方向为液晶取向方向;(c) 超表面显微照片, 内插图为共振器的单位尺寸, p, 晶格周期, 50
${\text{μm}}$ ; l, CRR长度, 40${\text{μm}}$ ; r, SRR长度, 20${\text{μm}}$ ; w, 结构宽度, 3${\text{μm}}$ ; g, 液晶层厚度, 4${\text{μm}}$ ; x, 非对称距离, 11${\text{μm}}$ ;(d) 梳状电极显微图和特性;(e) 器件响应时间实验测试[76]Fig. 8. The active multifunctional terahertz metadevice: (a) Schematic illustration; (b) decomposition diagram of the device, the yellow arrows indicate the alignment direction; (c) the micrographs of the metasurface; (d) the comb electrode, inset in (c) shows the unit dimension of the resonator; p, lattice periodicity, 50
${\text{μm}}$ ; l, CRR length, 40${\text{μm}}$ ; r, SRR length, 20${\text{μm}}$ ; w, structure width, 3${\text{μm}}$ ; g, gap, 4${\text{μm}}$ ; and x, asymmetry distance, 11${\text{μm}}$ ; the inset in (d) shows the polarization selectivity of the subwavelength grating; (e) black line reveals the electro-optical response of the device at 45 V; the blue line depicts the 1 kHz square-wave voltage signals[76]图 9 (a) 偏振可调的THz发射器结构图;(b) 铁磁异质结THz源工作原理图, 由飞秒激光脉冲作用铁磁异质结产生的自旋电流Js转化成面内电流Jc, 其沿x轴方向类似电偶极子, 发射出线偏振THz波, THz波偏振方向由磁场方向决定[77]
Fig. 9. (a) Schematic of the polarization-tunable THz emitter; a ferromagnetic heterostructure and a large birefringence liquid crystal are integrated in the emitter, the heterostructure acts as the THz source as well as the electrode on the front side, a few-layer porous graphene with a high transmittance is employed as the other electrode on the rear side; (b) the spin current Js launched by the laser pulse excitation is converted into the in-plane charge current Jc due to the ISHE, the current Jc along the x-axis act as an electric dipole, emitting linearly polarized THz waves into free space, the polarity of the THz waveform is determined by the direction of the magnetic field H and reverses together with it [77]
图 12 (a) 一种基于胶囊型CLC薄膜的可视化THz功率计结构示意图; (b) 在不同THz强度辐照下胶囊型CLC薄膜颜色变化情况; (c) 热平衡时THz功率与颜色变化区域直径的关系; (d) THz波辐照时间与颜色变化区域直径的关系[91]
Fig. 12. (a) Schematic and working principle of the capsulized CLC film, the inset shows a micrograph of the film, which is produced with a color 3D laser scanning microscope (VK-8710, KEYENCE, Osaka, Japan); (b) visible pictures are taken under different THz intensities by a smartphone camera with Bluetooth; (c) increase in the diameter of the color change with different THz powers in thermal equilibrium, similar to a dartboard shown in the inset; (d) increase in the diameters as a function of response time with 1.3 mW and 2.6 mW THz radiation, the inset shows image changes under different THz radiation times [91]
表 1 THz大双折射液晶材料
Table 1. Large birefringence liquid crystal materials in THz range
液晶种类 频率范围/THz ne no Δn (1 THz) LCMS107 0.5—1.6 1.80—1.85 1.50—1.62 0.2—0.3 BL037 0.3—2.5 1.76—1.78 1.56—1.62 ~0.2 MDA-00-3461 0.3—1.4 1.74 1.54 0.20 RDP97304 0.2—2.0 1.77—1.79 1.55—1.61 0.22 NJU-LDn-4 0.4—1.6 1.80—1.82 1.50—1.51 ~0.31 GT3-23001 0.4—4.0 1.76 ± 0.01 1.54 ± 0.01 ~0.22 LC1852 0.5—2.5 1.85—1.89 1.55—1.57 0.32 LC1825 0.2—2.5 1.91—1.95 1.54—1.57 0.38 MLC-2142 0.1—1.6 1.85—1.88 1.61—1.64 0.24 2020+nps3 0.3—3.0 1.90—1.92 1.55—1.60 0.36 -
[1] Tonouchi M 2007 Nat. Photon. 1 97Google Scholar
[2] 周俊, 刘盛纲 2014 现代应用物理 5 85Google Scholar
Zhou J, Liu S G 2014 Modern Appl. Phys. 5 85Google Scholar
[3] Ferguson B, Zhang X C 2002 Nat. Material 1 26
[4] 姚建铨, 迟楠, 杨鹏飞, 崔海霞, 汪静丽, 李九生, 徐德刚, 丁欣 2009 中国激光 36 2213
Yao J Q, Chi N, Yang P F, Cui H X, Wang J L, Li J S, Xu D G, Ding X 2009 Chin. J. Lasers 36 2213
[5] Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photon. 10 483Google Scholar
[6] Zhang X C, Shkurinov A, Zhang Y 2017 Nat. Photon. 11 16Google Scholar
[7] 王磊 2014 博士学位论文(南京: 南京大学)
Wang L 2014 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese)
[8] https://www.advantest.com/products/terahertz-spectro scopic-imaging-systems/about-terahertz-waves [2019-4-4]
[9] de Gennes P G, Prost J 1993 The Physics of Liquid Crystals (New York: Oxford University Press) pp28−40
[10] Rao L H, Ge Z B, Wu S T, Lee S H 2009 Appl. Phys. Lett. 95 231101Google Scholar
[11] O'Neill M, Kelly S M 2003 Adv. Mater. 15 1135Google Scholar
[12] Wu S T 1986 Phys. Rev. A 33 1270Google Scholar
[13] Tsai T R, Chen C Y, Pan C L, Pan R P, Zhang X C 2003 Appl. Opt. 42 2372Google Scholar
[14] Koeberle M, Goebel T, Schoenherr D, Mueller S 2008 Microwave Conference Hamburg Harburg German, March 10−12, 2008 p146
[15] Wilk R, Vieweg N, Kopschinski O, Hasek T, Koch M 2009 J. Infrared Millim. Terahertz Waves 30 1139Google Scholar
[16] Vieweg N, Jansen C, Shakfa M K, Scheller M, Krumbholz N, Wilk R, Mikulics M, Koch M 2010 Opt. Express 18 6097Google Scholar
[17] Yang C S, Lin C J, Pan R P, Que C T, Yamamoto K, Tani M, Pan C L 2010 J. Opt. Soc. Am. B: Opt. Phys. 27 1866Google Scholar
[18] Wu S T, Yang D K 2014 Fundamentals of Liquid Crystal Devices (New York: John Wiley & Sons) pp127−148
[19] Trushkevych O, Xu H, Lu T, Zeitler J A, Rungsawang R, Gölden F, Collings N, Crossland W A 2010 Appl. Opt. 49 5212Google Scholar
[20] Vieweg N, Shakfa M K, Koch M 2011 Opt. Commun. 284 1887Google Scholar
[21] Ku C P, Shih C C, Lin C J, Pan R P, Pan C L 2011 Mol. Cryst. Liq. Cryst. 541 65Google Scholar
[22] Park H, Parrott E P, Fan F, Lim M, Han H, Chigrinov V G, Pickwell-MacPherson E 2012 Opt. Express 20 11899Google Scholar
[23] Wang L, Lin X W, Liang X, Wu J B, Hu W, Zheng Z G, Jin B B, Qin Y Q, Lu Y Q 2012 Opt. Mater. Express 2 1314Google Scholar
[24] Naftaly M, Dudley R 2013 Opt. Mater. Express 3 459Google Scholar
[25] Reuter M, Vieweg N, Fischer B M, Mikulicz M, Koch M, Garbat K, Dabrowski R 2013 APL Mater. 1 012107Google Scholar
[26] Liu Q F, Luo D, Li S X, Tian Z 2016 Liq. Cryst. 43 796Google Scholar
[27] Chodorow U, Mavrona E, Palka N, Strzezysz O, Garbat K, Saizek S, Blach J F, Apostolopoulos V, Kaczmarek M, Parka J 2017 Liq. Cryst. 44 1207Google Scholar
[28] Mavrona E, Chodorow U, Barnes M E, Parka J, Palka N 2015 AIP Adv. 5 077143Google Scholar
[29] Dziaduszek J, Dąbrowski R, Urban S, Garbat K, Glushchenko A, Czupryński K 2017 Liq. Cryst. 44 1277Google Scholar
[30] Padilla W J, Taylor A J, Highstrete C, Lee M, Averitt R D 2006 Phys. Rev. Lett. 96 107401Google Scholar
[31] Shalaby M, Peccianti M, Ozturk Y, Morandotti R 2013 Nat. Commun. 4 1558Google Scholar
[32] Ren M, Jia B, Ou J Y, Plum E, Zhang J, MacDonald K F, Nikolaenko A E, Xu J, Gu M, Zheludev N I 2011 Adv. Mater. 23 5540Google Scholar
[33] Hu F, Qian Y, Li Z, Niu J, Niu K, Xiong X, Zang W, Peng Z 2013 J. Opt. 15 055101Google Scholar
[34] Huang W, Yin X, Huang C, Wang Q, Miao T 2010 Appl. Phys. Lett. 96 261908Google Scholar
[35] Lapine M, Powell D, Gorkunov M, Shadrivov I, Marqués R 2009 Appl. Phys. Lett. 95 084105Google Scholar
[36] Wilk R, Vieweg N, Kopschinski O, Koch M 2009 Opt. Express 17 7377Google Scholar
[37] Jewell S A, Hendry E, Isaac T H, Sambles J R 2008 New J. Phys. 10 033012Google Scholar
[38] Chen C Y, Tsai T R, Pan C L, Pan R P 2003 Appl. Phys. Lett. 83 4497Google Scholar
[39] Chen C Y, Pan C L, Hsieh C F, Lin Y F, Pan R P 2006 Appl. Phys. Lett. 88 101107Google Scholar
[40] Chen H I, Pan C L, Hsieh C F, Pan R P 2008 Opt. Lett. 33 1401Google Scholar
[41] Chen C Y, Hsieh C F, Lin Y F, Pan R P, Pan C L 2004 Opt. Express 12 2625Google Scholar
[42] Yang L, Fan F, Chen M, Zhang X Z, Bai J J, Chang S J 2016 Opt. Mater. Express 6 2803Google Scholar
[43] Ge S J, Liu J C, Chen P, Hu W, Lu Y Q 2015 Chin. Opt. Lett. 13 120401
[44] Tsai T R, Chen C Y, Pan R P, Pan C L 2004 IEEE Microw. Wirel. Co. 14 77Google Scholar
[45] Hsieh C F, Pan R P, Tang T T, Chen H L, Pan C L 2006 Opt. Lett. 31 1112Google Scholar
[46] Wu H Y, Hsieh C F, Tang T T, Pan R P, Pan C L 2006 IEEE Photon. Technol. Lett. 18 1488Google Scholar
[47] Lin C J, Lin C H, Li Y T, Pan R P, Pan C L 2009 IEEE Photon. Technol. Lett. 21 730Google Scholar
[48] Lin X W, Wu J B, Hu W, Zheng Z G, Wu Z J, Zhu G, Xu F, Jin B B, Lu Y Q 2011 AIP Adv. 1 032133Google Scholar
[49] Yang C S, Tang T T, Chen P H, Pan R P, Yu P, Pan C L 2014 Opt. Lett. 39 2511Google Scholar
[50] Du Y, Tian H, Cui X, Wang X J, Lu J G, Zhou Z X 2016 Opt. Express 24 6359Google Scholar
[51] Du Y, Tian H, Cui X, Wang H, Zhou Z X 2016 J. Mater. Chem. C 4 4138Google Scholar
[52] Wu Y, Ruan X Z, Chen C H, Shin Y J, Lee Y, Niu J, Liu J, Chen Y, Yang K L, Zhang X, Ahn J H, Yang H 2013 Opt. Express 21 21395Google Scholar
[53] Wang L, Lin X W, Hu W, Shao G H, Chen P, Liang L J, Jin B B, Wu P H, Qian H, Lu Y N, Liang X, Zheng Z G, Lu Y Q 2015 Light Sci. Appl. 4 e253Google Scholar
[54] Sasaki T, Noda K, Kawatsuki N, Ono H 2015 Opt. Lett. 40 1544Google Scholar
[55] Ji Y Y, Fan F, Wang X H, Chang S J 2018 Opt. Express 26 12852Google Scholar
[56] Sasaki T, Okuyama H, Sakamoto M, Noda K, Okamoto H, Kawatsuki N, Ono H 2017 J. Appl. Phys. 121 143106Google Scholar
[57] Ji Y Y, Fan F, Chen M, Yang L, Chang S J 2017 Opt. Express 25 11405Google Scholar
[58] Wang C T, Wu C L, Zhang H W, Lin T H, Lee C K 2016 Opt. Mater. Express 6 2283Google Scholar
[59] Yu J P, Chen S, Fan F, Cheng J R, Xu S T, Wang X H, Chang S J 2018 Opt. Express 26 663Google Scholar
[60] Wang L, Ge S J, Hu W, Nakajima M, Lu Y Q 2017 Opt. Mater. Express 7 2023Google Scholar
[61] Yang J, Xia T Y, Jing S C, Deng G S, Lu H B, Fang Y, Yin Z P 2018 J. Infrared Millim. Terahertz Waves 39 439Google Scholar
[62] Ge S J, Chen P, Shen Z X, Sun W F, Wang X K, Hu W, Zhang Y, Lu Y Q 2017 Opt. Express 25 12349Google Scholar
[63] Ge S J, Shen Z X, Chen P, Liang X, Wang X K, Hu W, Zhang Y, Lu Y Q 2017 Crystals 7 314Google Scholar
[64] Shrekenhamer D, Chen W C, Padilla W J 2013 Phys. Rev. Lett. 110 177403Google Scholar
[65] Savo S, Shrekenhamer D, Padilla W J 2014 Adv. Opt. Mater. 2 275Google Scholar
[66] Isić G, Vasić B, Zografopoulos D C, Beccherelli R, Gajić R 2015 Phys. Rev. Appl. 3 064007Google Scholar
[67] Yang L, Fan F, Chen M, Zhang X, Chang S J 2017 Opt. Commun. 382 42Google Scholar
[68] Lu H B, Jing S C, Xia T Y, Yang J, Yin Z P, Deng G S 2017 IEICE Elect. Express 14 20170469Google Scholar
[69] Vasić B, Zografopoulos D C, Isić G, Beccherelli R, Gajić R 2017 Nanotechnology 28 124002Google Scholar
[70] Wang P Y, Jin T, Meng F Y, Lyu Y L, Erni D, Wu Q, Zhu L 2018 Opt. Express 26 12318Google Scholar
[71] Wang J, Tian H, Wang Y, Li X Y, Cao Y J, Li L, Liu J L, Zhou Z X 2018 Opt. Express 26 5769Google Scholar
[72] Yin Z P, Lu Y J, Xia T Y, Lai W, Yang J, Lu H B, Deng G H 2018 RSC Adv. 8 4197Google Scholar
[73] Wang R X, Li L, Liu J L, Yan F, Tian F J, Tian H, Zhang J Z, Sun W M 2017 Opt. Express 25 32280Google Scholar
[74] Wang L, Nakajima M, Ge S J, Lu Y Q 2017 Opt. Express 25 23873Google Scholar
[75] Wang L, Ge S J, Chen Z X, Hu W, Lu Y Q 2016 Chin. Phys. B 25 094222
[76] Shen Z X, Zhou S H, Ge S J, Duan W, Chen P, Wang L, Hu W, Lu Y Q 2018 Opt. Lett. 43 4695Google Scholar
[77] Qiu H S, Wang L, Shen Z X, Kato K, Sarukura N, Yoshimura M, Hu W, Lu Y Q, Nakajima M 2018 Appl. Phys. Express 11 092101Google Scholar
[78] Hu W F, Robert C, Jos É A E, Raymond D, Harold G, Vincent F, Norman G, 2008 IEEE Trans. Antennas Propag. 56 3112Google Scholar
[79] Gerardo P P, Barba M, Encinar J A, Cahill R, Dickie R, Baine P M 2015 IEEE Trans. Antennas Propag. 63 3722Google Scholar
[80] Fuscaldo W, Burghignoli P, Baccarelli P, Galli A 2017 IEEE Trans. Antennas Propag. 65 1651Google Scholar
[81] Kahn F J 1970 Phys. Rev. Lett. 24 209Google Scholar
[82] Inoue Y, Moritake H 2016 Opt. Express 24 23027Google Scholar
[83] Kim H, Kobashi J, Maeda Y, Ozaki M, Maeda Y 2016 Opt. Mater. Express 6 1138Google Scholar
[84] Xianyu H, Faris S, Crawford G P 2004 Appl. Opt. 43 5006Google Scholar
[85] Hsiao Y C, Wei L 2013 Opt. Express 21 23927Google Scholar
[86] Wang L, Urbas A M, Li Q 2018 Adv. Mater. 1801335Google Scholar
[87] Schwartz M, Lenzini G, Geng Y, Rønne P B, Ryan P Y A, Lagerwall J P F 2018 Adv. Mater. 30 1707382Google Scholar
[88] Kang B, Takano K, Nakajima M, Hangyo M, Takano K, Tadokoro Y 2015 Opt. Lett. 40 4456Google Scholar
[89] Keilmann F, Renk K F 1971 Appl. Phys. Lett. 18 452Google Scholar
[90] Chen I A, Park S W, Chen G, Wang C, Bethea C, Martini R, Woolard D 2013 Proc. SPIE 8624 862415
[91] Wang L, Qiu H S, Phan T N K, Kato K, Kang B, Takano K, Lu Y Q, Chen L J, Lü P, Yu K H, Wei W, Jin B B, Nakajima M 2018 Appl. Sci. 8 2580Google Scholar
计量
- 文章访问数: 17698
- PDF下载量: 527
- 被引次数: 0