搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

工字形太赫兹超材料吸波体的传感特性研究

张玉萍 李彤彤 吕欢欢 黄晓燕 张会云

引用本文:
Citation:

工字形太赫兹超材料吸波体的传感特性研究

张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云

Study on sensing characteristics of I-shaped terahertz metamaterial absorber

Zhang Yu-Ping, Li Tong-Tong, Lü Huan-Huan, Huang Xiao-Yan, Zhang Hui-Yun
PDF
导出引用
  • 利用超材料吸波体对材料参数的电磁响应, 可将其应用于传感. 本文设计了一种工字形单元结构的超材料吸波体, 基于频域算法对其在太赫兹频段的传感特性进行数值模拟, 研究了待测样品折射率、厚度及电介质隔层厚度对超材料吸波体传感器的频率灵敏度、振幅灵敏度及品质因数的影响. 研究结果表明:当待测样品厚度为40 μm时, 折射率频率灵敏度可达到153.17 GHz/RIU, 折射率振幅灵敏度可达到41.37%/RIU; 待测样品折射率一定时, 厚度频率灵敏度随其厚度的增大而线性减小; 随着待测样品厚度的增加, RFOM呈增大趋势, 但增大幅度在逐渐减小; TFOM随待测样品厚度的增加而减小.
    Recently, metamaterials have attracted considerable attention because of their unique properties and capability of being used in many areas of science. Among these applications, metamaterial absorber is the one researchers show much interests. On the basis of its electromagnetic responses to other material parameters, the metamaterial absorber can be applied to sensing. In this paper, a metamaterial absorber with an I-shaped unit cell is proposed and its favorable sensing characteristics in terahertz frequency range are numerically simulated in terms of frequency-domain algorithm. Influences of the thickness of the sample to be tested and the thickness of dielectric spacer of the sensing of metamaterial absorber on the frequency sensitivity, amplitude sensitivity, and the figure of merit of the refractive index, are studied in detail. Research results indicate that as the refractive index of the sample, whose thickness being fixed, increases, the resonant frequency red-shifts and the reflected amplitude increases. And when the thickness of the sample with a particular refractive index increases, the resonant frequency red-shifts and the reflected amplitude increases correspondingly. The above researches indicate that the sensing of thickness or refractive index of the sample to be tested (abbreviated as specimen) can be realized in a metamaterial absorber. The frequency sensitivity of the refractive index can reach 153.17 GHz/RIU and the amplitude sensitivity of the refractive index can reach 41.37%/RIU when the thickness of the sample is fixed at 40 μm. The frequency sensitivity of the refractive index increases as the thickness of the sample tested increases, but the increasing range gradually decreases. In addition, the amplitude sensitivity of the refractive index increases linearly with the increase of thickness of the sample tested. The frequency sensitivity of thickness decreases linearly with the increase of the thickness of the sample to be tested which is of a particular refractive index. As the thickness of dielectric spacer increases, the frequency sensitivity of the refractive index increases until the thickness reaches 30 μm. Besides, when the refractive index takes a particular value, the frequency sensitivity of thickness decreases linearly as the thickness of dielectric spacer increases. Along with the gradual increase of the thickness of the sample tested, RFOM increases but the increasing range decreases. And TFOM gradually decreases as the thickness of sample tested increases. Both the RFOM and TFOM decrease with the increase of the thickness of dielectric spacer. In the end, the sensing mechanism of metamaterial absorber is discussed in detail. The reflectance spectra and the sensitivity can be adjusted with changing the refractive index and thickeness of the sample tested and the thickness of dielectric spacer, and this will provide important instructive means for terahertz sensing with metamaterial absorbers.
    • 基金项目: 国家自然科学基金(批准号:61001018)、山东省自然科学基金(批准号:ZR2012FM011)、山东省高等学校科技计划项目(批准号:J11LG20)、青岛市创新领军人才项目(批准号:13-CX-25)、中国工程物理研究院太赫兹科学技术基金(批准号:201401)、青岛经济技术开发区重点科技计划项目(批准号:2013-1-64)和山东科技大学科技创新基金(批准号:YC140108)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61001018), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FM011), the Shandong Province Higher Educational Science and Technology Program (Grant No. J11LG20), the Qingdao city innovative leading talent plan of China (Grant No. 13-CX-25), the CAEP THz Science and Technology Foundation, China (Grant No. 201401), Qingdao Economic & Technical Development Zone Science & Technology Project, China (Grant No. 2013-1-64), and the Shandong University of Science and Technology Foundation, China (Grant No. YC140108).
    [1]

    Taday P F 2004 Philos. Trans. R. Soc. London, Ser. A 362 351

    [2]

    Beard M C, Turner G M, Schmuttenmaer C A 2002 J. Phys. Chem. B 106 7146

    [3]

    Siegel P H 2004 Microwave Symposium Digest, 2004 IEEE MTT-S International (Fort Worth:IEEE) p1575

    [4]

    Pickwell E, Wallace V P 2006 J. Phys. D:Appl. Phys. 39 R301

    [5]

    Siegel P H 2002 IEEE T. Microw Theory 50 910

    [6]

    Schmuttenmaer C A 2004 Chem. Rev. 104 1759

    [7]

    Houck A A, Brock J B, Chuang I L 2003 Phys. Rev. Lett. 90 137401

    [8]

    Veselago V G 1968 Phys. Usp. 10 509

    [9]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [10]

    Lal S, Link S, Halas N J 2007 Nature Photon 1 641

    [11]

    Zhu J, Eleftheriades G V 2009 IEEE Antenn. Wirel. PR 8 295

    [12]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [13]

    Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J 2009 Nature Photon 3 148

    [14]

    Driscoll T, Andreev G O, Basov D N, Palit S, Cho S Y, Jokerst N M, Smith D R 2007 Appl. Phys. Lett. 91 062511

    [15]

    O’Hara J F, Singh R, Brener I, Smirnova E, Han J, Taylor A J, Zhang W 2008 Opt. Express 16 1786

    [16]

    Lahiri B, Khokhar A Z, De La Rue R M, McMeekin S G, Johnson N P 2009 Opt. Express 17 1107

    [17]

    Cubukcu E, Zhang S, Park Y S, Bartal G, Zhang X 2009 Appl. Phys. Lett. 95 043113

    [18]

    Tao H, Strikwerda A C, Liu M, Mondia J P, Ekmekci E, Fan K, Omenetto F G 2010 Appl. Phys. Lett. 97 261909

    [19]

    Withayachumnankul W, Lin H, Serita K, Shah C M, Sriram S, Bhaskaran M, Abbott D 2012 Opt. Express 20 3345

    [20]

    Cheng Y Z, Xiao T, Yang H L, Xiao B X 2010 Acta Phys. Sin. 59 5715 (in Chinese) [程用志, 肖婷, 杨河林, 肖柏勋 2010 物理学报 59 5715]

    [21]

    Lu L, Qu S B, Xia S, Xu Z, Ma H, Wang J F, Yu F 2013 Acta Phys. Sin. 62 013701 (in Chinese) [鲁磊, 屈绍波, 夏颂, 徐卓, 马华, 王甲富, 余斐 2013 物理学报 62 013701]

    [22]

    Grant J, Ma Y, Saha S, Khalid A, Cumming D R 2011 Opt. Lett. 36 3476

    [23]

    Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Averitt R D 2010 J. Phys. D:Appl. Phys. 43 225102

    [24]

    Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Cui T J 2012 Appl. Phys. Lett. 101 154102

    [25]

    Zou T B, Hu F R, Xiao J, Zhang L H, Liu F, Chen T, Niu J H, Xiong X M 2014 Acta Phys. Sin. 63 178103 (in Chinese) [邹涛波, 胡放荣, 肖靖, 张隆辉, 刘芳, 陈涛, 牛军浩, 熊显名 2014 物理学报 63 178103]

    [26]

    Ma Y B, Zhang H W, Li Y X, Wang Y C, Lai W E, Li J 2014 Chin. Phys. B 23 058102

    [27]

    Xu Z, Gu C, Pei Z B, Liu J, Qu S B, Gu W 2011 Chin. Phys. B 20 017801

    [28]

    Cheng Y Z, Nie Y, Gong R Z 2013 OPT LASER TECHNOL 48 415

    [29]

    Cong L, Singh R 2014 arXiv:1408.3711v1 [physics. optics]

    [30]

    Singh R, Cao W, Al-Naib I, Cong L, Withayachumnankul W, Zhang W 2014 Appl. Phys. Lett. 105 171101

  • [1]

    Taday P F 2004 Philos. Trans. R. Soc. London, Ser. A 362 351

    [2]

    Beard M C, Turner G M, Schmuttenmaer C A 2002 J. Phys. Chem. B 106 7146

    [3]

    Siegel P H 2004 Microwave Symposium Digest, 2004 IEEE MTT-S International (Fort Worth:IEEE) p1575

    [4]

    Pickwell E, Wallace V P 2006 J. Phys. D:Appl. Phys. 39 R301

    [5]

    Siegel P H 2002 IEEE T. Microw Theory 50 910

    [6]

    Schmuttenmaer C A 2004 Chem. Rev. 104 1759

    [7]

    Houck A A, Brock J B, Chuang I L 2003 Phys. Rev. Lett. 90 137401

    [8]

    Veselago V G 1968 Phys. Usp. 10 509

    [9]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [10]

    Lal S, Link S, Halas N J 2007 Nature Photon 1 641

    [11]

    Zhu J, Eleftheriades G V 2009 IEEE Antenn. Wirel. PR 8 295

    [12]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [13]

    Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J 2009 Nature Photon 3 148

    [14]

    Driscoll T, Andreev G O, Basov D N, Palit S, Cho S Y, Jokerst N M, Smith D R 2007 Appl. Phys. Lett. 91 062511

    [15]

    O’Hara J F, Singh R, Brener I, Smirnova E, Han J, Taylor A J, Zhang W 2008 Opt. Express 16 1786

    [16]

    Lahiri B, Khokhar A Z, De La Rue R M, McMeekin S G, Johnson N P 2009 Opt. Express 17 1107

    [17]

    Cubukcu E, Zhang S, Park Y S, Bartal G, Zhang X 2009 Appl. Phys. Lett. 95 043113

    [18]

    Tao H, Strikwerda A C, Liu M, Mondia J P, Ekmekci E, Fan K, Omenetto F G 2010 Appl. Phys. Lett. 97 261909

    [19]

    Withayachumnankul W, Lin H, Serita K, Shah C M, Sriram S, Bhaskaran M, Abbott D 2012 Opt. Express 20 3345

    [20]

    Cheng Y Z, Xiao T, Yang H L, Xiao B X 2010 Acta Phys. Sin. 59 5715 (in Chinese) [程用志, 肖婷, 杨河林, 肖柏勋 2010 物理学报 59 5715]

    [21]

    Lu L, Qu S B, Xia S, Xu Z, Ma H, Wang J F, Yu F 2013 Acta Phys. Sin. 62 013701 (in Chinese) [鲁磊, 屈绍波, 夏颂, 徐卓, 马华, 王甲富, 余斐 2013 物理学报 62 013701]

    [22]

    Grant J, Ma Y, Saha S, Khalid A, Cumming D R 2011 Opt. Lett. 36 3476

    [23]

    Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Averitt R D 2010 J. Phys. D:Appl. Phys. 43 225102

    [24]

    Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Cui T J 2012 Appl. Phys. Lett. 101 154102

    [25]

    Zou T B, Hu F R, Xiao J, Zhang L H, Liu F, Chen T, Niu J H, Xiong X M 2014 Acta Phys. Sin. 63 178103 (in Chinese) [邹涛波, 胡放荣, 肖靖, 张隆辉, 刘芳, 陈涛, 牛军浩, 熊显名 2014 物理学报 63 178103]

    [26]

    Ma Y B, Zhang H W, Li Y X, Wang Y C, Lai W E, Li J 2014 Chin. Phys. B 23 058102

    [27]

    Xu Z, Gu C, Pei Z B, Liu J, Qu S B, Gu W 2011 Chin. Phys. B 20 017801

    [28]

    Cheng Y Z, Nie Y, Gong R Z 2013 OPT LASER TECHNOL 48 415

    [29]

    Cong L, Singh R 2014 arXiv:1408.3711v1 [physics. optics]

    [30]

    Singh R, Cao W, Al-Naib I, Cong L, Withayachumnankul W, Zhang W 2014 Appl. Phys. Lett. 105 171101

  • [1] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212400
    [2] 葛宏义, 李丽, 蒋玉英, 李广明, 王飞, 吕明, 张元, 李智. 基于双开口金属环的太赫兹超材料吸波体传感器. 物理学报, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [3] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [4] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性. 物理学报, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [5] 王鑫, 王俊林. 太赫兹波段电磁超材料吸波器折射率传感特性. 物理学报, 2021, 70(3): 038102. doi: 10.7498/aps.70.20201054
    [6] 王玥, 崔子健, 张晓菊, 张达篪, 张向, 周韬, 王暄. 超材料赋能先进太赫兹生物化学传感检测技术的研究进展. 物理学报, 2021, 70(24): 247802. doi: 10.7498/aps.70.20211752
    [7] 王朝辉, 李勇祥, 朱帅. 基于超表面的旋向选择吸波体. 物理学报, 2020, 69(23): 234103. doi: 10.7498/aps.69.20200511
    [8] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [9] 阎昊岚, 程雅青, 王凯礼, 王雅昕, 陈洋玮, 袁秋林, 马恒. 烷基环己苯异硫氰酸液晶材料太赫兹波吸收. 物理学报, 2019, 68(11): 116102. doi: 10.7498/aps.68.20190209
    [10] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨. 基于超材料的可调谐的太赫兹波宽频吸收器. 物理学报, 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [11] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [12] 郭畅, 张岩. 利用波矢滤波超表面实现超衍射成像. 物理学报, 2017, 66(14): 147804. doi: 10.7498/aps.66.147804
    [13] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体. 物理学报, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [14] 周卓辉, 刘晓来, 黄大庆, 康飞宇. 一种基于十字镂空结构的低频超材料吸波体的设计与制备. 物理学报, 2014, 63(18): 184101. doi: 10.7498/aps.63.184101
    [15] 邹涛波, 胡放荣, 肖靖, 张隆辉, 刘芳, 陈涛, 牛军浩, 熊显名. 基于超材料的偏振不敏感太赫兹宽带吸波体设计. 物理学报, 2014, 63(17): 178103. doi: 10.7498/aps.63.178103
    [16] 韩松, 杨河林. 双向多频超材料吸波器的设计与实验研究. 物理学报, 2013, 62(17): 174102. doi: 10.7498/aps.62.174102
    [17] 鲁磊, 屈绍波, 施宏宇, 张安学, 张介秋, 马华. 基于宽边耦合螺旋结构的低频小型化极化不敏感超材料吸波体 . 物理学报, 2013, 62(15): 158102. doi: 10.7498/aps.62.158102
    [18] 刘涛, 曹祥玉, 高军, 郑秋容, 李文强. 基于超材料的吸波体设计及其波导缝隙天线应用. 物理学报, 2012, 61(18): 184101. doi: 10.7498/aps.61.184101
    [19] 孙良奎, 程海峰, 周永江, 王军, 庞永强. 一种基于超材料的吸波材料的设计与制备. 物理学报, 2011, 60(10): 108901. doi: 10.7498/aps.60.108901
    [20] 赵冬梅, 施宇蕾, 周庆莉, 李磊, 孙会娟, 张存林. 基于人工复合材料的太赫兹波双波段滤波. 物理学报, 2011, 60(9): 093301. doi: 10.7498/aps.60.093301
计量
  • 文章访问数:  3242
  • PDF下载量:  382
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-03
  • 修回日期:  2015-01-07
  • 刊出日期:  2015-06-05

工字形太赫兹超材料吸波体的传感特性研究

  • 1. 山东科技大学电子通信与物理学院, 青岛市太赫兹技术重点实验室, 青岛 266510;
  • 2. 洛斯阿拉莫斯国家实验室, 洛斯阿拉莫斯, 新墨西哥州 87545
    基金项目: 国家自然科学基金(批准号:61001018)、山东省自然科学基金(批准号:ZR2012FM011)、山东省高等学校科技计划项目(批准号:J11LG20)、青岛市创新领军人才项目(批准号:13-CX-25)、中国工程物理研究院太赫兹科学技术基金(批准号:201401)、青岛经济技术开发区重点科技计划项目(批准号:2013-1-64)和山东科技大学科技创新基金(批准号:YC140108)资助的课题.

摘要: 利用超材料吸波体对材料参数的电磁响应, 可将其应用于传感. 本文设计了一种工字形单元结构的超材料吸波体, 基于频域算法对其在太赫兹频段的传感特性进行数值模拟, 研究了待测样品折射率、厚度及电介质隔层厚度对超材料吸波体传感器的频率灵敏度、振幅灵敏度及品质因数的影响. 研究结果表明:当待测样品厚度为40 μm时, 折射率频率灵敏度可达到153.17 GHz/RIU, 折射率振幅灵敏度可达到41.37%/RIU; 待测样品折射率一定时, 厚度频率灵敏度随其厚度的增大而线性减小; 随着待测样品厚度的增加, RFOM呈增大趋势, 但增大幅度在逐渐减小; TFOM随待测样品厚度的增加而减小.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回