搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超表面的旋向选择吸波体

王朝辉 李勇祥 朱帅

引用本文:
Citation:

基于超表面的旋向选择吸波体

王朝辉, 李勇祥, 朱帅

Absorbers with spin-selection based on metasurface

Wang Chao-Hui, Li Yong-Xiang, Zhu Shuai
PDF
HTML
导出引用
  • 近年来, 基于超表面的完美吸波体成为了各国学者的研究热点. 其中圆极化波的旋向选择吸波体更是在手性传感器和卫星通讯等领域有着广泛的应用. 为此, 本文提出了一种基于方形开口环结构超表面的圆极化波的旋向选择吸波体. 该吸波器能够吸收入射的右旋圆极化波, 而完全反射左旋圆极化波. 首先从理论上分析产生旋向选择吸波的理论条件, 然后在该理论的指导下设计出了符合条件的超表面单元. 该单元由金属-介质板-金属三层构成, 顶层是改进后的方形开口环金属结构, 中间层是FR4介质板, 底层是全金属板. 对超表面单元进行数值仿真, 仿真结果表明, 该单元在7.2 GHz处可以选择性吸收右旋圆极化波而反射左旋圆极化波, 并且保持圆极化波的旋向不改变. 右旋圆极化波的吸波率达到了90%以上, 而左旋圆极化波的吸波率低于19%. 该方法不仅适用于微波段, 而且可以被推广到更高频段, 有望在卫星通讯领域得到广泛应用.
    In recent years, due to their features nonexistent in natural matirials, the perfect absorbers based on metasurfaces have become a hot research point. Although great progress has been made, the absorbers with spin-selection are rarely reported. However, the absorbers with spin-selection have more widespread applications in chiral sensors and satellite communication. Therefore, a spin-selection absorber based on the metasurface with modified square split-ring structure is proposed. Firstly, the theoretical conditions for generating the spin-selection absorption are analyzed theoretically, and then the qualified metasurface unit cell is designed under the guidance of the theory. We design an asymmetric modified square split-ring resonator to break both the n-fold (n>2) rotational symmetry and mirror symmetry. The unit cell is composed of three layers, i.e. the top layer, which is a modified square split-ring, the middle layer, which is an FR4 dielectric plate with a thickness of 4 mm, and the bottom layer, which is an all-metal plate acting as the reflecting incident wave. In order to obtain the optimal performance, the designed meta-atom is optimized by CST Microwave Studio, a well-known commercial full wave simulation software.The numerical simulation results show that the unit cell can selectively absorb the right-handed circularly polarized waves and reflect left-handed circularly polarized waves at 7.2 GHz. A maximum absorption rate for the absorption of right-handed circularly polarized (RCP) waves reaches a value higher than 90%, while the absorption rate of the other spin state is kept lower than 19%. In addition, to meet the need of practical applications, the absorption performance is also further investigated under different oblique incident angles, with the wave vectors confined in the x-z plane and y-z plane, respectively. Finally, to further understand the mechanism of spin-selection absorber, the surface current distributions are also simulated for LCP and RCP wave, respectively. The different surface current distributions are obtained for incident LCP and RCP wave, which is a solid evidence for spin-selection absorption. This paper offers a reference for the generation of spin-selection absorber. The proposed method not only is suitable for microwave region, but also can be extended to higher frequencies, and hopefully it can be widely used in the field of communication.
      通信作者: 朱帅, zhushuai111995@163.com
    • 基金项目: 国家自然科学基金(批准号: 51675530)资助的课题
      Corresponding author: Zhu Shuai, zhushuai111995@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51675530)
    [1]

    Kazemzadeh A, Karlsson A 2010 IEEE Trans. Antennas Propag. 58 3637Google Scholar

    [2]

    Gau J R J, Burnside W D, Gilreath M 1997 IEEE Trans. Antennas Propag. 45 1286Google Scholar

    [3]

    Michielssen E, Sajer J M, Ranjithan S, Mittra R 1993 IEEE Trans. Microwave Theory Tech. 41 1024Google Scholar

    [4]

    孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾 2013 物理学报 62 104201Google Scholar

    Sun Y Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201Google Scholar

    [5]

    郭文龙, 王光明, 李海鹏, 侯海生 2016 物理学报 65 074101Google Scholar

    Guo W L, Wang G M, Li H P, Hou H S 2016 Acta Phys. Sin. 65 074101Google Scholar

    [6]

    李晓楠, 周璐, 赵国忠 2019 物理学报 68 238101Google Scholar

    Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101Google Scholar

    [7]

    周璐, 赵国忠, 李晓楠 2019 物理学报 68 108701Google Scholar

    Zhou L, Zhao G Z, Li X N 2019 Acta Phys. Sin. 68 108701Google Scholar

    [8]

    Jing L Q, Wang Z J, Zheng B, et al. 2018 NPG Asia Materials 10 888Google Scholar

    [9]

    丰茂昌, 李勇峰, 张介秋, 王甲富, 王超, 马华, 屈绍波 2018 物理学报 67 198101Google Scholar

    Feng M C, Li Y F, Zhang J Q, Wang J F, Wang C, Ma H, Qu S B 2018 Acta Phys. Sin. 67 198101Google Scholar

    [10]

    李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学 2015 物理学报 64 124102Google Scholar

    Li Y F, Zhang J Q, Qu S B, Wang J F, Wu X, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 124102Google Scholar

    [11]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [12]

    Wang Z J, Jia H, Yao K, Cai W S, Chen H S, Liu Y M 2016 ACS Photonics 3 2096Google Scholar

    [13]

    Jing L Q, Wang Z J, Yang Y H, et al. 2018 IEEE Trans. Antennas Propag. 66 7148Google Scholar

    [14]

    Wang C Y, Liang J G, Xiao Y, Cai T, Hou H S, Li H P 2019 Opt. Express 27 14942Google Scholar

    [15]

    Wang L L, Huang X J, Li M H, Dong J F 2019 Opt. Express 27 25983Google Scholar

    [16]

    Luo M, Shen S, Zhou L, Wu S, Zhou Y, Chen L 2017 Opt. Express 25 16715Google Scholar

    [17]

    Zhang C, Cheng Q, Yang J, Zhao J, Cui T J 2017 Appl. Phys. Lett. 110 143511Google Scholar

    [18]

    Zhou Y L, Cao X Y, Gao J, Yang H H, Zheng Y J, Li S J 2019 Mater. Res. Express 6 015802

    [19]

    Li M H, Guo L Y, Dong J F, Yang H L 2014 J. Phys. D: Appl. Phys. 47 185102Google Scholar

    [20]

    Cheng Y Z, Chen H R, Zhao J C, Mao X S, Cheng Z Z 2018 Opt. Mater. Express 8 1399Google Scholar

    [21]

    Shang S, Yang S Z, Liu J, Shan M, Cao H L 2016 J. Appl. Phys. 120 045106Google Scholar

  • 图 1  单元结构示意图 (a), (c) 顶视图; (b), (d) 侧视图

    Fig. 1.  Schematic of the unit cell: (a), (c) Top view; (b), (d) side view.

    图 2  仿真边界条件设置和反射系数仿真结果 (a), (c) 边界条件设置; (b), (d) 反射系数仿真结果

    Fig. 2.  Setting of the simulation boundaries and the simulated results of reflection coefficient: (a), (c) Setting of the simulation boundaries; (b), (d) the simulated results of reflection coefficient.

    图 3  LCP和RCP波的吸收率谱线

    Fig. 3.  The absorption spectra of LCP and RCP wave.

    图 4  两种不同情况下不同入射角度的LCP和RCP波的吸收率谱线 (a), (c) RCP波吸收谱线; (b), (d) LCP波吸收谱线

    Fig. 4.  The absorption spectra of LCP and RCP wave under different incident angles with the wave vectors confined in the x-z plane and y-z plane, respectively: (a), (c) The absorption spectra of LCP wave; (b), (d) the absorption spectra of RCP wave.

    图 5  在谐振频率7.2 GHz处的表面电流和能量损耗密度分布 (a)右旋波圆极化波入射下电流分布; (b)左旋圆极化波入射下电流分布; (c)右旋圆极化波入射下能量损耗; (d)左旋圆极化波入射下能量损耗

    Fig. 5.  Surface current distributions on the unit cell at 7.2 GHz: (a) Surface current under the incidence of RCP wave; (b) surface current under the incidence of LCP wave; (c) energy loss under the incidence of RCP wave; (d) energy under the incidence of LCP of wave.

    图 6  (a)超表面样品; (b)测试环境设置

    Fig. 6.  (a) Fabricated prototype of the proposed metasurface; (b) experimental setup.

    图 7  两种不同情况下对于不同入射角度的LCP和RCP波的仿真和测试的吸收率谱线 (a), (c) RCP波吸收谱线; (b), (d) LCP波吸收谱线

    Fig. 7.  The simulated and measured absorption spectra of LCP and RCP wave under different incident angles with the wave vectors confined in the x-z plane and y-z plane, respectively: (a), (c) The absorption spectra of LCP wave; (b), (d) the absorption spectra of RCP wave.

    图 8  在THz频段反射系数和吸收率谱线仿真结果 (a)反射系数; (b)吸收率谱线

    Fig. 8.  The simulated results of reflection coefficient and absorption spectra at frequency band of THz: (a) The reflection coefficient; (b) the absorption spectra.

    表 1  不同方法的对比

    Table 1.  The comparison of different approaches.

    数据来源频率吸收率入射角度
    文献[19]8.2 GHz93.2%未报道
    文献[20]1.9 THz90.0%未报道
    本工作7.2 GHz93.0%45°
    下载: 导出CSV
  • [1]

    Kazemzadeh A, Karlsson A 2010 IEEE Trans. Antennas Propag. 58 3637Google Scholar

    [2]

    Gau J R J, Burnside W D, Gilreath M 1997 IEEE Trans. Antennas Propag. 45 1286Google Scholar

    [3]

    Michielssen E, Sajer J M, Ranjithan S, Mittra R 1993 IEEE Trans. Microwave Theory Tech. 41 1024Google Scholar

    [4]

    孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾 2013 物理学报 62 104201Google Scholar

    Sun Y Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201Google Scholar

    [5]

    郭文龙, 王光明, 李海鹏, 侯海生 2016 物理学报 65 074101Google Scholar

    Guo W L, Wang G M, Li H P, Hou H S 2016 Acta Phys. Sin. 65 074101Google Scholar

    [6]

    李晓楠, 周璐, 赵国忠 2019 物理学报 68 238101Google Scholar

    Li X N, Zhou L, Zhao G Z 2019 Acta Phys. Sin. 68 238101Google Scholar

    [7]

    周璐, 赵国忠, 李晓楠 2019 物理学报 68 108701Google Scholar

    Zhou L, Zhao G Z, Li X N 2019 Acta Phys. Sin. 68 108701Google Scholar

    [8]

    Jing L Q, Wang Z J, Zheng B, et al. 2018 NPG Asia Materials 10 888Google Scholar

    [9]

    丰茂昌, 李勇峰, 张介秋, 王甲富, 王超, 马华, 屈绍波 2018 物理学报 67 198101Google Scholar

    Feng M C, Li Y F, Zhang J Q, Wang J F, Wang C, Ma H, Qu S B 2018 Acta Phys. Sin. 67 198101Google Scholar

    [10]

    李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学 2015 物理学报 64 124102Google Scholar

    Li Y F, Zhang J Q, Qu S B, Wang J F, Wu X, Xu Z, Zhang A X 2015 Acta Phys. Sin. 64 124102Google Scholar

    [11]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [12]

    Wang Z J, Jia H, Yao K, Cai W S, Chen H S, Liu Y M 2016 ACS Photonics 3 2096Google Scholar

    [13]

    Jing L Q, Wang Z J, Yang Y H, et al. 2018 IEEE Trans. Antennas Propag. 66 7148Google Scholar

    [14]

    Wang C Y, Liang J G, Xiao Y, Cai T, Hou H S, Li H P 2019 Opt. Express 27 14942Google Scholar

    [15]

    Wang L L, Huang X J, Li M H, Dong J F 2019 Opt. Express 27 25983Google Scholar

    [16]

    Luo M, Shen S, Zhou L, Wu S, Zhou Y, Chen L 2017 Opt. Express 25 16715Google Scholar

    [17]

    Zhang C, Cheng Q, Yang J, Zhao J, Cui T J 2017 Appl. Phys. Lett. 110 143511Google Scholar

    [18]

    Zhou Y L, Cao X Y, Gao J, Yang H H, Zheng Y J, Li S J 2019 Mater. Res. Express 6 015802

    [19]

    Li M H, Guo L Y, Dong J F, Yang H L 2014 J. Phys. D: Appl. Phys. 47 185102Google Scholar

    [20]

    Cheng Y Z, Chen H R, Zhao J C, Mao X S, Cheng Z Z 2018 Opt. Mater. Express 8 1399Google Scholar

    [21]

    Shang S, Yang S Z, Liu J, Shan M, Cao H L 2016 J. Appl. Phys. 120 045106Google Scholar

  • [1] 孟祥裕, 李涛, 余彬彬, 邰永航. 探究四聚体超表面中多极准连续域束缚态的调控机制. 物理学报, 2024, 73(10): 107801. doi: 10.7498/aps.73.20240272
    [2] 赖镇鑫, 张也, 仲帆, 王强, 肖彦玲, 祝世宁, 刘辉. 基于合成维度拓扑外尔点的波长选择热辐射超构表面. 物理学报, 2024, 73(11): 117802. doi: 10.7498/aps.73.20240512
    [3] 王东俊, 孙子涵, 张袁, 唐莉, 闫丽萍. 抗方阻波动的超宽带轻薄频率选择表面吸波体. 物理学报, 2024, 73(2): 024201. doi: 10.7498/aps.73.20231365
    [4] 白宇, 张振方, 杨海滨, 蔡力, 郁殿龙. 基于非对称吸声器的发动机声学超表面声衬. 物理学报, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [5] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面. 物理学报, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [6] 范辉颖, 罗杰. 非厄密电磁超表面研究进展. 物理学报, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [7] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [8] 李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓. 基于超表面的多波束多模态太赫兹涡旋波产生. 物理学报, 2021, 70(18): 188701. doi: 10.7498/aps.70.20210897
    [9] 孙胜, 阳棂均, 沙威. 基于反射超表面的偏馈式涡旋波产生装置. 物理学报, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [10] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [11] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控. 物理学报, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [12] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [13] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [14] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜. 物理学报, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [15] 党可征, 时家明, 李志刚, 孟祥豪, 王启超. 基于高阻抗表面的多频带Salisbury屏设计. 物理学报, 2015, 64(11): 114101. doi: 10.7498/aps.64.114101
    [16] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面. 物理学报, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [17] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究. 物理学报, 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [18] 徐永顺, 别少伟, 江建军, 徐海兵, 万东, 周杰. 含螺旋单元频率选择表面的宽频带强吸收复合吸波体. 物理学报, 2014, 63(20): 205202. doi: 10.7498/aps.63.205202
    [19] 鲁磊, 屈绍波, 施宏宇, 张安学, 张介秋, 马华. 基于宽边耦合螺旋结构的低频小型化极化不敏感超材料吸波体. 物理学报, 2013, 62(15): 158102. doi: 10.7498/aps.62.158102
    [20] 刘涛, 曹祥玉, 高军, 郑秋容, 李文强. 基于超材料的吸波体设计及其波导缝隙天线应用. 物理学报, 2012, 61(18): 184101. doi: 10.7498/aps.61.184101
计量
  • 文章访问数:  6469
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-07
  • 修回日期:  2020-07-11
  • 上网日期:  2020-12-03
  • 刊出日期:  2020-12-05

/

返回文章
返回