-
满足宽带、极化和入射角度稳定、轻薄和强吸收等高性能要求的电阻膜频率选择表面(FSS)吸波体设计难度大, 且易因加工中方阻波动导致吸波性能变化. 为此, 本文首先分析了方阻波动影响电阻膜FSS吸波体性能的机理, 提出抗方阻波动的FSS吸波体设计方法. 在此基础上, 提出利用不同层FSS阻抗随频率变化互补的扩展带宽方法, 结合弯折小型化设计, 获得了超宽带、极化和角度稳定的轻薄型抗方阻波动FSS吸波体. 该FSS吸波体在TE和TM极化下, 90%吸波带宽为1.50—20.50 GHz (相对带宽173%), 厚度仅为0.093λL. TE极化波80%吸波的角度稳定性可达45°, 而TM极化波90%吸波的角度稳定性可达70°. 当每层FSS方阻在12—30 Ω/sq范围内波动时, 吸波体的90%吸波带宽仍保持在167.0%. 实验测试结果与仿真结果基本吻合, 证明了所提方法的有效性.The design of thin frequency selective surface (FSS) absorber based on resistive film that meets the requirements of broadband, polarization independence, incident angle stability, and strong absorption is a challenging task. Fabrication tolerance of resistive film can result in fluctuations in sheet resistance, which negatively affects the absorber performance. To tackle these problems, this work firstly investigates how sheet resistance fluctuations affect the absorbing performance of resistive film FSS absorber. The analysis of simulated surface current density distribution and impedance reveals that the diversity of current paths provides an effective way to mitigate the influence of sheet resistance fluctuation. This is achieved by enabling flexible variation of surface current in response to sheet resistance fluctuations. Consequently, the variation of input impedance of the FSS absorber due to the fluctuation of sheet resistance is suppressed within a small range. Then, a method of extending bandwidth is proposed by employing the complementary variation of FSS impedance with frequency at different layers. By combining this approach with a miniaturization design, a thin and light FSS absorber is developed that exhibits ultra-wide bandwidth, polarization independence and angle stability while mitigating the effects of sheet resistance perturbation. The proposed FSS absorber achieves a 90% absorption bandwidth from 1.50 GHz to 20.50 GHz, covering Ku, X, C, S bands and part of the L and K bands, with a relative bandwidth reaching 173%. The absorber has a thickness of 0.093λL for both transverse electric (TE) polarization and transverse magnetic (TM) polarization, yielding a figure of merit (FoM, the ratio of the theoretical minimum thickness to the actual thickness) of 0.95, indicating that the thickness is close to the theoretical limit. The absorber maintains over 90% absorption rate for TM polarization at an incidence angle of up to 70°, and 80% absorption for TE polarization at 45°. Furthermore, the 90% absorbance bandwidth of the absorber remains at 167.0% when the sheet resistance of any FSS layer fluctuates within a range from 12 to 30 Ω/sq. A prototype of the proposed FSS absorber is fabricated and measured, and the experimental results are in good agreement with the simulation results, thus validating the effectiveness of the proposed method.
-
Keywords:
- frequency selective surface /
- absorber /
- thin /
- ultra-wideband /
- sheet resistance fluctuation
[1] Ramya S, Rao I S 2016 Prog. Electromagn. Res. 50 23Google Scholar
[2] Li M, Shen L, Jing L Q, Xu S, Zheng B, Lin X, Yang Y H, Wang Z J, Chen H S 2019 Adv. Sci. 6 1901434Google Scholar
[3] Nguyen T K T, Cao T N, Nguyen N H, Tuyen L D, Bui X K, Truong C L, Vu D L, Nguyen T Q H 2021 IEEE Photonics J. 13 1Google Scholar
[4] Wang Z J, Yang H C, Jing L Q 2023 J. Opt. 25 74002Google Scholar
[5] Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propag. 61 1479Google Scholar
[6] 王彦朝, 许河秀, 王朝辉, 王明照, 王少杰 2020 物理学报 69 134101Google Scholar
Wang Y Z, Xu H X, Wang Z H, Wang M Z, Wang S J 2020 Acta Phys. Sin. 69 134101Google Scholar
[7] 冯奎胜, 李娜, 李桐 2022 物理学报 71 034101Google Scholar
Feng K S, Li N, Li T, 2022 Acta Phys. Sin. 71 034101Google Scholar
[8] Yu J, Jiang W, Gong S X 2020 IEEE Antennas Wirel. Propag. Lett. 19 1058Google Scholar
[9] Huang Z, Luo Z N, Zhao Y, Li H R, Si K X, Han Y, Miao L, Jiang J J 2023 IEEE Trans. Antennas Propag. 71 6191Google Scholar
[10] Panwar R, Puthucheri S, Singh D, Agarwala V 2015 IEEE Trans. Magn. 51 2802804Google Scholar
[11] 赵宇婷, 李迎松, 杨国辉 2020 物理学报 69 198101Google Scholar
Zhao Y T, Li Y S, Yang G H 2020 Acta Phys. Sin. 69 198101Google Scholar
[12] Chakradhary V K, Baskey H B, Roshan R, Pathik A, Akhtar M. J 2018 IEEE Trans. Microwave Theory Tech. 66 4737Google Scholar
[13] Zuo P P, Li T W, Wang M J, Zheng H X, Li E P 2020 IEEE Access 8 6583Google Scholar
[14] Shukoor M A, Dey S 2022 IEEE Trans. Electromagn. Compat. 64 1337Google Scholar
[15] Hossain M I, Nguyen-Trong N, Sayidmarie K H, Abbosh, A. M 2020 IEEE Trans. Antennas Propag. 68 8215Google Scholar
[16] Rozanov K N 2000 IEEE Trans. Antennas Propag. 48 1230Google Scholar
[17] Yao Z X, Xiao S Q, Jiang Z G, Yan L, Wang B Z 2020 IEEE Antennas Wirel. Propag. Lett. 19 591Google Scholar
[18] Panwar R, Puthucheri S, Agarwala V, Singh D 2015 IEEE Trans. Microwave Theory Tech. 63 2438Google Scholar
[19] Yang J, Shen Z X 2007 IEEE Antennas Wirel. Propag. Lett. 6 388Google Scholar
[20] 王莹, 程用志, 聂彦, 龚荣洲 2013 物理学报 62 074101Google Scholar
Wang Y, Cheng Y Z, Nie Y, Gong R Z 2013 Acta Phys. Sin. 62 074101Google Scholar
[21] 吴雨明, 王任, 丁霄, 王秉中 2020 物理学报 69 224201Google Scholar
Wu Y M, Wang R, Ding X, Wang B Z 2020 Acta Phys. Sin. 69 224201Google Scholar
[22] Shi T, Jin L, Han L, Tang M C, Xu H X, Qiu C W 2021 IEEE Trans. Antennas Propag. 69 229Google Scholar
[23] He Y, Feng W S, Guo S, Wei J F, Zhang Y L, Huang Z, Li C L, Miao L, Jiang J J 2020 IEEE Antennas Wirel. Propag. Lett. 19 841Google Scholar
[24] Yao Z X, Xiao S Q, Li Y, Wang B Z 2022 IEEE Trans. Antennas Propag. 70 7276Google Scholar
[25] Ma Z Y P, Jiang C, Cao W B, Li J L, Huang X Z 2022 IEEE Trans. Antennas Propag. 70 9376Google Scholar
[26] Luo G Q, Yu W, Yu Y, Zhang X H, Shen Z X 2020 IEEE Trans. Microwave Theory Techn. 68 4206.Google Scholar
[27] Hao X J, Lin X Q, Yang X M, Su Y H, Yao Y, Yang Y L 2023 IEEE Antennas Wirel. Propag. Lett. 22 59Google Scholar
[28] Zhang Q Q, Zhao Z Z, Zheng J H, Li F R, Tang J Z, Huang Y, Ren Y X, Chen X M 2023 IEEE Trans. Instrum. Meas. 72 8002010Google Scholar
[29] Cao Z W, Li H R, Wu Y, Yao G J, Zhao Y, Huang Z, Guo S, Miao L, Jiang J J 2022 IEEE Trans. Antennas Propag. 70 11217Google Scholar
[30] Cao Z W, Yao G J, Zha D C, Zhao Y, Wu Y, Miao L, Bie S W, Jiang J J 2022 IEEE Trans. Antennas Propag. 70 9942Google Scholar
[31] 顾超, 屈绍波, 裴志斌, 徐卓, 柏鹏, 彭卫东, 林宝勤 2011 物理学报 60 087801Google Scholar
Gu C, Qu S B, Pei Z B, Xu Z, Lin B Q, Zhou H, Bai P, Gu W, Peng W, Ma H 2011 Acta Phys. Sin. 60 087801Google Scholar
[32] Sun Z H, Yan L P, Zhao X, Gao R X K 2023 IEEE Antennas Wirel. Propag. Lett. 22 789Google Scholar
[33] Tirkey M M, Gupta N 2022 IEEE Trans. Electromagn. Compat. 64 66Google Scholar
[34] He F, Si K X, Li R, Zha D C, Dong J X, Miao L, Bie S W, Jiang J J 2022 IEEE Trans. Antennas Propag. 70 8643Google Scholar
[35] Kazemzadeh A 2011 IEEE Trans. Antennas Propag. 59 135Google Scholar
[36] Shi T, Tang M C, Yang J N, Yan X S 2022 IEEE Antennas Wireless Propag. Lett. 21 551Google Scholar
[37] 程用志, 聂彦, 龚荣洲, 王鲜 2013 物理学报 62 044103Google Scholar
Cheng Y Z, Nie Y, Gong R Z, Wang X 2013 Acta Phys. Sin. 62 044103Google Scholar
[38] 郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅 2015 物理学报 64 077801Google Scholar
Guo F, Du H L, Qu S B Xia S, Xu Z, Zhao J F, Zhang H M 2015 Acta Phys. Sin. 64 077801Google Scholar
[39] Hossain M I, Nguyer-Trong N, Abbosh A M 2022 IEEE Trans. Antennas Propag. 70 410Google Scholar
[40] Zheng L, Yang X Z, Gong W, Qiao M K, Li X C 2022 IEEE Antennas Wirel. Propag. Lett. 21 576Google Scholar
[41] Li Y, Gu P F, He Z etc. 2022 IEEE Trans. Antennas Propag. 70 11911Google Scholar
[42] Fan Y D, Li D, Ma H Z, Xing J Q, Gu Y J, Ang L K, Li E P 2023 IEEE Trans. Antennas Propag. 71 2855Google Scholar
[43] Zhu M, Yuan H, Li H Y, Wang Y, Cao Q S 2022 IEEE Trans. Electromagn. Compat. 64 2005Google Scholar
[44] Wang Y, Min X F, Zhao M X, Yuan H, Li R H, Hu X R, Cao Q S 2022 IEEE Antennas Wirel. Propag. Lett. 21 2125Google Scholar
[45] Chen Q, Sang D, Guo M, Fu Y Q, 2018 IEEE Trans. Antennas Propag. 66 4105Google Scholar
[46] Xing Q J, Wu W W, Yan Y C, Zhang X M, Yuan N C 2022 IEEE Antennas Wirel. Propag. Lett. 21 1688Google Scholar
[47] Jiang H, Yang W, Lei S W, Hu H Q, Chen B, Bao Y F, He Z Y 2021 Opt. Express 29 29439Google Scholar
[48] Li D D, Hu X J, Gao B T, Yin W Y, Chen H S, Qian H L 2023 Prog. Electromagn. Res. 176 35Google Scholar
[49] Zhang H B, Zhou P H, Lu H P, Xu Y Q, Liang D F, Deng L J 2013 IEEE Trans. Antennas Propag. 61 976Google Scholar
[50] Min P P, Song Z C, Yang L, Dai B, Zhu J Q 2020 Opt. Express 28 19518Google Scholar
[51] 孔祥林, 马洪宇, 陈鹏等 2021 电波科学学报 36 947Google Scholar
Kong X L, Ma H Y, Chen P etc. 2021 Chin. J. Radio Sci. 36 947Google Scholar
-
图 10 (a) FSS Ⅰ, (b) FSS Ⅱ 和 (c) FSS Ⅲ 方阻 Rs1, Rs2, Rs3变化对吸波率的影响(注意: 当一层 FSS 层方阻变化时, 另外两层取原值)
Fig. 10. Effects of (a) Rs1, (b) Rs2 and (c) Rs3 on absorption rate of the proposed FSS absorber. Note that when the sheet resistance of one FSS layer changes, the other two layers take their original values
表 1 分形FSS吸波体参数
Table 1. Structural parameters of the fractal FSS absorber.
参量 值/mm 参量 值/mm l1 3.90 w1 0.58 l2 2.59 w2 0.58 l3 1.38 w3 0.20 P 11.85 t1 0.175 h 5.00 t2 0.05 表 2 不同方阻情况下分形FSS吸波体的表面电流密度分布
Table 2. Surface current density of the fractal FSS absorber for different sheet resistance
频率 方阻 8 Ω/sq 11 Ω/sq 14 Ω/sq 17 Ω/sq 21 Ω/sq 8 GHz 11 GHz 15 GHz 表 3 FSS吸波体参数
Table 3. Structural parameters of the FSS absorber.
参量 值/mm 参量 值/mm 参量 值/mm l1 10.28 w1 0.20 s1 0.56 g1 0.90 r1 3.30 wr1 0.38 r2 2.54 r3 1.78 l2 11.78 w2 0.50 i2 2.18 s2 4.74 ws2 0.54 g2 1.62 l3 10.64 w3 0.22 i3 2.96 s3 2.60 ws3 0.40 g3 1.06 P 11.90 h1 6.00 h2 0.175 表 4 与其他宽带FSS吸波体的性能对比
Table 4. Comparison between the proposed and other FSS absorbers.
文献 90%带宽/GHz FBW/% 厚度 (FoM) FSS层数 角度稳定性 TE TM [15] 1.07—9.70 160.3 0.93 2 30° (80%) 60° (80%) [17] 2.24—11.40 134.3 0.075 λL 2 45° (80%) 30° (87%) [22] 2.11—3.89 59.3 0.090 λL 3D 50° (90%) 50° (90%) [25] 5.80—22.20 117.1 0.155 λL 1 50° (90%) 40° (90%) [29] 0.87—9.28 165.8 0.086 λL 2 45° (80%) 45° (90%) [31] 7.0—27.5 118.8 0.096 λL 1 45° (80%) 30° (80%) [32] 2.79—20.62 152.0 0.119 λL 2 60° (80%) 60° (80%) [34]# 2.0—15.5 154.3 0.113 λL 1 — — [36] 1.14—14.2 170.2 0.093 λL 3 30° (90%) 50° (90%) [37] 7.5—42.0 139.4 0.02 λL 2 50° (> 80%) 50°(> 80%) [38] #* 7.8—18.0 79.1 0.065 λL 1 — — [39]* 0.76—4.92 146.5 0.031 λL 2 — — [41] 2.1—37.5 179.0 0.98 4 45° (80%) 60° (90%)- [51] 3.16—51.6 176.9 0.102 λL 4 45° (80%) 45° (88%) 本文设计 1.50—20.50 173.0 0.95或0.093 λL 3 45° (80%) 70° (90%) 注: # 代表所用介质层为有耗电介质层; * 代表介质层为有耗磁介质. -
[1] Ramya S, Rao I S 2016 Prog. Electromagn. Res. 50 23Google Scholar
[2] Li M, Shen L, Jing L Q, Xu S, Zheng B, Lin X, Yang Y H, Wang Z J, Chen H S 2019 Adv. Sci. 6 1901434Google Scholar
[3] Nguyen T K T, Cao T N, Nguyen N H, Tuyen L D, Bui X K, Truong C L, Vu D L, Nguyen T Q H 2021 IEEE Photonics J. 13 1Google Scholar
[4] Wang Z J, Yang H C, Jing L Q 2023 J. Opt. 25 74002Google Scholar
[5] Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propag. 61 1479Google Scholar
[6] 王彦朝, 许河秀, 王朝辉, 王明照, 王少杰 2020 物理学报 69 134101Google Scholar
Wang Y Z, Xu H X, Wang Z H, Wang M Z, Wang S J 2020 Acta Phys. Sin. 69 134101Google Scholar
[7] 冯奎胜, 李娜, 李桐 2022 物理学报 71 034101Google Scholar
Feng K S, Li N, Li T, 2022 Acta Phys. Sin. 71 034101Google Scholar
[8] Yu J, Jiang W, Gong S X 2020 IEEE Antennas Wirel. Propag. Lett. 19 1058Google Scholar
[9] Huang Z, Luo Z N, Zhao Y, Li H R, Si K X, Han Y, Miao L, Jiang J J 2023 IEEE Trans. Antennas Propag. 71 6191Google Scholar
[10] Panwar R, Puthucheri S, Singh D, Agarwala V 2015 IEEE Trans. Magn. 51 2802804Google Scholar
[11] 赵宇婷, 李迎松, 杨国辉 2020 物理学报 69 198101Google Scholar
Zhao Y T, Li Y S, Yang G H 2020 Acta Phys. Sin. 69 198101Google Scholar
[12] Chakradhary V K, Baskey H B, Roshan R, Pathik A, Akhtar M. J 2018 IEEE Trans. Microwave Theory Tech. 66 4737Google Scholar
[13] Zuo P P, Li T W, Wang M J, Zheng H X, Li E P 2020 IEEE Access 8 6583Google Scholar
[14] Shukoor M A, Dey S 2022 IEEE Trans. Electromagn. Compat. 64 1337Google Scholar
[15] Hossain M I, Nguyen-Trong N, Sayidmarie K H, Abbosh, A. M 2020 IEEE Trans. Antennas Propag. 68 8215Google Scholar
[16] Rozanov K N 2000 IEEE Trans. Antennas Propag. 48 1230Google Scholar
[17] Yao Z X, Xiao S Q, Jiang Z G, Yan L, Wang B Z 2020 IEEE Antennas Wirel. Propag. Lett. 19 591Google Scholar
[18] Panwar R, Puthucheri S, Agarwala V, Singh D 2015 IEEE Trans. Microwave Theory Tech. 63 2438Google Scholar
[19] Yang J, Shen Z X 2007 IEEE Antennas Wirel. Propag. Lett. 6 388Google Scholar
[20] 王莹, 程用志, 聂彦, 龚荣洲 2013 物理学报 62 074101Google Scholar
Wang Y, Cheng Y Z, Nie Y, Gong R Z 2013 Acta Phys. Sin. 62 074101Google Scholar
[21] 吴雨明, 王任, 丁霄, 王秉中 2020 物理学报 69 224201Google Scholar
Wu Y M, Wang R, Ding X, Wang B Z 2020 Acta Phys. Sin. 69 224201Google Scholar
[22] Shi T, Jin L, Han L, Tang M C, Xu H X, Qiu C W 2021 IEEE Trans. Antennas Propag. 69 229Google Scholar
[23] He Y, Feng W S, Guo S, Wei J F, Zhang Y L, Huang Z, Li C L, Miao L, Jiang J J 2020 IEEE Antennas Wirel. Propag. Lett. 19 841Google Scholar
[24] Yao Z X, Xiao S Q, Li Y, Wang B Z 2022 IEEE Trans. Antennas Propag. 70 7276Google Scholar
[25] Ma Z Y P, Jiang C, Cao W B, Li J L, Huang X Z 2022 IEEE Trans. Antennas Propag. 70 9376Google Scholar
[26] Luo G Q, Yu W, Yu Y, Zhang X H, Shen Z X 2020 IEEE Trans. Microwave Theory Techn. 68 4206.Google Scholar
[27] Hao X J, Lin X Q, Yang X M, Su Y H, Yao Y, Yang Y L 2023 IEEE Antennas Wirel. Propag. Lett. 22 59Google Scholar
[28] Zhang Q Q, Zhao Z Z, Zheng J H, Li F R, Tang J Z, Huang Y, Ren Y X, Chen X M 2023 IEEE Trans. Instrum. Meas. 72 8002010Google Scholar
[29] Cao Z W, Li H R, Wu Y, Yao G J, Zhao Y, Huang Z, Guo S, Miao L, Jiang J J 2022 IEEE Trans. Antennas Propag. 70 11217Google Scholar
[30] Cao Z W, Yao G J, Zha D C, Zhao Y, Wu Y, Miao L, Bie S W, Jiang J J 2022 IEEE Trans. Antennas Propag. 70 9942Google Scholar
[31] 顾超, 屈绍波, 裴志斌, 徐卓, 柏鹏, 彭卫东, 林宝勤 2011 物理学报 60 087801Google Scholar
Gu C, Qu S B, Pei Z B, Xu Z, Lin B Q, Zhou H, Bai P, Gu W, Peng W, Ma H 2011 Acta Phys. Sin. 60 087801Google Scholar
[32] Sun Z H, Yan L P, Zhao X, Gao R X K 2023 IEEE Antennas Wirel. Propag. Lett. 22 789Google Scholar
[33] Tirkey M M, Gupta N 2022 IEEE Trans. Electromagn. Compat. 64 66Google Scholar
[34] He F, Si K X, Li R, Zha D C, Dong J X, Miao L, Bie S W, Jiang J J 2022 IEEE Trans. Antennas Propag. 70 8643Google Scholar
[35] Kazemzadeh A 2011 IEEE Trans. Antennas Propag. 59 135Google Scholar
[36] Shi T, Tang M C, Yang J N, Yan X S 2022 IEEE Antennas Wireless Propag. Lett. 21 551Google Scholar
[37] 程用志, 聂彦, 龚荣洲, 王鲜 2013 物理学报 62 044103Google Scholar
Cheng Y Z, Nie Y, Gong R Z, Wang X 2013 Acta Phys. Sin. 62 044103Google Scholar
[38] 郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅 2015 物理学报 64 077801Google Scholar
Guo F, Du H L, Qu S B Xia S, Xu Z, Zhao J F, Zhang H M 2015 Acta Phys. Sin. 64 077801Google Scholar
[39] Hossain M I, Nguyer-Trong N, Abbosh A M 2022 IEEE Trans. Antennas Propag. 70 410Google Scholar
[40] Zheng L, Yang X Z, Gong W, Qiao M K, Li X C 2022 IEEE Antennas Wirel. Propag. Lett. 21 576Google Scholar
[41] Li Y, Gu P F, He Z etc. 2022 IEEE Trans. Antennas Propag. 70 11911Google Scholar
[42] Fan Y D, Li D, Ma H Z, Xing J Q, Gu Y J, Ang L K, Li E P 2023 IEEE Trans. Antennas Propag. 71 2855Google Scholar
[43] Zhu M, Yuan H, Li H Y, Wang Y, Cao Q S 2022 IEEE Trans. Electromagn. Compat. 64 2005Google Scholar
[44] Wang Y, Min X F, Zhao M X, Yuan H, Li R H, Hu X R, Cao Q S 2022 IEEE Antennas Wirel. Propag. Lett. 21 2125Google Scholar
[45] Chen Q, Sang D, Guo M, Fu Y Q, 2018 IEEE Trans. Antennas Propag. 66 4105Google Scholar
[46] Xing Q J, Wu W W, Yan Y C, Zhang X M, Yuan N C 2022 IEEE Antennas Wirel. Propag. Lett. 21 1688Google Scholar
[47] Jiang H, Yang W, Lei S W, Hu H Q, Chen B, Bao Y F, He Z Y 2021 Opt. Express 29 29439Google Scholar
[48] Li D D, Hu X J, Gao B T, Yin W Y, Chen H S, Qian H L 2023 Prog. Electromagn. Res. 176 35Google Scholar
[49] Zhang H B, Zhou P H, Lu H P, Xu Y Q, Liang D F, Deng L J 2013 IEEE Trans. Antennas Propag. 61 976Google Scholar
[50] Min P P, Song Z C, Yang L, Dai B, Zhu J Q 2020 Opt. Express 28 19518Google Scholar
[51] 孔祥林, 马洪宇, 陈鹏等 2021 电波科学学报 36 947Google Scholar
Kong X L, Ma H Y, Chen P etc. 2021 Chin. J. Radio Sci. 36 947Google Scholar
计量
- 文章访问数: 2771
- PDF下载量: 160
- 被引次数: 0