搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直接调制光反馈半导体激光器产生超宽带信号

刘明 张明江 王安帮 王龙生 吉勇宁 马喆

引用本文:
Citation:

直接调制光反馈半导体激光器产生超宽带信号

刘明, 张明江, 王安帮, 王龙生, 吉勇宁, 马喆

Generation of ultra-wideband signals by directly current-modulating distributed feedback laser diode subjected to optical feedback

Liu Ming, Zhang Ming-Jiang, Wang An-Bang, Wang Long-Sheng, Ji Yong-Ning, Ma Zhe
PDF
导出引用
  • 利用直接电流调制光反馈半导体激光器产生了符合美国联邦通信委员会关于室内无线通信频谱限定的超宽带(UWB)微波信号.基于光反馈半导体激光器速率方程组, 数值分析了偏置电流、反馈强度对混沌UWB脉冲信号的影响.研究表明, 混沌UWB脉冲频谱的-10 dB带宽分别随着偏置电流的增大和反馈强度的增强而逐渐增加; 中心频率分别随着偏置电流的增大和反馈强度的增强而逐渐增大.实验中, 产生了中心频率为6.6 GHz, -10 dB带宽为9.6 GHz的混沌UWB信号. 进一步, 通过调节偏置电流和反馈强度, 可实现混沌UWB信号的中心频率和-10 dB带宽的可调谐输出, 实验结果和数值分析相符合.此外, 实验产生的混沌UWB信号经过34.08 km的光纤传输后, 其频谱形状几乎没有发生变化, 表明该方法所产生的混沌UWB信号对光纤色散有较大的容忍度.
    The chaotic ultra-wideband (UWB) pulse signals are generated by directly modulating semiconductor laser subjected to optical feedback. We simulate that the -10 dB bandwidth and the central frequency of the RF spectrum of the chaotic UWB signals are influenced by the bias current and feedback strength. The research results demonstrate that the -10 dB bandwidth of the RF spectrum of the UWB signals increases with the increases of the bias current of the semiconductor laser and the feedback, the central frequency also increases with the increases of the bias current and the feedback. In our experiments, chaotic UWB signals with steerable and flatted power spectrum are generated by directly modulating DFB-LD subjected to optical feedback. The power spectrum of UWB signals is fully compliant with the FCC indoor mask, while a large fractional bandwidth of 133% and a central frequency of 6.6 GHz are achieved. The central frequency and -10 dB bandwidth of the chaotic UWB signals are on a large scale tunable by adjusting the bias current and feedback power. In addition, the chaotic UWB signals transmit through a 34.08 km single mode fiber and the power spectrum does not have any discrete spectrum line.
    • 基金项目: 国家自然科学基金(批准号: 60927007, 60908014, 61108027)、 国家重点基础研究发展计划(批准号: 2010CB327806)、中国博士后科学基金(批准号: 2011M500048)、山西省高等学校优秀青年学术带头人支持计划(批准号: 2012lfjyt08) 和光电信息技术教育部重点实验室(天津大学) 开放基金(批准号: 2012 KFKT004))资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grants Nos. 60927007, 60908014, 61108027), the National Basic Research Program of China (Grant No. 2010CB327806), the China Postdoctoral Science Foundation, the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi, China (Grant No. 2012lfjyt08), and the Key Laboratory of Opto-electronic Information Technology, Ministry of Education (Tianjin University), China (Grant No. 2012KFKT004).
    [1]

    Roy S, Foerster J R, Somayazulu V S, Leeper D G 2004 Proc. IEEE 92 295

    [2]

    Aiello G R, Rogerson G D 2003 IEEE Microw. Mag. 4 36

    [3]

    Akyildiz I F, Su W L, Sankarasubramaniam Y, Cayirci E 2002 IEEE Comput. Mag. 40 102

    [4]

    Yao J P, Zeng F, Wang Q 2007 J. Lightw. Technol. 25 3219

    [5]

    Ran M, Lembrikov B I, Ezra Y B 2010 IEEE Photon. J. 2 36

    [6]

    Zeng F, Yao J P 2006 IEEE Photon. Technol. Lett. 18 2062

    [7]

    Chen H W, Wang T L, Li M, Chen M H, Xie S Z 2008 Opt. Express 16 7447

    [8]

    Chang Q J, Tian Y, Ye T, Gao J M, Su Y K 2008 IEEE Photon.Technol. Lett. 20 1651

    [9]

    Pan S L, Yao J P 2009 Opt. Lett. 34 1312

    [10]

    Yu X B, Gibbon T B, Monroy I T 2009 IEEE Photon. Technol. Lett. 21 1235

    [11]

    Juan Y S, Lin F Y 2010 Opt. Express 18 9664

    [12]

    Zhang F Z, Wu J, Fu S N, Li Y, Hong X B, Shum P, Lin J T 2010 Opt. Express 18 15870

    [13]

    Feng X H, Li Z H, Guan B, Lu C, Tam H Y, Wai P K A 2010 Opt. Express 18 3643

    [14]

    Zhou E B, Xu X, Lui K S, Wong K 2010 IEEE Photon. Technol. Lett. 22 1063

    [15]

    Yuan Y, Dong J J, Li X, Zhang X L 2011 IEEE Photon. Technol. Lett. 23 1754

    [16]

    Zhang Y, Zhang X L, Zhang F Z, Wu J, Wang G H, Shum P P 2011 Opt. Com. 284 1803

    [17]

    Wang L X, Zhu N H, Zheng J Y, Liu J G, Li W 2012 Appl. Opt. 51 1

    [18]

    Zheng J Y, Zhu N H, Wang L X, Liu J G, Liang H G 2012 Appl. Opt. 4 657

    [19]

    Luo B W, Dong J J, Yu Y, Yang T, Zhang X L 2012 Opt. Lett. 37 2217

    [20]

    Khan M H, Shen H, Xuan Y, Zhao L, Xiao S, Leaird D E, Weiner A M, Qi M 2010 Nature Photon. 4 117

    [21]

    Peled Y, Tur M, Zadok A 2010 IEEE Photon. Technol. Lett. 22 1692

    [22]

    Zheng J Y, Zhang M J, Wang A B, Wang Y C 2010 Opt. Lett. 35 1734

    [23]

    Meng L N, Zhang M J, Zheng J Y, Zhang Z X, Wang Y C 2011 Acta Phys. Sin. 60 124212 (in Chinese) [孟丽娜, 张明江, 郑建宇, 张朝霞, 王云才2011 物理学报 60 124212]

    [24]

    Zhang M J, Liu T G, Wang A B, Zheng J Y, Meng L N, Zhang Z X, Wang Y C 2011 Opt. Lett. 36 1008

    [25]

    Liu L, Zheng J Y, Zhang M J, Meng L N, Zhang Z X, Wang Y C 2012 Acta Phys. Sin. 61 084204 (in Chinese) [刘鎏, 郑建宇, 张明江, 孟丽娜, 张朝霞, 王云才2012 物理学报 61 084204]

    [26]

    Dmitriev A S, Hasler M, Panas A I, Zakharchenko K V 2003 Nonlinear Phenom. Complex Sys. 6 488

    [27]

    Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144

    [28]

    Zhang J Z, Wang Y C, Liu M, Xue L G, Li Pu, Wang A B, Zhang M J 2012 Opt. Express 20 7496

    [29]

    Kong L Q, Wang A B, Wang H H, Wang Y C 2008 Acta Phys. Sin. 57 2266 (in Chinese) [孔令琴, 王安邦, 王海红, 王云才 2008 物理学报 57 2266]

    [30]

    Liu Y, Kikuchi N, Ohtsubo J 1995 Phys. Rev. E 51 2697

    [31]

    Takiguchi Y, Liu Y, Obtsubo J 1998 Opt. Lett. 23 1369

    [32]

    Wang X F, Xia G Q, Wu Z M 2009 J. Opt. Soc. Am. B 26 160

    [33]

    Win M Z 2002 IEEE Commun. Lett. 6 526

    [34]

    Nakache Y, Molisch A F 2003 Proceedings of the IEEE Vehicular Technology Conference 4 2510

  • [1]

    Roy S, Foerster J R, Somayazulu V S, Leeper D G 2004 Proc. IEEE 92 295

    [2]

    Aiello G R, Rogerson G D 2003 IEEE Microw. Mag. 4 36

    [3]

    Akyildiz I F, Su W L, Sankarasubramaniam Y, Cayirci E 2002 IEEE Comput. Mag. 40 102

    [4]

    Yao J P, Zeng F, Wang Q 2007 J. Lightw. Technol. 25 3219

    [5]

    Ran M, Lembrikov B I, Ezra Y B 2010 IEEE Photon. J. 2 36

    [6]

    Zeng F, Yao J P 2006 IEEE Photon. Technol. Lett. 18 2062

    [7]

    Chen H W, Wang T L, Li M, Chen M H, Xie S Z 2008 Opt. Express 16 7447

    [8]

    Chang Q J, Tian Y, Ye T, Gao J M, Su Y K 2008 IEEE Photon.Technol. Lett. 20 1651

    [9]

    Pan S L, Yao J P 2009 Opt. Lett. 34 1312

    [10]

    Yu X B, Gibbon T B, Monroy I T 2009 IEEE Photon. Technol. Lett. 21 1235

    [11]

    Juan Y S, Lin F Y 2010 Opt. Express 18 9664

    [12]

    Zhang F Z, Wu J, Fu S N, Li Y, Hong X B, Shum P, Lin J T 2010 Opt. Express 18 15870

    [13]

    Feng X H, Li Z H, Guan B, Lu C, Tam H Y, Wai P K A 2010 Opt. Express 18 3643

    [14]

    Zhou E B, Xu X, Lui K S, Wong K 2010 IEEE Photon. Technol. Lett. 22 1063

    [15]

    Yuan Y, Dong J J, Li X, Zhang X L 2011 IEEE Photon. Technol. Lett. 23 1754

    [16]

    Zhang Y, Zhang X L, Zhang F Z, Wu J, Wang G H, Shum P P 2011 Opt. Com. 284 1803

    [17]

    Wang L X, Zhu N H, Zheng J Y, Liu J G, Li W 2012 Appl. Opt. 51 1

    [18]

    Zheng J Y, Zhu N H, Wang L X, Liu J G, Liang H G 2012 Appl. Opt. 4 657

    [19]

    Luo B W, Dong J J, Yu Y, Yang T, Zhang X L 2012 Opt. Lett. 37 2217

    [20]

    Khan M H, Shen H, Xuan Y, Zhao L, Xiao S, Leaird D E, Weiner A M, Qi M 2010 Nature Photon. 4 117

    [21]

    Peled Y, Tur M, Zadok A 2010 IEEE Photon. Technol. Lett. 22 1692

    [22]

    Zheng J Y, Zhang M J, Wang A B, Wang Y C 2010 Opt. Lett. 35 1734

    [23]

    Meng L N, Zhang M J, Zheng J Y, Zhang Z X, Wang Y C 2011 Acta Phys. Sin. 60 124212 (in Chinese) [孟丽娜, 张明江, 郑建宇, 张朝霞, 王云才2011 物理学报 60 124212]

    [24]

    Zhang M J, Liu T G, Wang A B, Zheng J Y, Meng L N, Zhang Z X, Wang Y C 2011 Opt. Lett. 36 1008

    [25]

    Liu L, Zheng J Y, Zhang M J, Meng L N, Zhang Z X, Wang Y C 2012 Acta Phys. Sin. 61 084204 (in Chinese) [刘鎏, 郑建宇, 张明江, 孟丽娜, 张朝霞, 王云才2012 物理学报 61 084204]

    [26]

    Dmitriev A S, Hasler M, Panas A I, Zakharchenko K V 2003 Nonlinear Phenom. Complex Sys. 6 488

    [27]

    Wang A B, Wang Y C, Wang J F 2009 Opt. Lett. 34 1144

    [28]

    Zhang J Z, Wang Y C, Liu M, Xue L G, Li Pu, Wang A B, Zhang M J 2012 Opt. Express 20 7496

    [29]

    Kong L Q, Wang A B, Wang H H, Wang Y C 2008 Acta Phys. Sin. 57 2266 (in Chinese) [孔令琴, 王安邦, 王海红, 王云才 2008 物理学报 57 2266]

    [30]

    Liu Y, Kikuchi N, Ohtsubo J 1995 Phys. Rev. E 51 2697

    [31]

    Takiguchi Y, Liu Y, Obtsubo J 1998 Opt. Lett. 23 1369

    [32]

    Wang X F, Xia G Q, Wu Z M 2009 J. Opt. Soc. Am. B 26 160

    [33]

    Win M Z 2002 IEEE Commun. Lett. 6 526

    [34]

    Nakache Y, Molisch A F 2003 Proceedings of the IEEE Vehicular Technology Conference 4 2510

  • [1] 曾立, 刘国标, 章海锋, 黄通. 一款基于多物理场调控的超宽带线-圆极化转换器. 物理学报, 2019, 68(5): 054101. doi: 10.7498/aps.68.20181615
    [2] 徐进, 李荣强, 蒋小平, 王身云, 韩天成. 基于方形开口环的超宽带线性极化转换器. 物理学报, 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [3] 李锟影, 李璞, 郭晓敏, 郭龑强, 张建国, 刘义铭, 徐兵杰, 王云才. 利用光反馈多模激光器结合滤波器产生平坦混沌. 物理学报, 2019, 68(11): 110501. doi: 10.7498/aps.68.20190171
    [4] 赵赞善, 李培丽. 基于半导体光纤环形腔激光器的全光广播式超宽带信号源. 物理学报, 2019, 68(14): 140401. doi: 10.7498/aps.68.20182301
    [5] 王永胜, 赵彤, 王安帮, 张明江, 王云才. 大幅度增加弛豫振荡频率来实现毫米级外腔半导体激光器的外腔机制转换. 物理学报, 2017, 66(23): 234204. doi: 10.7498/aps.66.234204
    [6] 兰豆豆, 郭晓敏, 彭春生, 姬玉林, 刘香莲, 李璞, 郭龑强. 混沌光场光子统计分布及二阶相干度的分析与测量. 物理学报, 2017, 66(12): 120502. doi: 10.7498/aps.66.120502
    [7] 余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波. 基于开口椭圆环的高效超宽带极化旋转超表面. 物理学报, 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [8] 肖夏, 宋航, 王梁, 王宗杰, 路红. 早期乳腺肿瘤的超宽带微波稳健波束形成成像检测系统. 物理学报, 2014, 63(19): 194102. doi: 10.7498/aps.63.194102
    [9] 韩博琳, 娄淑琴, 鹿文亮, 苏伟, 邹辉, 王鑫. 新型超宽带双芯光子晶体光纤偏振分束器的研究. 物理学报, 2013, 62(24): 244202. doi: 10.7498/aps.62.244202
    [10] 莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武. 基于圆台结构的超宽带极化不敏感太赫兹吸收器. 物理学报, 2013, 62(23): 237801. doi: 10.7498/aps.62.237801
    [11] 刘鎏, 郑建宇, 张明江, 孟丽娜, 张朝霞, 王云才. 混沌超宽带信号的光学产生及其链路传输. 物理学报, 2012, 61(8): 084204. doi: 10.7498/aps.61.084204
    [12] 郑安杰, 吴正茂, 邓涛, 李小坚, 夏光琼. 偏振保持光反馈下1550 nm垂直腔面发射激光器的非线性动力学特性研究. 物理学报, 2012, 61(23): 234203. doi: 10.7498/aps.61.234203
    [13] 宫蕴瑞, 何迪, 何晨. 混沌超宽带系统的广义负熵盲检测机理研究. 物理学报, 2012, 61(12): 120502. doi: 10.7498/aps.61.120502
    [14] 陈莎莎, 张建忠, 杨玲珍, 梁君生, 王云才. 基于混沌激光产生1 Gbit/s的随机数. 物理学报, 2011, 60(1): 010501. doi: 10.7498/aps.60.010501
    [15] 孟丽娜, 张明江, 郑建宇, 张朝霞, 王云才. 外部光注入混沌激光器产生超宽带微波信号的研究. 物理学报, 2011, 60(12): 124212. doi: 10.7498/aps.60.124212
    [16] 杨锐, 谢拥军, 胡海鹏, 王瑞, 满明远, 吴召海. 超宽带异向介质平面倒F天线. 物理学报, 2010, 59(5): 3173-3178. doi: 10.7498/aps.59.3173
    [17] 张秀娟, 王冰洁, 杨玲珍, 王安帮, 郭东明, 王云才. 平坦宽带混沌激光的产生及同步. 物理学报, 2009, 58(5): 3203-3207. doi: 10.7498/aps.58.3203
    [18] 范 燕, 夏光琼, 吴正茂. 光注入下外光反馈半导体激光器输出自相关特性研究. 物理学报, 2008, 57(12): 7663-7667. doi: 10.7498/aps.57.7663
    [19] 刘胜芳, 夏光琼, 吴加贵, 李林福, 吴正茂. 强光注入提高光反馈VCSELs混沌载波基频. 物理学报, 2008, 57(3): 1502-1505. doi: 10.7498/aps.57.1502
    [20] 王 鹏, 赵 环, 赵研英, 王兆华, 田金荣, 李德华, 魏志义. 用SPIDER法测量超宽带钛宝石振荡器的激光脉宽研究. 物理学报, 2007, 56(1): 224-228. doi: 10.7498/aps.56.224
计量
  • 文章访问数:  3564
  • PDF下载量:  744
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-29
  • 修回日期:  2012-10-09
  • 刊出日期:  2013-03-05

直接调制光反馈半导体激光器产生超宽带信号

  • 1. 太原理工大学, 新型传感器与智能控制教育部重点实验室, 太原 030024;
  • 2. 太原理工大学光电工程研究所, 太原 030024;
  • 3. 东南大学, 毫米波国家重点实验室, 南京 210096
    基金项目: 国家自然科学基金(批准号: 60927007, 60908014, 61108027)、 国家重点基础研究发展计划(批准号: 2010CB327806)、中国博士后科学基金(批准号: 2011M500048)、山西省高等学校优秀青年学术带头人支持计划(批准号: 2012lfjyt08) 和光电信息技术教育部重点实验室(天津大学) 开放基金(批准号: 2012 KFKT004))资助的课题.

摘要: 利用直接电流调制光反馈半导体激光器产生了符合美国联邦通信委员会关于室内无线通信频谱限定的超宽带(UWB)微波信号.基于光反馈半导体激光器速率方程组, 数值分析了偏置电流、反馈强度对混沌UWB脉冲信号的影响.研究表明, 混沌UWB脉冲频谱的-10 dB带宽分别随着偏置电流的增大和反馈强度的增强而逐渐增加; 中心频率分别随着偏置电流的增大和反馈强度的增强而逐渐增大.实验中, 产生了中心频率为6.6 GHz, -10 dB带宽为9.6 GHz的混沌UWB信号. 进一步, 通过调节偏置电流和反馈强度, 可实现混沌UWB信号的中心频率和-10 dB带宽的可调谐输出, 实验结果和数值分析相符合.此外, 实验产生的混沌UWB信号经过34.08 km的光纤传输后, 其频谱形状几乎没有发生变化, 表明该方法所产生的混沌UWB信号对光纤色散有较大的容忍度.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回