搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于半导体光纤环形腔激光器的全光广播式超宽带信号源

赵赞善 李培丽

引用本文:
Citation:

基于半导体光纤环形腔激光器的全光广播式超宽带信号源

赵赞善, 李培丽

All-optical broadcast ultra-wideband signal source based on semiconductor fiber ring laser

Zhao Zan-Shan, Li Pei-Li
PDF
HTML
导出引用
  • 提出一种新型的基于半导体光纤环形腔激光器(semiconductor fiber ring laser, SFRL)全光超宽带(ultra-wideband, UWB)信号源的方案, 该方案可以同时产生3路高斯脉冲一阶导数脉冲(monocycle) UWB信号. 建立了这种全光UWB信号源的宽带理论模型, 通过数值模拟的方法研究SFRL中的半导体光放大器(semiconductor optical amplifier, SOA)的注入电流、激射光波长、输入信号光功率和波长对monocycle信号性能的影响. 结果表明: SOA的注入电流在200—220 mA时可以获得对称性较好的monocycle脉冲; 输出monocycle脉冲平均功率和正、负脉冲振幅随激射光波长增加而增加; 较低的输入信号光功率可以获得性能较好的monocycle信号; 输入信号光波长对输出monocycle信号有一定的影响, 但影响很小.
    A novel scheme for all-optical ultra-wideband signal source based on semiconductor fiber ring laser (SFRL) is proposed, in which three monocycle signals can be generated simultaneously. The effect of the bias current of the semiconductor optical amplifier (SOA) in the SFRL, the wavelength of the lasing light, the power and the wavelength of input signal light on the performance of the monocycle signals are analyzed through numerical simulation. The results show that the output monocycle pulses with better symmetry can be obtained when the bias current of SOA is in a range of 200−220 mA. The average power, the amplitude of the positive and negative pulses of the output monocycle pulses increase as the wavelength of the lasing light increases. A better performance of the monocycle pulses can be obtained under lower input signal optical power. The wavelength of the input signal light has a little effect on the output monocycle pulses.
      通信作者: 赵赞善, zhaozanshan@163.com
      Corresponding author: Zhao Zan-Shan, zhaozanshan@163.com
    [1]

    Aiello G R, Rogerson G D 2003 IEEE Microw. Mag. 4 36Google Scholar

    [2]

    Wang Q, Zeng F, Blais S, Yao J P 2006 Opt. Lett. 31 3083Google Scholar

    [3]

    Wang Q, Yao J P 2007 Opt. Express 15 14667Google Scholar

    [4]

    Huang H, Xu K, Li J Q, Wu J, Hong X B, Lin J T 2008 J. Lightwave Technol. 26 2635Google Scholar

    [5]

    Dridi K, Hamam H 2008 IEEE International Conference on Signal Processing & Communications Dubai, United Arab Emirates, November 24−27, 2008 p1167

    [6]

    Chen H W, Chen M H, Wang T L, Li M, Xie S Z 2008 J. Lightwave Technol. 26 2492Google Scholar

    [7]

    Dong J J, Zhang X L, Zhang Y, Huang D X 2008 Electron. Lett. 44 1083Google Scholar

    [8]

    Zhang W W, Sun J Q, Wang J, Cheng C, Zhang X L 2009 IEEE Photonic Tech. L. 21 271Google Scholar

    [9]

    Hu Z F, Sun J Q, Shao J, Zhang X L 2010 IEEE Photonic. Tech. L. 22 42

    [10]

    Wang J, Sun Q Z, Sun J Q, Zhang W W 2009 Opt. Express 17 3521Google Scholar

    [11]

    Wu T H, Wu J, Chiu Y J 2010 Opt. Express 18 3379Google Scholar

    [12]

    Zhang W, Chen X Q, Chai J, Huang Y N 2016 15th International Conference on Optical Communications and Networks Hangzhou, China, September 24−27, 2016 p1

    [13]

    Mu H Q, Wang M G, Jian S S 2016 15th International Conference on Optical Communications and Networks Hangzhou, China, September 24−27, 2016 pp1

    [14]

    Dong J J, Fu S N, Shum P, Zhang X L 2007 6th International Conference on Information, Communications & Signal Processing Singapore, December 10-13, 2007 p1

    [15]

    Zeng F, Yao J 2006 IEEE Photonic Tech. L. 18 823Google Scholar

    [16]

    Zeng F, Wang Q, Yao J 2007 Electron. Lett. 43 119Google Scholar

    [17]

    Dong J J, Zhang X L, Xu J, Huang D X, Fu S N, Shum P 2008 Optical Fiber Communication/National Fiber Optic Engineers Conference San Diego, California, United States, February 24–28, 2008 p1

    [18]

    Velanas P, Bogris A, Argyris A, Dimitris Syvridis 2008 J. Lightwave Technol. 26 3269

    [19]

    Wang F, Dong J J, Xu E M, Zhang X L 2010 Opt. Express 18 24588Google Scholar

    [20]

    Dong J J, Zhang X L, Xu J, et al. 2007 Opt. Express 32 2158

    [21]

    TorresCompany, Víctor, Prince K, Monroy I T 2008 IEEE Photonic. Tech. L. 20 1299Google Scholar

    [22]

    Zhao Z S, Li P L, Zheng J J, et al. 2012 Optoelectr. Lett. 8 89Google Scholar

    [23]

    Zhang Y, Zhao M, Ma X L, et al. 2015 Optik 126 340

    [24]

    Zhang F Z, Wu J, Fu S N, et al. 2010 Opt. Express 18 15870Google Scholar

    [25]

    Sujit B, Hong Y H, Paul S, et al. 2004 J. Opt. Soc. Am. B 21 1023Google Scholar

    [26]

    Hong Y H, Spencer P S, Shore K A 2004 IEEE J. Quantum Electronics 40 152Google Scholar

    [27]

    Chow K K, Shu C, Mak M W K, et al. 2004 IEEE J. Sel. Top. Quant. 10 1197Google Scholar

  • 图 1  基于SFRL全光广播UWB信号源的结构示意图

    Fig. 1.  The structure of all-optical UWB broadcast signal source based on SFRL.

    图 2  基于SFRL全光广播式monocycle信号源的输出 (a), (b), (c) 激射光波长分别为1538, 1540, 1542 nm对应的时域波形; (d), (e), (f)激射光波长分别为 1538, 1540, 1542 nm对应的功率谱

    Fig. 2.  The output of all-optical broadcast monocycle signal source based on SFRL: The waveform of monocycle signals when the lasing light wavelength of 1538 nm (a), 1540 nm (b), 1542 nm (c); the power spectrum of monocycle signals when the lasing light wavelengthof 1538 nm (d), 1540 nm (e), 1542 nm (f).

    图 3  (a)注入电流为200 mA时波长-增益系数曲线; (b)在SOA输出端激射光1−3路的增益-时间曲线

    Fig. 3.  (a) Wavelength-gain coefficient curve with 200 mA SOA bias current; (b) the gain-time curve of monocycle 1−3 at the SOA output.

    图 4  不同SOA注入电流输出的monocycle波形和功率谱 (a) I = 180 mA, (b) I = 210 mA, (c) I = 240 mA输出的monocycle波形; (d) I = 180 mA, (e) I = 210 mA, (f) I = 240 mA输出的monocycle功率谱

    Fig. 4.  The waveform and the power spectrum of monocycle with different SOA bias current: The waveform when I = 180 mA (a), I = 210 mA (b), I = 240 mA (c); the power spectrum when I = 180 mA (d) I = 210 mA (e), I = 240 mA (f).

    图 5  输入信号功率对输出monocycles信号性能的影响 (a)不同输入信号功率情况下输出monocycle信号的中心频率和–10 dB频率带宽曲线; (b)输入功率为–10 dBm时输出的monocycle信号时域波形; (c)输入功率为–10 dBm时输出的monocycle信号功率谱; (d)输入光功率为–4 dBm时输出的monocycle信号时域波形; (e)输入光功率为–4 dBm时输出的monocycle信号功率谱

    Fig. 5.  The effect of input signal power on the performance of the output monocycle signals: (a) The curve of center frequency and –10 dB frequency bandwidth width different input signal powers; (b) the monocycle signal waveform when input signal power is –10 dBm; (c) the power spectrum when input signal power is –10 dBm; (d) the monocycle signal waveform when input signal power is –4 dBm; (e) the power spectrum when input signal power is –4 dBm.

    图 6  (a)不同输入信号光波长情况下中心频率和–10 dB频率带宽曲线; (b)输入信号光波长1530 nm时输出的monocycle信号时域波形; (c)输入信号光波长1530 nm时输出的monocycle信号功率谱; (d)输入信号光波长为1550 nm时输出的monocycle信号时域波形; (e)输入信号光波长为1550 nm时输出的monocycle信号功率谱

    Fig. 6.  (a) Curve of center frequency and –10 dB frequency bandwidth width different input signal wavelength; (b) monocycle signal waveform when input signal wavelength is 1530 nm; (c) power spectrum when input signal wavelength is 1530 nm; (d) monocycle signal waveform when input signal wavelength is 1550 nm; (e) power spectrum when input signal wavelength is 1550 nm.

    表 1  计算采用的参数值

    Table 1.  Parameters used in the mode.

    参量符号取值
    有源区长度L/10–4 m5.5
    有源区宽度w/10–6 m3.3
    有源区厚度d/10–7 m1.5
    非辐射符合系统${c_1}$/108 s–11.5
    双分子复合系数${c_2}$/10–16 m3·s–12.5
    Auger复合系数${c_3}$/10–40 m6·s–11.5
    光限制因子Γ0.3
    折射率na3.22
    饱和功率${P_{{\rm{sat}}}}$/10–2 W1.0
    有源区损耗${\alpha _{{\rm{in}}}}$/104 m–11.4
    涂覆层损耗${\alpha _{\rm{c}}}$/103 m–12.0
    散射损耗${\alpha _{\rm{c}}}$/103 m–11.0
    导带中电子有效质量mc/10–32 kg4.1
    价带中电子有效质量mhh/10–31 kg4.19
    价带中空穴有效质量mlh/10–33 kg5.06
    不包含两个耦合器耦合比的所有损耗${\varepsilon _1}$0.4
    耦合器1的耦合比${k_1}$0.5
    耦合器2的耦合比${k_2}$0.5
    ASE谱的起始波长${\lambda _1}$/10–6 m1.40
    ASE谱的结束波长${\lambda _{\rm{m}}}$/10–6 m1.60
    ASE谱的分段数m10
    SOA的分段数n10
    自发辐射因子β/10–52
    群速度${\nu _{\rm{g}}}$/107 m·s–17.5
    下载: 导出CSV
  • [1]

    Aiello G R, Rogerson G D 2003 IEEE Microw. Mag. 4 36Google Scholar

    [2]

    Wang Q, Zeng F, Blais S, Yao J P 2006 Opt. Lett. 31 3083Google Scholar

    [3]

    Wang Q, Yao J P 2007 Opt. Express 15 14667Google Scholar

    [4]

    Huang H, Xu K, Li J Q, Wu J, Hong X B, Lin J T 2008 J. Lightwave Technol. 26 2635Google Scholar

    [5]

    Dridi K, Hamam H 2008 IEEE International Conference on Signal Processing & Communications Dubai, United Arab Emirates, November 24−27, 2008 p1167

    [6]

    Chen H W, Chen M H, Wang T L, Li M, Xie S Z 2008 J. Lightwave Technol. 26 2492Google Scholar

    [7]

    Dong J J, Zhang X L, Zhang Y, Huang D X 2008 Electron. Lett. 44 1083Google Scholar

    [8]

    Zhang W W, Sun J Q, Wang J, Cheng C, Zhang X L 2009 IEEE Photonic Tech. L. 21 271Google Scholar

    [9]

    Hu Z F, Sun J Q, Shao J, Zhang X L 2010 IEEE Photonic. Tech. L. 22 42

    [10]

    Wang J, Sun Q Z, Sun J Q, Zhang W W 2009 Opt. Express 17 3521Google Scholar

    [11]

    Wu T H, Wu J, Chiu Y J 2010 Opt. Express 18 3379Google Scholar

    [12]

    Zhang W, Chen X Q, Chai J, Huang Y N 2016 15th International Conference on Optical Communications and Networks Hangzhou, China, September 24−27, 2016 p1

    [13]

    Mu H Q, Wang M G, Jian S S 2016 15th International Conference on Optical Communications and Networks Hangzhou, China, September 24−27, 2016 pp1

    [14]

    Dong J J, Fu S N, Shum P, Zhang X L 2007 6th International Conference on Information, Communications & Signal Processing Singapore, December 10-13, 2007 p1

    [15]

    Zeng F, Yao J 2006 IEEE Photonic Tech. L. 18 823Google Scholar

    [16]

    Zeng F, Wang Q, Yao J 2007 Electron. Lett. 43 119Google Scholar

    [17]

    Dong J J, Zhang X L, Xu J, Huang D X, Fu S N, Shum P 2008 Optical Fiber Communication/National Fiber Optic Engineers Conference San Diego, California, United States, February 24–28, 2008 p1

    [18]

    Velanas P, Bogris A, Argyris A, Dimitris Syvridis 2008 J. Lightwave Technol. 26 3269

    [19]

    Wang F, Dong J J, Xu E M, Zhang X L 2010 Opt. Express 18 24588Google Scholar

    [20]

    Dong J J, Zhang X L, Xu J, et al. 2007 Opt. Express 32 2158

    [21]

    TorresCompany, Víctor, Prince K, Monroy I T 2008 IEEE Photonic. Tech. L. 20 1299Google Scholar

    [22]

    Zhao Z S, Li P L, Zheng J J, et al. 2012 Optoelectr. Lett. 8 89Google Scholar

    [23]

    Zhang Y, Zhao M, Ma X L, et al. 2015 Optik 126 340

    [24]

    Zhang F Z, Wu J, Fu S N, et al. 2010 Opt. Express 18 15870Google Scholar

    [25]

    Sujit B, Hong Y H, Paul S, et al. 2004 J. Opt. Soc. Am. B 21 1023Google Scholar

    [26]

    Hong Y H, Spencer P S, Shore K A 2004 IEEE J. Quantum Electronics 40 152Google Scholar

    [27]

    Chow K K, Shu C, Mak M W K, et al. 2004 IEEE J. Sel. Top. Quant. 10 1197Google Scholar

  • [1] 王东俊, 孙子涵, 张袁, 唐莉, 闫丽萍. 抗方阻波动的超宽带轻薄频率选择表面吸波体. 物理学报, 2024, 73(2): 024201. doi: 10.7498/aps.73.20231365
    [2] 徐进, 李荣强, 蒋小平, 王身云, 韩天成. 基于方形开口环的超宽带线性极化转换器. 物理学报, 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [3] 曾立, 刘国标, 章海锋, 黄通. 一款基于多物理场调控的超宽带线-圆极化转换器. 物理学报, 2019, 68(5): 054101. doi: 10.7498/aps.68.20181615
    [4] 姜彦南, 王扬, 葛德彪, 李思敏, 曹卫平, 高喜, 于新华. 一种基于石墨烯的超宽带吸波器. 物理学报, 2016, 65(5): 054101. doi: 10.7498/aps.65.054101
    [5] 余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波. 基于开口椭圆环的高效超宽带极化旋转超表面. 物理学报, 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [6] 肖夏, 宋航, 王梁, 王宗杰, 路红. 早期乳腺肿瘤的超宽带微波稳健波束形成成像检测系统. 物理学报, 2014, 63(19): 194102. doi: 10.7498/aps.63.194102
    [7] 郭蓉, 曹祥玉, 袁子东, 徐雪飞. 一种新型宽带定向性贴片天线设计. 物理学报, 2014, 63(24): 244102. doi: 10.7498/aps.63.244102
    [8] 莫漫漫, 文岐业, 陈智, 杨青慧, 李胜, 荆玉兰, 张怀武. 基于圆台结构的超宽带极化不敏感太赫兹吸收器. 物理学报, 2013, 62(23): 237801. doi: 10.7498/aps.62.237801
    [9] 韩博琳, 娄淑琴, 鹿文亮, 苏伟, 邹辉, 王鑫. 新型超宽带双芯光子晶体光纤偏振分束器的研究. 物理学报, 2013, 62(24): 244202. doi: 10.7498/aps.62.244202
    [10] 刘明, 张明江, 王安帮, 王龙生, 吉勇宁, 马喆. 直接调制光反馈半导体激光器产生超宽带信号. 物理学报, 2013, 62(6): 064209. doi: 10.7498/aps.62.064209
    [11] 宫蕴瑞, 何迪, 何晨. 混沌超宽带系统的广义负熵盲检测机理研究. 物理学报, 2012, 61(12): 120502. doi: 10.7498/aps.61.120502
    [12] 杨锐, 谢拥军, 胡海鹏, 王瑞, 满明远, 吴召海. 超宽带异向介质平面倒F天线. 物理学报, 2010, 59(5): 3173-3178. doi: 10.7498/aps.59.3173
    [13] 安 义, 王云才, 张明江, 牛生晓, 王安帮. 基于Fabry-Perot半导体激光器实现全光波长转换及其最优纵模选择. 物理学报, 2008, 57(8): 4995-5000. doi: 10.7498/aps.57.4995
    [14] 王 鹏, 赵 环, 赵研英, 王兆华, 田金荣, 李德华, 魏志义. 用SPIDER法测量超宽带钛宝石振荡器的激光脉宽研究. 物理学报, 2007, 56(1): 224-228. doi: 10.7498/aps.56.224
    [15] 李培丽, 黄德修, 张新亮, 朱光喜. 基于半导体光纤环形腔激光器的新型全光AND门和NOR门. 物理学报, 2007, 56(2): 871-877. doi: 10.7498/aps.56.871
    [16] 田金荣, 韩海年, 赵研英, 王 鹏, 张 炜, 魏志义. 基于啁啾镜色散补偿技术的超宽带飞秒激光脉冲. 物理学报, 2006, 55(9): 4725-4728. doi: 10.7498/aps.55.4725
    [17] 赵 婵, 张新亮, 董建绩, 黄德修. 基于同一结构实现全光逻辑“与门”和“或非门”的研究. 物理学报, 2006, 55(8): 4150-4155. doi: 10.7498/aps.55.4150
    [18] 李培丽, 黄德修, 张新亮, 朱光喜. 基于多电极单端耦合半导体光放大器的交叉增益调制型波长转换器. 物理学报, 2006, 55(6): 2746-2750. doi: 10.7498/aps.55.2746
    [19] 张新亮, 董建绩, 王 颖, 黄德修. 新型全光逻辑与门的理论和实验研究. 物理学报, 2005, 54(5): 2066-2071. doi: 10.7498/aps.54.2066
    [20] 王云才. 增益开关半导体激光器在外光注入下脉冲抖动的实验研究. 物理学报, 2003, 52(9): 2190-2193. doi: 10.7498/aps.52.2190
计量
  • 文章访问数:  5796
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-29
  • 修回日期:  2019-04-08
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-20

/

返回文章
返回