-
充液管道低频声的有效吸收和消减一直是一个颇具挑战性的难题. 受声学超材料理论启发, 本文设计了一种沿管道轴向方向等距布置小体积声学短管的充液周期管道系统. 该管道系统可以诱发声波传播超宽低频带隙的产生, 使得声波在带隙频率范围内传播将被显著衰减, 乃至无法透射, 近乎被完全吸收, 称为暗声学超材料型充液管道. 进一步, 揭示了暗声学超材料型充液管道中声传播带隙的产生机理、参数影响规律, 研究了该波导管对低频噪声的降噪特性, 初步探讨了工程实际可实现的暗声学超材料型充液管道的结构实现形式. 研究成果有望为管道低频噪声控制提供一条新的技术途径.The suppression and absorption of low-frequency noise for a fluid-filled pipe system has become a challenging task. Inspired by the properties of acoustic metamaterials, we construct a fluid-filled periodic pipe system, consisting of small-size short acoustic pipes mounted on a fluid-filled main pipe system equidistantly along the axial direction of main pipe. The short acoustic pipe is filled with fluid and gas, and the fluid section is connected to the main pipe that is filled with the same liquid. In such a periodic pipe system, an ultra-low frequency and ultra-broad band gap of acoustic waves can be generated, making the acoustic waves transmitting in the pipe system effectively attenuated within the band gap frequency range. Since the attenuation effects of the band gap on the low-frequency sound are so strong (the acoustic waves almost cannot be transmitted through the pipe system) that the periodic pipe system is referred to as a dark acoustic metamaterial (DAM)-type fluid-filled pipe system. The formation mechanism of the first band gap can be ascribed to the co-resonance of the short acoustic pipe array in the piping system, and this band gap is categorized as resonant-type BG (RBG). The contribution of short acoustic pipes is to introduce a low-frequency and large impedances spatially into the system, whereupon the transmitting waves will experience a tempestuously resonance in the pipe. As a result, the transmission of acoustic waves within the RBG is stopped. The second band gap in a higher frequency range is classified as Bragg-type band gap (BBG), since it is induced by the effects of interference between the incident, the reflected and the transmitted acoustic waves existing in the periodic units. The interference effect on the suppression of wave transmission is strengthened by the ceaselessly repeating uniform cells. The lattice constant change can bring in a modulation effects on both the BBG and the upper band edge of RBG. Increasing the volume of gas chamber in the short acoustic pipe will result in a shift of lower band edge of RBG towards the low-frequency range but has no action on the upper band edge; similarly, the augment of the liquid volume of the short acoustic pipe also lowers the band edges of RBG, however, bandwidth of the RBG will be reduced. A membrane may be used to physically separate the gas from the fluid in the short acoustic pipe, rendering the design more feasible to be realized in practical engineering. The installation of membrane will not change the low-frequency band gap properties of the DAM pipe. The obtained results show that the proposed design in this study may provide a new way to solve the defiant problem of noise control in the low frequency range for fluid piping systems.
-
Keywords:
- dark acoustic metamaterials /
- fluid-filled pipe /
- noise control /
- acoustic band gap
[1] 吴九汇, 马富银, 张思文, 沈礼 2016 机械工程学报 52 68
Wu J H, Ma F Y, Zhang S W, Shen L 2016 Chin. J. Mech. Eng. 52 68
[2] 张振方, 郁殿龙, 刘江伟, 温激鸿 2018 物理学报 67 074301Google Scholar
Zhang Z F, Yu D L, Liu J W, Wen J H 2018 Acta Phys. Sin. 67 074301Google Scholar
[3] 曹晓丰, 郁殿龙, 刘江伟, 温激鸿 2016 振动与冲击 35 20
Cao X F, Yu D L, Liu J W, Wen J H 2016 J. Vib. Shock 35 20
[4] Liu B, Liu J, Wei W, Shen H, Wei Z 2018 AIP Adv. 8 115322Google Scholar
[5] Chiang Y K, Choy Y S, Tang S K 2017 J. Acoust. Soc. Am. 141 1999Google Scholar
[6] Jiang C Y, Huang L X 2018 J. Sound Vib. 418 79Google Scholar
[7] Kopiev V F, Mironov M A, Yakovets M A 2015 Acoust. Phys. 61 49
[8] Cambonie T, Mbailassem F, Gourdon E 2018 Appl. Acoust. 131 87Google Scholar
[9] Zhang T, Zhang Y O, Ouyang H 2015 Int. J. Press. Ves. Pip. 125 66Google Scholar
[10] Bravo T, Maury C, Pinhède C 2017 J. Sound Vib. 395 201Google Scholar
[11] Koh J, Lyu S, Lee T 2015 Proceedings of the 22ND International Congress on Sound and Vibration Florence, Italy, July 12–16, 2015 p12
[12] Zhu Y W, Zhu F W, Zhang Y S, Wei Q G 2017 Appl. Acoust. 116 9Google Scholar
[13] Xiang L, Zuo S, Wu X, Liu J 2017 Appl. Acoust. 122 35Google Scholar
[14] Williams P, Kirby R, Hill J, Åbom M, Malecki C 2018 Appl. Acoust. 131 61Google Scholar
[15] Zhao X, Cai L, Yu D, Lu Z, Wen J 2017 AIP Adv. 7 065211Google Scholar
[16] Li D, Kang Y, Ding X, Wang X, Liu W 2017 J. Mech. Sci. Technol. 31 1203Google Scholar
[17] Chaitanya P, Munjal M L 2011 Appl. Acoust. 72 65Google Scholar
[18] Mimani A, Munjal M L 2012 Wave Motion 49 271Google Scholar
[19] Liu J, Yu D, Wen J, Zhang Z 2018 J. Theor. Comp. Acoust. 26 1850026
[20] Yu D L, Shen H J, Liu J W, Yin J F, Zhang Z F, Wen J H 2018 Chin. Phys. B 27 064301Google Scholar
[21] 程聪, 吴福根, 张欣, 姚源卫 2014 物理学报 63 024301Google Scholar
Cheng C, Wu F G, Zhang X, Yao Y W 2014 Acta Phys. Sin. 63 024301Google Scholar
[22] 高汉峰, 张欣, 吴福根, 姚源卫 2016 物理学报 65 044301Google Scholar
Gao H F, Zhang X, Wu F G, Yao Y W 2016 Acta Phys. Sin. 65 044301Google Scholar
[23] 梁彬, 袁樱, 程建春 2015 物理学报 64 094305Google Scholar
Liang B, Yuan Y, Cheng J C 2015 Acta Phys. Sin. 64 094305Google Scholar
[24] Lu M H, Yan L F, Chen F 2009 Mater. Today 12 34
[25] Tang Y, Xin F, Huang L, Lu T 2017 EPL 118 44002Google Scholar
[26] Liu Z, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734Google Scholar
[27] Mei J, Ma G, Yang M, Yang Z, Wen W, Sheng P 2012 Nat. Comm. 3 756Google Scholar
[28] 刘侍刚 2001 硕士学位论文(哈尔滨: 哈尔滨工程大学)
Liu S G 2001 M. S. Thesis (Haerbin: Harbin Engineering University) (in Chinese)
-
-
[1] 吴九汇, 马富银, 张思文, 沈礼 2016 机械工程学报 52 68
Wu J H, Ma F Y, Zhang S W, Shen L 2016 Chin. J. Mech. Eng. 52 68
[2] 张振方, 郁殿龙, 刘江伟, 温激鸿 2018 物理学报 67 074301Google Scholar
Zhang Z F, Yu D L, Liu J W, Wen J H 2018 Acta Phys. Sin. 67 074301Google Scholar
[3] 曹晓丰, 郁殿龙, 刘江伟, 温激鸿 2016 振动与冲击 35 20
Cao X F, Yu D L, Liu J W, Wen J H 2016 J. Vib. Shock 35 20
[4] Liu B, Liu J, Wei W, Shen H, Wei Z 2018 AIP Adv. 8 115322Google Scholar
[5] Chiang Y K, Choy Y S, Tang S K 2017 J. Acoust. Soc. Am. 141 1999Google Scholar
[6] Jiang C Y, Huang L X 2018 J. Sound Vib. 418 79Google Scholar
[7] Kopiev V F, Mironov M A, Yakovets M A 2015 Acoust. Phys. 61 49
[8] Cambonie T, Mbailassem F, Gourdon E 2018 Appl. Acoust. 131 87Google Scholar
[9] Zhang T, Zhang Y O, Ouyang H 2015 Int. J. Press. Ves. Pip. 125 66Google Scholar
[10] Bravo T, Maury C, Pinhède C 2017 J. Sound Vib. 395 201Google Scholar
[11] Koh J, Lyu S, Lee T 2015 Proceedings of the 22ND International Congress on Sound and Vibration Florence, Italy, July 12–16, 2015 p12
[12] Zhu Y W, Zhu F W, Zhang Y S, Wei Q G 2017 Appl. Acoust. 116 9Google Scholar
[13] Xiang L, Zuo S, Wu X, Liu J 2017 Appl. Acoust. 122 35Google Scholar
[14] Williams P, Kirby R, Hill J, Åbom M, Malecki C 2018 Appl. Acoust. 131 61Google Scholar
[15] Zhao X, Cai L, Yu D, Lu Z, Wen J 2017 AIP Adv. 7 065211Google Scholar
[16] Li D, Kang Y, Ding X, Wang X, Liu W 2017 J. Mech. Sci. Technol. 31 1203Google Scholar
[17] Chaitanya P, Munjal M L 2011 Appl. Acoust. 72 65Google Scholar
[18] Mimani A, Munjal M L 2012 Wave Motion 49 271Google Scholar
[19] Liu J, Yu D, Wen J, Zhang Z 2018 J. Theor. Comp. Acoust. 26 1850026
[20] Yu D L, Shen H J, Liu J W, Yin J F, Zhang Z F, Wen J H 2018 Chin. Phys. B 27 064301Google Scholar
[21] 程聪, 吴福根, 张欣, 姚源卫 2014 物理学报 63 024301Google Scholar
Cheng C, Wu F G, Zhang X, Yao Y W 2014 Acta Phys. Sin. 63 024301Google Scholar
[22] 高汉峰, 张欣, 吴福根, 姚源卫 2016 物理学报 65 044301Google Scholar
Gao H F, Zhang X, Wu F G, Yao Y W 2016 Acta Phys. Sin. 65 044301Google Scholar
[23] 梁彬, 袁樱, 程建春 2015 物理学报 64 094305Google Scholar
Liang B, Yuan Y, Cheng J C 2015 Acta Phys. Sin. 64 094305Google Scholar
[24] Lu M H, Yan L F, Chen F 2009 Mater. Today 12 34
[25] Tang Y, Xin F, Huang L, Lu T 2017 EPL 118 44002Google Scholar
[26] Liu Z, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734Google Scholar
[27] Mei J, Ma G, Yang M, Yang Z, Wen W, Sheng P 2012 Nat. Comm. 3 756Google Scholar
[28] 刘侍刚 2001 硕士学位论文(哈尔滨: 哈尔滨工程大学)
Liu S G 2001 M. S. Thesis (Haerbin: Harbin Engineering University) (in Chinese)
计量
- 文章访问数: 8226
- PDF下载量: 112
- 被引次数: 0