-
通过单晶生长了Cd组分为0.1的p型HgCdTe体材料,并制备了具有倒置型能带序的HgCdTe场效应器件.通过磁输运测试,在负带隙HgCdTe体材料中观察到明显的量子霍尔平台效应和Shubnikov-de Haas(SdH)振荡效应,证明样品具有较好的质量.利用SdH振荡对1/B关系的快速傅里叶变换,得到了样品的零场自旋分裂能约为26.55 meV,证明样品中存在强自旋-轨道耦合作用.进一步分析SdH中的拍频节点估算了样品中的有效g因子约为-11.54.
-
关键词:
- HgCdTe /
- Shubnikov-de Haas振荡 /
- 零场自旋分裂能
In recent years, spintronic devices have attracted more and more attention because of their good characteristics. The spin-orbit coupling of HgCdTe is one of the most important parts in the study of narrow gap semiconductors. The magneotransport properties of the Hg0.9Cd0.1Te bulk material with an inverted band structure have been hardly reported so far. The spin-orbit coupling strength of HgCdTe is closely related to the band gap. The strength of the spin-orbit coupling increases with the width of the band gap decreasing. Thus, Hg0.9Cd0.1Te should have strong spin-orbit coupling. Meanwhile it should be one of the most suitable materials to fabricate spintronic devices. The main propose of our experiments is to prove this inference. Inside the sample, Rashba spin-orbit interaction (SOI) strongly influences the spin-splitting due to the lack of structural inversion symmetry. In other words, Rashba SOI is the main part of the zero field spin splitting △0. The band structure of Hg1-xCdxTe can be precisely tuned by changing the composition of Cd which keeps an inverted band order when 0 x Γ8 band lying below the Γ6 band (or equivalently a positive band gap) when x0.165. In this paper, the p-type HgCdTe bulk material with Cd component of 0.1 is grown by single crystal. Anodic oxidation is used to induce an inversion layer on the HgCdTe bulk, and indium is used to facilitate Ohmic contacts. The magnetoresistance is measured in the van der Pauw configuration, and the magnetic field is applied perpendicularly to the film. All measurements are carried out in an Oxford Instruments He cryogenic system. At 1.5 K and zero gate voltage, the carrier density n is 1.3×1016 m-2. Clear Shubnikov-de Haas (SdH) oscillation in ρxx and quantum Hall plateaus of Rxy are observed in the Hg0.9Cd0.1Te bulk material with an inverted band structure is investigated in magnetotransport experiment. This indicates that our sample is a good transistor. Fast Fourier transformation is used to deduce the zero-field spin-splitting △0 which is about 26.55 meV. By studying the beating patterns in SdH oscillations we find that the effective g-factor is about-11.54. Both the large zero field spin splitting and the negative effective g-factor suggest that Hg0.9Cd0.1Te has really strong spin-orbit coupling. The investigation of SOI in Hg0.9Cd0.1Te can increase our knowledge of Hg-based narrow-gap semiconductors and benefit the field of spintronics.-
Keywords:
- HgCdTe /
- Shubnikov-de Haas oscillation /
- zero-field spin-splitting
[1] Hansen G L, Schmit J L, Casselman T N 1982 J. Appl. Phys. 53 7099
[2] Chu J H 2005 Narrow-band Semiconductor Physics (Beijing: Science Press) p120 (in Chinese) [褚君浩 2005 窄禁带半导体物理学 (北京: 科学出版社) 第120页]
[3] Hu W D, Liang J, Yue F Y, Chen X S, Lu W 2016 J. Infrared Millim. Wave 35 25 (in Chinese) [胡伟达, 梁健, 越方禹, 陈效双, 陆卫 2016 红外与毫米波学报 35 25]
[4] Gawron W, Martyniuk P, Keblowski A, Kolwas K, Stepień D, Piotrowski J, Madejczyk P, Pedzińska M, Rogalski A 2016 Solid. State. Electron. 118 61
[5] Kopytko M, Rogalski A 2016 Prog. Quant. Electron. 47 1
[6] Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757
[7] Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766
[8] Leubner P L, Lunczer L K, Brne C T, Buhmann H T, Molenkamp L R W 2016 Phys. Rev. Lett. 117 086403
[9] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnar S V, Roukes M L, Chtchelkanova A Y, Treger D M 2000 Science 294 1488
[10] Sarma S D 2001 Am. Sci. 89 516
[11] Chen R Y, Chen Z G, Song X Y, Schneeloch J A, Gu G D, Wang F, Wang N L 2015 Phys. Rev. Lett. 115 176404
[12] Kretinin A V, Shtrikman H, Goldhaber-Gordon D, Hanl M, Weichselbaum A, von Delft J, Costi T, Mahalu D 2011 Phys. Rev. B 84 245316
[13] Wei L M, Liu X Z, Yu G L, Gao K H, Wang Q W, Lin T, Guo S L, Wei Y F, Yang J R, He L, Dai N, Chu J H 2013 J. Infrared Millim. Wave 32 141 (in Chinese) [魏来明, 刘新智, 俞国林, 高矿红, 王奇伟, 林铁, 郭少令, 魏彦锋, 杨建荣, 何力, 戴宁, 褚君浩 2013 红外与毫米波学报 32 141]
[14] Gao K H, Wei L M, Yu G L, Yang R, Lin T, Wei Y F, Yang J R, Sun L, Dai N, Chu J H 2012 Acta Phys. Sin. 61 027301 (in Chinese) [高矿红, 魏来明, 俞国林, 杨睿, 林铁, 魏彦锋, 杨建荣, 孙雷, 戴宁, 褚君浩 2012 物理学报 61 027301]
[15] Qiu Z J, Gui Y S, Shu X Z, Dai N, Guo S L, Chu J H 2004 Acta Phys. Sin. 53 1186 (in Chinese) [仇志军, 桂永胜, 疏小舟, 戴宁, 郭少令, 褚君浩 2004 物理学报 53 1186]
[16] Ahearn J S, Davis G D, Byer N E 1982 J. Vac. Sci. Technol. 20 756
[17] van der Pauw L J 1958 Philips. Tech. Rev. 20 220
[18] Buget M, Karavolas V C, Pceters F M, Singleton J, Nicholas R J, Herlach F, Harris J J, van Hove M, Borghs G 1995 Phys. Rev. B 52 12218
[19] Rowe A C H, Nehls J, Stradling R A 2001 Phys. Rev. B 63 201307
[20] Yang W, Chang K 2006 Phys. Rev. B 73 045303
[21] Das B, Datta S, Reifenberger R 1990 Phys. Rev. B 41 8278
[22] Das B, Miller D C, Datta S, Reifenberger R, Hong W P, Bhattacharya P K, Singh J, Jaffe M 1989 Phys. Rev. B 39 1411
[23] Wei L M 2012 Ph. D. Dissertation (Shanghai: Shanghai Institute of Technical Physics, CAS) (in Chinese) [魏来明 2012 博士学位论文 (上海: 中国科学院上海技术物理研究所)]
[24] Coleridge P T, Stoner R, Fletcher R 1989 Phys. Rev. B 39 1120
[25] Zhou Y M 2010 Ph. D. Dissertation (Shanghai: Shanghai Institute of Technical Physics, CAS) (in Chinese) [周远明 2010 博士学位论文 (上海: 中国科学院上海技术物理研究所)]
[26] Yang R, Gao K H, Wei L M, Liu X Z, Hu G J, Yu G L, Lin T, Guo S L, Wei Y F, Yang J R, He L, Dai N, Chu J H, Austing D G 2011 Appl. Phys. Lett. 99 042103
[27] Laurenti J P, Camassel J, Bouhemadou A, Toulouse B, Legros R, Lusson A 1990 J. Appl. Phys. 67 6454
[28] Teran F J, Potemski M, Maude D K, Andrearczyk T, Jaroszynski J, Karczewski G 2002 Appl. Phys. Lett. 88 186803
[29] Yakunin M V, Podgornykh S M, Mikhailov N N, Dvoretsky S A 2010 Physica E 42 948
[30] Zhang X C, Ortner K, Pfeuffer-Jeschke A, Becker C R, Landwehr G 2004 Phys. Rev. B 69 115340
[31] Winkler R 2003 Spin-Orbit Coupling Effects in Two-Dimenional Elec-tron and Hole Systems (Berlin: Springer-Verlag) p133
-
[1] Hansen G L, Schmit J L, Casselman T N 1982 J. Appl. Phys. 53 7099
[2] Chu J H 2005 Narrow-band Semiconductor Physics (Beijing: Science Press) p120 (in Chinese) [褚君浩 2005 窄禁带半导体物理学 (北京: 科学出版社) 第120页]
[3] Hu W D, Liang J, Yue F Y, Chen X S, Lu W 2016 J. Infrared Millim. Wave 35 25 (in Chinese) [胡伟达, 梁健, 越方禹, 陈效双, 陆卫 2016 红外与毫米波学报 35 25]
[4] Gawron W, Martyniuk P, Keblowski A, Kolwas K, Stepień D, Piotrowski J, Madejczyk P, Pedzińska M, Rogalski A 2016 Solid. State. Electron. 118 61
[5] Kopytko M, Rogalski A 2016 Prog. Quant. Electron. 47 1
[6] Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757
[7] Konig M, Wiedmann S, Brune C, Roth A, Buhmann H, Molenkamp L W, Qi X L, Zhang S C 2007 Science 318 766
[8] Leubner P L, Lunczer L K, Brne C T, Buhmann H T, Molenkamp L R W 2016 Phys. Rev. Lett. 117 086403
[9] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnar S V, Roukes M L, Chtchelkanova A Y, Treger D M 2000 Science 294 1488
[10] Sarma S D 2001 Am. Sci. 89 516
[11] Chen R Y, Chen Z G, Song X Y, Schneeloch J A, Gu G D, Wang F, Wang N L 2015 Phys. Rev. Lett. 115 176404
[12] Kretinin A V, Shtrikman H, Goldhaber-Gordon D, Hanl M, Weichselbaum A, von Delft J, Costi T, Mahalu D 2011 Phys. Rev. B 84 245316
[13] Wei L M, Liu X Z, Yu G L, Gao K H, Wang Q W, Lin T, Guo S L, Wei Y F, Yang J R, He L, Dai N, Chu J H 2013 J. Infrared Millim. Wave 32 141 (in Chinese) [魏来明, 刘新智, 俞国林, 高矿红, 王奇伟, 林铁, 郭少令, 魏彦锋, 杨建荣, 何力, 戴宁, 褚君浩 2013 红外与毫米波学报 32 141]
[14] Gao K H, Wei L M, Yu G L, Yang R, Lin T, Wei Y F, Yang J R, Sun L, Dai N, Chu J H 2012 Acta Phys. Sin. 61 027301 (in Chinese) [高矿红, 魏来明, 俞国林, 杨睿, 林铁, 魏彦锋, 杨建荣, 孙雷, 戴宁, 褚君浩 2012 物理学报 61 027301]
[15] Qiu Z J, Gui Y S, Shu X Z, Dai N, Guo S L, Chu J H 2004 Acta Phys. Sin. 53 1186 (in Chinese) [仇志军, 桂永胜, 疏小舟, 戴宁, 郭少令, 褚君浩 2004 物理学报 53 1186]
[16] Ahearn J S, Davis G D, Byer N E 1982 J. Vac. Sci. Technol. 20 756
[17] van der Pauw L J 1958 Philips. Tech. Rev. 20 220
[18] Buget M, Karavolas V C, Pceters F M, Singleton J, Nicholas R J, Herlach F, Harris J J, van Hove M, Borghs G 1995 Phys. Rev. B 52 12218
[19] Rowe A C H, Nehls J, Stradling R A 2001 Phys. Rev. B 63 201307
[20] Yang W, Chang K 2006 Phys. Rev. B 73 045303
[21] Das B, Datta S, Reifenberger R 1990 Phys. Rev. B 41 8278
[22] Das B, Miller D C, Datta S, Reifenberger R, Hong W P, Bhattacharya P K, Singh J, Jaffe M 1989 Phys. Rev. B 39 1411
[23] Wei L M 2012 Ph. D. Dissertation (Shanghai: Shanghai Institute of Technical Physics, CAS) (in Chinese) [魏来明 2012 博士学位论文 (上海: 中国科学院上海技术物理研究所)]
[24] Coleridge P T, Stoner R, Fletcher R 1989 Phys. Rev. B 39 1120
[25] Zhou Y M 2010 Ph. D. Dissertation (Shanghai: Shanghai Institute of Technical Physics, CAS) (in Chinese) [周远明 2010 博士学位论文 (上海: 中国科学院上海技术物理研究所)]
[26] Yang R, Gao K H, Wei L M, Liu X Z, Hu G J, Yu G L, Lin T, Guo S L, Wei Y F, Yang J R, He L, Dai N, Chu J H, Austing D G 2011 Appl. Phys. Lett. 99 042103
[27] Laurenti J P, Camassel J, Bouhemadou A, Toulouse B, Legros R, Lusson A 1990 J. Appl. Phys. 67 6454
[28] Teran F J, Potemski M, Maude D K, Andrearczyk T, Jaroszynski J, Karczewski G 2002 Appl. Phys. Lett. 88 186803
[29] Yakunin M V, Podgornykh S M, Mikhailov N N, Dvoretsky S A 2010 Physica E 42 948
[30] Zhang X C, Ortner K, Pfeuffer-Jeschke A, Becker C R, Landwehr G 2004 Phys. Rev. B 69 115340
[31] Winkler R 2003 Spin-Orbit Coupling Effects in Two-Dimenional Elec-tron and Hole Systems (Berlin: Springer-Verlag) p133
计量
- 文章访问数: 5931
- PDF下载量: 154
- 被引次数: 0