搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MoS2电子屏蔽长度和等离激元

陶泽华 董海明

引用本文:
Citation:

MoS2电子屏蔽长度和等离激元

陶泽华, 董海明

Electron screening lengths and plasma spectrum in single layer MoS2

Tao Ze-Hua, Dong Hai-Ming
PDF
导出引用
  • 通过有效哈密顿量求解了单层MoS2低能量区的电子薛定谔方程,分析得出电子能量本征值以及波函数、电子态密度以及电子间的屏蔽长度.发现电子能带分裂成两支导带和两支价带,并且其能带是准线性的.MoS2的电子间的屏蔽长度非常大,高达108 cm-1.利用费曼图形自洽方法,在无规相近似的基础上研究了单层二硫化钼电子系统的多体相互作用产生的等离激元.研究发现二硫化钼系统由于自旋的劈裂使得导带中存在两支自旋频率不同的等离激元,该元激发的特征与单层石墨烯和传统二维电子气的等离激元对波矢q的依赖关系是一样的,激发频率都正比于q1/2,并且随着电子浓度的增加激发频率增大.由于其准线性的能量色散关系,该系统等离激元的频率与电子浓度的变化关系非常不同于石墨烯和二维电子气的关系.自旋-轨道耦合对单层二硫化钼的能带结构和电子性质有重要的影响.研究发现,通过调控二硫化钼系统的电子浓度可以有效地调节该系统两支等离激元的频率.研究结果对理解二硫化钼的电子结构和性质,以及开发二硫化钼为基础的等离子器件有重要的研究和参考价值.
    We obtain the energy eigenvalues and wave functions of the single layer molybdenum disulfide by using an effective Hamiltonian. Moreover, the density of states and high electron-electron screening length up to 108 cm-1 are also evaluated based on the dielectric function of MoS2. It is shown that the quasi-linear energy bands split off due to the spin-orbit couplings. Plasmons in such a system are investigated theoretically within diagrammatic self-consistent field theory. In the random phase approximation, it is found that two plasma spectra can be produced via intra band transitions induced in conduction bands in monolayer MoS2 because of splitting off. The plasma spectrum frequency increases with increasing wave-vector q and electron density. It is found that the two plasmon modes induced by the spin intra-subband transitions are acoustic-like and depend strongly on wave-vector q. We find that the plasma spectrum is very different from those of graphene and two-dimensional electron gas due to the quasi-linear dispersion and spin-orbit couplings in single layer MoS2. Moreover, the plasmon frequency can be effectively controlled through changing the doping electron density. Our results exhibit some interesting features which can be utilized to realize the plasmonic devices based on the single layer MoS2.
      通信作者: 董海明, hmdong@cumt.edu.cn
    • 基金项目: 中央高校基本科研业务费专项资金(批准号:2015XKMS077)和国家自然科学基金(批准号:11604380)资助的课题.
      Corresponding author: Dong Hai-Ming, hmdong@cumt.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2015XKMS077) and the National Natural Science Foundation of China (Grant No. 11604380).
    [1]

    Wood R W 1902 Phil. Magm. 4 396

    [2]

    Richie R H 1957 Phys. Rev. 106 874

    [3]

    Stem E A, Ferrell R A 1960 Phys. Rev. 120 130

    [4]

    Otto A 1968 Eur. Phys. J. A 216 398

    [5]

    Kretchmann E 1971 Eur. Phys. J. A 241 313

    [6]

    Raether H 1988 Springer Tracts in Modern Physics 111 110

    [7]

    Khlebtsov B N 2008 Phys. Rev. B 77 035440

    [8]

    Kahraman M, Tokman N, Culha M 2008 ChemPhys Chem 9 902

    [9]

    Ruan Z, Qiu M 2006 Phys. Rev. Lett. 96 233901

    [10]

    Smith D R, Padilla W J, Vier D C 2000 Phys. Rev. Lett. 84 4184

    [11]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [12]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [13]

    Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74

    [14]

    Mak K F, Lee C G, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [15]

    Lee H S, Min S W, Chang Y G, Park M K, Nam T, Kim H J, Kim J H, Ryu S M 2012 Nano Lett. 12 3695

    [16]

    Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E G, Liu B L, Feng J 2012 Nat. Commun. 3 887

    [17]

    Li Z W, Li Y, Han T Y 2017 ACS Nano 11 1165

    [18]

    Yang J H, Ma C R, Liu P, Yang G W 2017 ACS Photon. 4 1092

    [19]

    Wang Y C, Ou J Z, Chrimes A F 2015 Nano Lett. 15 883

    [20]

    Kadantsev E S, Hawrylak P 2012 Solid State Commun. 152 909

    [21]

    Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802

    [22]

    Li Z, Carbotte J P 2012 Phys. Rev. B 86 205425

    [23]

    Mahan G D 2000 Many-Particle Physics (New York: World Book Publishing House)

    [24]

    Dong H M, Xu W, Zeng Z, Lu T C, Peeters F M 2008 Phys. Rev. B 77 235402

    [25]

    Dong H M, Li L L, Wang W Y 2012 Physica E 44 1889

    [26]

    Mackens U, Heitmann D, Prager L, Kotthaus J P, Beinvogl W 1984 Phys. Rev. Lett. 53 1485

  • [1]

    Wood R W 1902 Phil. Magm. 4 396

    [2]

    Richie R H 1957 Phys. Rev. 106 874

    [3]

    Stem E A, Ferrell R A 1960 Phys. Rev. 120 130

    [4]

    Otto A 1968 Eur. Phys. J. A 216 398

    [5]

    Kretchmann E 1971 Eur. Phys. J. A 241 313

    [6]

    Raether H 1988 Springer Tracts in Modern Physics 111 110

    [7]

    Khlebtsov B N 2008 Phys. Rev. B 77 035440

    [8]

    Kahraman M, Tokman N, Culha M 2008 ChemPhys Chem 9 902

    [9]

    Ruan Z, Qiu M 2006 Phys. Rev. Lett. 96 233901

    [10]

    Smith D R, Padilla W J, Vier D C 2000 Phys. Rev. Lett. 84 4184

    [11]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [12]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [13]

    Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74

    [14]

    Mak K F, Lee C G, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [15]

    Lee H S, Min S W, Chang Y G, Park M K, Nam T, Kim H J, Kim J H, Ryu S M 2012 Nano Lett. 12 3695

    [16]

    Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E G, Liu B L, Feng J 2012 Nat. Commun. 3 887

    [17]

    Li Z W, Li Y, Han T Y 2017 ACS Nano 11 1165

    [18]

    Yang J H, Ma C R, Liu P, Yang G W 2017 ACS Photon. 4 1092

    [19]

    Wang Y C, Ou J Z, Chrimes A F 2015 Nano Lett. 15 883

    [20]

    Kadantsev E S, Hawrylak P 2012 Solid State Commun. 152 909

    [21]

    Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802

    [22]

    Li Z, Carbotte J P 2012 Phys. Rev. B 86 205425

    [23]

    Mahan G D 2000 Many-Particle Physics (New York: World Book Publishing House)

    [24]

    Dong H M, Xu W, Zeng Z, Lu T C, Peeters F M 2008 Phys. Rev. B 77 235402

    [25]

    Dong H M, Li L L, Wang W Y 2012 Physica E 44 1889

    [26]

    Mackens U, Heitmann D, Prager L, Kotthaus J P, Beinvogl W 1984 Phys. Rev. Lett. 53 1485

  • [1] 杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全. 基于石墨烯等离激元太赫兹结构的传感及慢光应用. 物理学报, 2024, 73(15): 157802. doi: 10.7498/aps.73.20240668
    [2] 段谕, 戴小康, 吴晨晨, 杨晓霞. 可调谐的声学型石墨烯等离激元增强纳米红外光谱. 物理学报, 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [3] 侯磊, 关舒阳, 尹俊, 张语军, 肖宜明, 徐文, 丁岚. 谐振腔-单层二硫化钼系统中的高阶腔耦合等离极化激元. 物理学报, 2024, 73(22): 227102. doi: 10.7498/aps.73.20241106
    [4] 马赟娥, 乔鑫, 高瑞, 梁俊成, 张爱霞, 薛具奎. 可调自旋-轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学. 物理学报, 2022, 71(21): 210302. doi: 10.7498/aps.71.20220697
    [5] 孙海明. Bi2Te3(111)和Al2O3(0001)衬底对Bi(111)双原子层的电子结构及拓扑性质的影响. 物理学报, 2022, 71(13): 137101. doi: 10.7498/aps.71.20220060
    [6] 周永香, 薛迅. 自旋-轨道耦合系统的电子涡旋. 物理学报, 2022, 71(21): 210301. doi: 10.7498/aps.71.20220751
    [7] 姜悦, 王淑英, 王治业, 周华, 卡马勒, 赵颂, 沈向前. 渔网超结构的等离激元模式及其对薄膜电池的陷光调控. 物理学报, 2021, 70(21): 218801. doi: 10.7498/aps.70.20210693
    [8] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [9] 王冲, 邢巧霞, 谢元钢, 晏湖根. 拓扑材料等离激元谱学研究. 物理学报, 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
    [10] 徐飞翔, 李晓光, 张振宇. 量子等离激元光子学在若干方向的最新进展. 物理学报, 2019, 68(14): 147103. doi: 10.7498/aps.68.20190331
    [11] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [12] 吴仍来, 肖世发, 薛红杰, 全军. 二维方形量子点体系等离激元的量子化. 物理学报, 2017, 66(22): 227301. doi: 10.7498/aps.66.227301
    [13] 尹海峰, 毛力. 一维原子链局域等离激元的非线性激发. 物理学报, 2016, 65(8): 087301. doi: 10.7498/aps.65.087301
    [14] 张超杰, 周婷, 杜鑫鹏, 王同标, 刘念华. 利用石墨烯等离激元与表面声子耦合增强量子摩擦. 物理学报, 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [15] 尹海峰, 张红, 岳莉. C60富勒烯二聚物的等离激元激发. 物理学报, 2014, 63(12): 127303. doi: 10.7498/aps.63.127303
    [16] 刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼. 单层MoS2分子掺杂的第一性原理研究. 物理学报, 2014, 63(11): 117101. doi: 10.7498/aps.63.117101
    [17] 谭姿, 王鹿霞. 异质结线性吸收谱中的等离激元效应. 物理学报, 2013, 62(23): 237303. doi: 10.7498/aps.62.237303
    [18] 辛旺, 吴仍来, 薛红杰, 余亚斌. 介观尺寸原子链中的等离激元:紧束缚模型. 物理学报, 2013, 62(17): 177301. doi: 10.7498/aps.62.177301
    [19] 赖占平. 二维辉钼材料及器件研究进展. 物理学报, 2013, 62(5): 056801. doi: 10.7498/aps.62.056801
    [20] 刘新浩, 林景波, 刘艳辉, 金迎九. Full-Heusler合金X2YGa(X=Co,Fe,Ni;Y=V,Cr,Mn)的电子结构、磁性及半金属特性的第一性原理研究. 物理学报, 2011, 60(10): 107104. doi: 10.7498/aps.60.107104
计量
  • 文章访问数:  6122
  • PDF下载量:  216
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-08
  • 修回日期:  2017-09-07
  • 刊出日期:  2017-12-05

/

返回文章
返回