搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渔网超结构的等离激元模式及其对薄膜电池的陷光调控

姜悦 王淑英 王治业 周华 卡马勒 赵颂 沈向前

引用本文:
Citation:

渔网超结构的等离激元模式及其对薄膜电池的陷光调控

姜悦, 王淑英, 王治业, 周华, 卡马勒, 赵颂, 沈向前

Plasmon modes of fishnet metastructure and its trapping and control of light for thin film solar cells

Jiang Yue, Wang Shu-Ying, Wang Zhi-Ye, Zhou Hua, Ka Ma-Le, Zhao Song, Shen Xiang-Qian
PDF
HTML
导出引用
  • 渔网超结构具有平面、近光学无损、特定光场中可以激发表面等离激元等特点, 在增强光子器件的响应效率方面极具潜力. 本文基于时域有限差分方法和严格耦合波分析, 系统研究了渔网超结构的等离共振模式及其对晶硅薄膜电池的光波调控性能. 研究结果表明, 渔网结构对光波的吸收、散射和消光特性强烈依赖金属层的厚度、线宽、周期等特征参数. 通过优化设计, 使共振峰红移至770 nm, 相对消光截面达到1.69, 同时散射光在消光光谱中占据主导地位. 以此构筑的响应层厚度为2 μm的晶硅薄膜电池在波长大于800 mm的波段吸收效率显著增强, 电池最终的能量转换效率从6.67%提高到了8.25%. 光强分布显示, 共振导致的背向散射增强和光子传播方向的大角度偏转是实现电池响应增益的重要原因.
    The fishnet metastructure has plane, near-optical lossless characteristic, and can excite surface plasmons in a specific light field. It has great potential in enhancing the response efficiency of photonic devices. Based on the finite difference time domain method and rigorous coupled wave analysis, in this paper, we systematically study the plasmon resonance mode of the fishnet metastructure and its light wave regulation performance on the crystalline silicon thin film solar cells. The research results show that the characteristics of absorption, scattering and extinction for the fishnet structure strongly depend on the thickness, line width, period and other characteristic parameters of the metal layer. Through optimizing the design, the resonant peak is red-shifted to 770 nm, and the relative extinction cross-section reaches 1.69, and the scattered light occupies a dominant position in the extinction spectrum. The crystalline silicon thin film solar cell with a response layer thickness of 2 μm constructed in this way has a significantly enhanced absorption efficiency in the wavelength band greater than 800 nm, and the final energy conversion efficiency of the device increases from 6.67% to 8.25%. The light intensity distribution shows that the enhanced backscattering caused by resonance and the large-angle deflection of the photon propagation direction are important reasons for the response gain of the solar cell.
      通信作者: 沈向前, sxqlyq@xju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11804050)、新疆自治区高校科研计划(自然科学项目)(批准号: XJEDU2017S004) 和新疆自治区自然科学基金(批准号: 2018D01C048)资助的课题.
      Corresponding author: Shen Xiang-Qian, sxqlyq@xju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11804050), the Higher Education Research Program of Xinjiang Uygur Autonomous Region, China (Grant No. XJEDU2017S004), and the Natural Science Foundation of Xinjiang Uygur Autonomous Region, China (Grant No. 2018D01C048).
    [1]

    Sobhani F, Heidarzadeh H, Bahador H 2020 Chin. Phys. B 29 068401

    [2]

    Deceglie M G, Ferry V E, Alivisatos A P 2012 Nano Lett. 12 2894Google Scholar

    [3]

    Shen X Q, Wang Q K, Wangyang P H 2016 IEEE Photonics Technol. Lett. 28 1477Google Scholar

    [4]

    Pylypova O, Havryliuk O, Antonin S, Evtukh A, Skryshevsky V, Ivanov I, Shmahlii S 2021 Appl. Nanosci. DOI: 10.1007/s13204-021-01699-6

    [5]

    丁东, 杨仕娥, 陈永生, 郜小勇, 谷锦华, 卢景霄 2015 物理学报 64 248801Google Scholar

    Ding D, Yang S E, Chen Y S, Gao X Y, Gu J H, Lu J X 2015 Acta Phys. Sin. 64 248801Google Scholar

    [6]

    宫步青, 陈小雨, 王伟鹏, 王治业, 周华, 沈向前 2020 物理学报 69 188801Google Scholar

    Gong B Q, Chen X Y, Wang W P, Wang Z Y, Zhou H, Shen X Q 2020 Acta Phys. Sin. 69 188801Google Scholar

    [7]

    彭新村, 王智栋, 邓文娟, 朱志甫, 邹继军, 张益军 2020 物理学报 69 068501Google Scholar

    Peng X S, Wang Z D, Deng W J, Zhu Z F, Zhou J J, Zhang Y J 2020 Acta Phys. Sin. 69 068501Google Scholar

    [8]

    刘亮, 韩德专, 石磊 2020 物理学报 69 157301Google Scholar

    Liu L, Han D Z, Shi L 2020 Acta Phys. Sin. 69 157301Google Scholar

    [9]

    Saive R, Atwater H A 2018 Opt. Express 26 A275Google Scholar

    [10]

    Jang Y H, Jang Y J, Kim S, Quan L N, Chung K, Kim D H 2016 Chem. Rev. 116 14982Google Scholar

    [11]

    Lee J Y, Peumans P 2010 Opt. Express 18 10078Google Scholar

    [12]

    Spinelli P, Polman A 2012 Opt. Express 20 A641Google Scholar

    [13]

    Mandal P, Sharma S 2016 Renewable Sustainable Energy Rev. 65 537Google Scholar

    [14]

    Ueno K, Oshikiri T, Sun Q, Shi X, Misawa H 2018 Chem. Rev. 118 2955Google Scholar

    [15]

    吴丰, 郭志伟, 吴家驹, 江海涛, 杜桂强 2020 物理学报 69 154205Google Scholar

    Wu F, Guo Z W, Wu, J J, Jiang H T, Du G Q 2020 Acta Phys. Sin. 69 154205Google Scholar

    [16]

    Dai Z G, Hu G W, Ou Q D, Zhang L, Xia F N, Garcia V F J, Qiu C W, Bao Q L 2020 Chem. Rev. 120 592

    [17]

    吴晗, 吴竞宇, 陈卓 2020 物理学报 69 010201Google Scholar

    Wu H, Wu J Y, Chen Z 2020 Acta Phys. Sin. 69 010201Google Scholar

    [18]

    Yang J, Sauvan C, Liu H T, Lalann P 2011 Phys. Rev. Lett. 107 043903Google Scholar

    [19]

    Hamm J M, Wuestner S, Tsakmakidis K L, Hess O 2011 Phys. Rev. Lett. 107 167405Google Scholar

    [20]

    Ji L, Varadan V V 2011 J. Appl. Phys. 110 043114Google Scholar

    [21]

    Seal S, Budhraja V, Ji L, Varadan V V 2015 Int. J. Photoenergy 46 910619Google Scholar

    [22]

    Zhou H, Xie J, Mai M F, Wang J, Shen X Q, Wang S Y, Zhang L H, Kisslinger K, Wang H Q, Zhang J X, Ke S M, Zeng X R 2018 ACS Appl. Mater. Interfaces 10 16160Google Scholar

    [23]

    Feng N N, Jurgen M, Zeng L R, Liu J F, Hong C Y, Lionel C K, Duan X M, 2007 IEEE Trans. Electron Devices 54 1926Google Scholar

  • 图 1  渔网超结构及相应陷光电池的仿真模型 (a)渔网结构电池示意图; (b)渔网结构及相应参数示意图; (c)模拟周期

    Fig. 1.  Schematic diagram of fishnet metastructure and the simulation model of solar cell with fishnet metastructure: (a) Schematic diagram of solar cell with fishnet metastructure; (b) the detail and design parameters of the fishnet metastructure; (c) top view of the schematic of the unit cell for the simulation.

    图 2  渔网超结构的吸收(a1), (b1), (c1), 散射(a2), (b2), (c2)及消光(a3), (b3), (c3)光谱随特征参数的变化关系 (a1)−(a3) 厚度; (b1)−(b3) 周期; (c1)−(c3) 宽度

    Fig. 2.  Dependence of absorption (a1), (b1), (c1), scattering (a2), (b2), (c2) and extinction (a3), (b3), (c3) spectra of fishnet metastructure on its characteristic parameters: (a1)−(a3) Thickness; (b1)−(b3) period; (c1)−(c3) width.

    图 3  渔网超结构薄晶硅电池的光电响应特性 (a)优化后渔网超结构的消光、散射及吸收光谱; (b)不同结构薄晶硅电池及渔网超结构的反射和吸收光谱; (c)不同结构薄晶硅电池的伏安特性曲线; (d)渔网超结构薄晶硅电池的剖面光强分布

    Fig. 3.  Photoelectric response characteristics of thin film silicon solar cell with fishnet metastructure: (a) Extinction, scattering and absorption spectra of fishnet metastructure with optimal parameter; (b) the reflection and absorption spectrum of silicon thin film solar cells and fishnet metastructure with different structures; (c) the current voltage characteristic curves of silicon thin film solar cells with different structures; (d) light intensity distribution of vertical section of silicon thin film solar cell with fishnet metastructure.

    图 4  渔网超结构的截面光强分布 (a) X方向偏振光强; (b) Y方向偏振光强

    Fig. 4.  Light intensity distribution of cross-section of fishnet metastructure: (a) X polarized direction; (b) Y polarized direction.

  • [1]

    Sobhani F, Heidarzadeh H, Bahador H 2020 Chin. Phys. B 29 068401

    [2]

    Deceglie M G, Ferry V E, Alivisatos A P 2012 Nano Lett. 12 2894Google Scholar

    [3]

    Shen X Q, Wang Q K, Wangyang P H 2016 IEEE Photonics Technol. Lett. 28 1477Google Scholar

    [4]

    Pylypova O, Havryliuk O, Antonin S, Evtukh A, Skryshevsky V, Ivanov I, Shmahlii S 2021 Appl. Nanosci. DOI: 10.1007/s13204-021-01699-6

    [5]

    丁东, 杨仕娥, 陈永生, 郜小勇, 谷锦华, 卢景霄 2015 物理学报 64 248801Google Scholar

    Ding D, Yang S E, Chen Y S, Gao X Y, Gu J H, Lu J X 2015 Acta Phys. Sin. 64 248801Google Scholar

    [6]

    宫步青, 陈小雨, 王伟鹏, 王治业, 周华, 沈向前 2020 物理学报 69 188801Google Scholar

    Gong B Q, Chen X Y, Wang W P, Wang Z Y, Zhou H, Shen X Q 2020 Acta Phys. Sin. 69 188801Google Scholar

    [7]

    彭新村, 王智栋, 邓文娟, 朱志甫, 邹继军, 张益军 2020 物理学报 69 068501Google Scholar

    Peng X S, Wang Z D, Deng W J, Zhu Z F, Zhou J J, Zhang Y J 2020 Acta Phys. Sin. 69 068501Google Scholar

    [8]

    刘亮, 韩德专, 石磊 2020 物理学报 69 157301Google Scholar

    Liu L, Han D Z, Shi L 2020 Acta Phys. Sin. 69 157301Google Scholar

    [9]

    Saive R, Atwater H A 2018 Opt. Express 26 A275Google Scholar

    [10]

    Jang Y H, Jang Y J, Kim S, Quan L N, Chung K, Kim D H 2016 Chem. Rev. 116 14982Google Scholar

    [11]

    Lee J Y, Peumans P 2010 Opt. Express 18 10078Google Scholar

    [12]

    Spinelli P, Polman A 2012 Opt. Express 20 A641Google Scholar

    [13]

    Mandal P, Sharma S 2016 Renewable Sustainable Energy Rev. 65 537Google Scholar

    [14]

    Ueno K, Oshikiri T, Sun Q, Shi X, Misawa H 2018 Chem. Rev. 118 2955Google Scholar

    [15]

    吴丰, 郭志伟, 吴家驹, 江海涛, 杜桂强 2020 物理学报 69 154205Google Scholar

    Wu F, Guo Z W, Wu, J J, Jiang H T, Du G Q 2020 Acta Phys. Sin. 69 154205Google Scholar

    [16]

    Dai Z G, Hu G W, Ou Q D, Zhang L, Xia F N, Garcia V F J, Qiu C W, Bao Q L 2020 Chem. Rev. 120 592

    [17]

    吴晗, 吴竞宇, 陈卓 2020 物理学报 69 010201Google Scholar

    Wu H, Wu J Y, Chen Z 2020 Acta Phys. Sin. 69 010201Google Scholar

    [18]

    Yang J, Sauvan C, Liu H T, Lalann P 2011 Phys. Rev. Lett. 107 043903Google Scholar

    [19]

    Hamm J M, Wuestner S, Tsakmakidis K L, Hess O 2011 Phys. Rev. Lett. 107 167405Google Scholar

    [20]

    Ji L, Varadan V V 2011 J. Appl. Phys. 110 043114Google Scholar

    [21]

    Seal S, Budhraja V, Ji L, Varadan V V 2015 Int. J. Photoenergy 46 910619Google Scholar

    [22]

    Zhou H, Xie J, Mai M F, Wang J, Shen X Q, Wang S Y, Zhang L H, Kisslinger K, Wang H Q, Zhang J X, Ke S M, Zeng X R 2018 ACS Appl. Mater. Interfaces 10 16160Google Scholar

    [23]

    Feng N N, Jurgen M, Zeng L R, Liu J F, Hong C Y, Lionel C K, Duan X M, 2007 IEEE Trans. Electron Devices 54 1926Google Scholar

  • [1] 段谕, 戴小康, 吴晨晨, 杨晓霞. 可调谐的声学型石墨烯等离激元增强纳米红外光谱. 物理学报, 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [2] 杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全. 基于石墨烯等离激元太赫兹结构的传感及慢光应用. 物理学报, 2024, 73(15): 157802. doi: 10.7498/aps.73.20240668
    [3] 葛浩楠, 谢润章, 郭家祥, 李庆, 余羿叶, 何家乐, 王芳, 王鹏, 胡伟达. 人工微纳结构增强长波及甚长波红外探测器. 物理学报, 2022, 71(11): 110703. doi: 10.7498/aps.71.20220380
    [4] 赵星, 郝祺, 倪振华, 邱腾. 单分子表面增强拉曼散射的光谱特性及分析方法. 物理学报, 2021, 70(13): 137401. doi: 10.7498/aps.70.20201447
    [5] 高伟, 王博扬, 韩庆艳, 韩珊珊, 程小同, 张晨雪, 孙泽煜, 刘琳, 严学文, 王勇凯, 董军. 构建垂直金纳米棒阵列增强NaYF4:Yb3+/Er3+纳米晶体的上转换发光. 物理学报, 2020, 69(18): 184213. doi: 10.7498/aps.69.20200575
    [6] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [7] 王冲, 邢巧霞, 谢元钢, 晏湖根. 拓扑材料等离激元谱学研究. 物理学报, 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
    [8] 徐飞翔, 李晓光, 张振宇. 量子等离激元光子学在若干方向的最新进展. 物理学报, 2019, 68(14): 147103. doi: 10.7498/aps.68.20190331
    [9] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [10] 潘子宇, 胡晗, 杨洁. 基于休眠机理的三维小基站蜂窝网络能效优化. 物理学报, 2017, 66(23): 230101. doi: 10.7498/aps.66.230101
    [11] 陶泽华, 董海明. MoS2电子屏蔽长度和等离激元. 物理学报, 2017, 66(24): 247701. doi: 10.7498/aps.66.247701
    [12] 吴仍来, 肖世发, 薛红杰, 全军. 二维方形量子点体系等离激元的量子化. 物理学报, 2017, 66(22): 227301. doi: 10.7498/aps.66.227301
    [13] 张超杰, 周婷, 杜鑫鹏, 王同标, 刘念华. 利用石墨烯等离激元与表面声子耦合增强量子摩擦. 物理学报, 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [14] 尹海峰, 毛力. 一维原子链局域等离激元的非线性激发. 物理学报, 2016, 65(8): 087301. doi: 10.7498/aps.65.087301
    [15] 王倩, 赵江山, 罗时文, 左都罗, 周翊. ArF准分子激光系统的能量效率特性. 物理学报, 2016, 65(21): 214205. doi: 10.7498/aps.65.214205
    [16] 曾婷婷, 李鹏程, 周效信. 两束同色激光场和中红外场驱动氦原子在等离激元中产生的单个阿秒脉冲. 物理学报, 2014, 63(20): 203201. doi: 10.7498/aps.63.203201
    [17] 尹海峰, 张红, 岳莉. C60富勒烯二聚物的等离激元激发. 物理学报, 2014, 63(12): 127303. doi: 10.7498/aps.63.127303
    [18] 谭姿, 王鹿霞. 异质结线性吸收谱中的等离激元效应. 物理学报, 2013, 62(23): 237303. doi: 10.7498/aps.62.237303
    [19] 辛旺, 吴仍来, 薛红杰, 余亚斌. 介观尺寸原子链中的等离激元:紧束缚模型. 物理学报, 2013, 62(17): 177301. doi: 10.7498/aps.62.177301
    [20] 王林, 罗振兵, 夏智勋, 刘冰. 等离子体合成射流能量效率及工作特性研究. 物理学报, 2013, 62(12): 125207. doi: 10.7498/aps.62.125207
计量
  • 文章访问数:  4217
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-12
  • 修回日期:  2021-06-12
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-05

/

返回文章
返回