搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石墨烯等离激元太赫兹结构的传感及慢光应用

杨肖杰 许辉 徐海烨 李铭 于鸿飞 成昱轩 侯海良 陈智全

引用本文:
Citation:

基于石墨烯等离激元太赫兹结构的传感及慢光应用

杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全

Sensing and slow light applications of graphene plasmonic terahertz structure

Yang Xiao-Jie, Xu Hui, Xu Hai-Ye, Li Ming, Yu Hong-Fei, Cheng Yu-Xuan, Hou Hai-Liang, Chen Zhi-Quan
PDF
HTML
导出引用
  • 介绍了一种新型石墨烯太赫兹结构, 其周期单元包括一条长石墨烯单层带和两条短石墨烯单层带. 通过短石墨烯带所激发的明模式与长石墨烯带所激发的暗模式的相消干涉, 该结构产生了等离激元诱导透明效应. 利用耦合模理论推导了此效应的产生机理, 所得结果与时域有限差分方法的仿真值高度一致. 该结构除了具有外部动态可调性之外, 还具有十分出色的传感性能, 最大灵敏度和品质因子分别可达1.457 THz/RIU和30.5652. 此外, 提高结构中石墨烯的费米能级和载流子迁移率有助于增强慢光效应, 其中载流子迁移率的增强效果尤为明显. 当载流子迁移率从0.75 m2/(V⋅s)提高到2.0 m2/(V⋅s)时, 结构的群折射率从456增至1010. 本研究可为太赫兹波段传感器件和慢光器件的发展提供理论和概念框架.
    In this work, Ansys FDTD is used to design and simulate a terahertz metamaterial structure based on periodic continuous pattern graphene monolayer, and the high-quality PIT phenomena are obtained by continuously adjusting structural parameters. To validate the designed structure, the simulated transmission curve (reflection curve) obtained is compared with the theoretical transmission curve (reflection curve) derived from coupled-mode theory. It is observed that these two results exhibit a remarkably high degree of overlap. The resonant frequency and Fermi energy reveals a perfect linear correlation between them with the resonant frequency increasing proportionally with Fermi energy increasing. Dynamic tuning of PIT can be realized by adjusting the Fermi energy of graphene. For a more in-depth study of its sensing characteristics, the structure is placed in different environments. As the refractive index of the detection medium increases, the resonant frequency gradually decreases, demonstrating a redshift phenomenon. By manipulating the resonant frequency of the PIT sensor, the selective detection of specific target can berealized. After analyzing the sensitivity and FOM values of the structure, it is found that the maximum sensitivity is 1.457 THz/RIU. At a resonant frequency of 6.8174 THz, FOM reaches 30.5652. In summary, the sensor structure designed in this work has dual frequency sensing characteristics and can be used for dual frequency detection. Moreover, compared with other sensor structures, it demonstrates superior sensing performance. Additionally, in studying the slow light effect of the structure, it is found that as the Fermi energy increases, the group index and phase shift at the transparency window continue to increase. At the Fermi energy of 1.2 eV, the group index reaches a high value of 584. This is because in the PIT phenomenon, transparent peaks are formed due to multimodal coupling. This coupling will significantly improve the dispersion characteristics near the transparent peak, resulting in a large group index near the transparent peak. Furthermore, with the increase of carrier mobility, the group index and phase shift of the structure also gradually increase. At a carrier mobility of 0.75 m²/(V·s), the group refractive index is 456, and reaches 1010 at 2.0 m²/(V·s). In this study, the slow-light performance of graphene structure can be optimized through jointly adjusting the Fermi energy and carrier mobility. This research provides theoretical support and methods for designing advanced graphene-based sensors and devices for slow-light applications.
      通信作者: 许辉, 1067980351@qq.com ; 陈智全, zqchen0106@qq.com
    • 基金项目: 湘江实验室重点项目(批准号: 23XJ02001)、湖南省自然科学基金(批准号: 2023JJ40218, 2022JJ30201)、长沙市自然科学基金(批准号: kq2202298)和湖南省教育厅科研基金(批准号: 21B0574, 21B0556)资助的课题.
      Corresponding author: Xu Hui, 1067980351@qq.com ; Chen Zhi-Quan, zqchen0106@qq.com
    • Funds: Project supported by the Key Project of Xiangjiang Laboratory, China (Grant No. 23XJ02001), the Natural Science Foundation of Hunan Province, China (Grant No. 2023JJ40218, 2022JJ30201), the Changsha Municipal Natural Science Foundation, China (Grant No. kq2202298), and the Scientific Research Foundation of Hunan Provincial Education Department, China (Grant No. 21B0574, 21B0556).
    [1]

    Gosciniak J, Rasras M, Khurgin J B 2020 Acs Photonics 7 488Google Scholar

    [2]

    He Z H, Li L Q, Ma H Q, Pu L H, Xu H, Yi Z, Cao X L, Cui W 2021 Results Phys. 21 103795Google Scholar

    [3]

    Moon K, Park S 2019 Phys. Rev. Appl. 11 034074Google Scholar

    [4]

    Yang H, Ou K, Wan H Y, Hu Y Q, Wei Z Y, Jia H H, Cheng X B, Liu N, Duan H G 2023 Mater. Today 67 424Google Scholar

    [5]

    Yao B C, Liu Y, Huang S W, Choi C, Xie Z D, Flor Flores J, Wu Y, Yu M B, Kwong D L, Huang Y, Rao Y J, Duan X F, Wong C W 2018 Nat. Photonics 12 22Google Scholar

    [6]

    Yang X J, Xu H, Xu H Y, Li M, Yu H F, Cheng Y X, Chen Z Q 2024 Phys. Scr. 99 055518Google Scholar

    [7]

    Wang Y X, Chang B S, Xue J J, Cao X L, Xu H, He H, Cui W, He Z H 2022 Diam. Relat. Mater. 123 108881Google Scholar

    [8]

    Li M, Xu H, Yang X J, Xu H Y, Liu P C, He L H, Nie G Z, Dong Y L, Chen Z Q 2023 Results Phys. 52 106798Google Scholar

    [9]

    Sarker D, Nakti P P, Tahmid M I, Mamun M A Z, Zubair A 2021 Opt. Express 29 42713Google Scholar

    [10]

    Xu H, Li M, Chen Z Q, He L H, Dong Y, Li X L, Wang X J, Nie G Z, He Z H, Zeng B 2023 Phys. Scr. 98 045511Google Scholar

    [11]

    Yan H G, Low T, Zhu W J, Wu Y Q, Freitag M, Li X S, Guinea F, Avouris P, Xia F N 2013 Nat. Photonics 7 394Google Scholar

    [12]

    Kim T T, Kim H D, Zhao R K, Oh S S, Ha T, Chung D S, Lee Y H, Min B, Zhang S 2018 Acs Photonics 5 1800Google Scholar

    [13]

    Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H 2009 Nat. Mater. 8 758Google Scholar

    [14]

    宋瀚法, 胡小永 2019 北京大学学报(自然科学版) 55 871Google Scholar

    Song H F, Hu X Y 2019 Acta Scientiarum Naturalium Universitatis Pekinensis 55 871Google Scholar

    [15]

    Xia S X, Zhai X, Huang Y, Liu J Q, Wang L L, Wen S C 2017 J. Lightwave Technol. 35 4553Google Scholar

    [16]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar

    [17]

    He X Y, Liu F, Lin F T, Shi W Z 2021 Opt. Lett. 46 472Google Scholar

    [18]

    He Z H, Li Z X, Li C J, Xue W W, Cui W 2020 Opt. Express 28 17595Google Scholar

    [19]

    沈常宇, 隋文博, 周俊, 韩伟, 董洁, 方彬, 王兆坤 2023 激光与光电子学进展 60 1106004Google Scholar

    Sheng C N, Sui W B, Zhou J, Han W, Dong J, Fang B, Wang Z K 2023 Laser Optoelectron. Prog. 60 1106004Google Scholar

    [20]

    鲁志琪, 董锐敏, 刘昌宁 2023 中国激光 50 0113020Google Scholar

    Lu Z Q, Dong R M, Liu C N 2023 Chin. J. Lasers 50 0113020Google Scholar

    [21]

    向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健 吴培亨 2023 物理学报 72 128701Google Scholar

    Xiang X C, Ma H B, Wang L, Tian D, Zhang W, Zhang C H, Wu J B, Fan K B, Jin B B, Chen J, Wu P H 2023 Acta Phys. Sin. 72 128701Google Scholar

    [22]

    Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Luo X, Xiong C X, Liu C, Zhang B H, Zhou F Q 2019 Opt. Express 27 13884Google Scholar

    [23]

    许辉, 李铭, 杨肖杰, 徐海烨 陈智全 2024 中国科学: 物理学 力学 天文学 54 234211Google Scholar

    Xu H, Li M, Yang X J, Xu H Y, Chen Z Q 2024 Sci. China Phys. Mech. Astron. 54 234211Google Scholar

    [24]

    Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69Google Scholar

    [25]

    Zhao X Q, Huang R X, Du X, Zhang Z R, Li G Y 2024 Nano Lett. 24 1238Google Scholar

    [26]

    Yang H, He P, Ou K, Hu Y Q, Jiang Y T, Ou X N, Jia H H, Xie Z W, Yuan X C, Duan H G 2023 Light Sci. Appl. 12 79Google Scholar

    [27]

    Ji C, Liu Z M, Zhou F Q, Luo X, Yang G X, Xie Y D, Yang R H 2023 J. Phys. D Appl. Phys. 56 405102Google Scholar

    [28]

    Zhuo S S, Liu Z M, Zhou F Q, Qin Y P, Luo X, Ji C, Yang G X, Yang R H, Xie Y 2022 Opt. Express 30 47647Google Scholar

    [29]

    Jiang L Y, Yuan C, Li Z Y, Su J, Yi Z, Yao W T, Wu P H, Liu Z M, Cheng S B, Pan M 2021 Diam. Relat. Mater. 111 108227Google Scholar

    [30]

    Gao E D, Jin R, Fu Z C, Cao G T, Deng Y, Chen J, Li G H, Chen X S, Li H J 2023 Photonics Res. 11 456Google Scholar

    [31]

    Xu H, Chen Z Q, He Z H, Nie G Z, Li D Q 2020 New J. Phys. 22 123009Google Scholar

    [32]

    Yang H, Jiang Y T, Hu Y Q, Ou K, Duan H G 2022 Laser Photonics Rev. 16 2200351Google Scholar

    [33]

    Zhang X, Liu Z M, Zhang Z B, Gao E D, Luo X, Zhou F Q, Li H J, Yi Z 2020 Opt. Express 28 36771Google Scholar

    [34]

    Tang P R, Li J, Du L H, Liu Q, Peng Q X, Zhao J H, Zhu B, Li Z R, Zhu L G 2018 Opt. Express 26 30655Google Scholar

    [35]

    Xu H, Wang X J, Chen Z Q, Li X L, He L H, Dong Y L, Nie G Z, He Z H 2021 New J. Phys. 23 123025Google Scholar

    [36]

    Ren Y, Cui W, Yang Z M, Xiong B W, Zhang L, Li Z X, Lu S J, Huo Y S, Wu X X, Li G, Bai L, He Z H 2024 Opt. Mater. 149 115073Google Scholar

    [37]

    Yang X J, Xu H, Xu H Y, Li M, He L H, Nie G Z, Chen Z Q 2024 J. Phys. D Appl. Phys. 57 115101Google Scholar

    [38]

    Cui W, Wang Y X, Ma H Q, Xu H, Yi Z, Li L Q, Cao X L, Ren X C, He Z H 2021 Phys. Status Solidi 15 2100036Google Scholar

    [39]

    Xu H, He Z H, Chen Z Q, Nie G Z, Li H 2020 Opt. Express 28 25767Google Scholar

    [40]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [41]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photonics 6 749Google Scholar

    [42]

    Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Zhang X, Luo X, Zhou F Q 2019 Appl. Phys. Express 12 126001Google Scholar

    [43]

    Efetov D K, Kim P 2010 Phys. Rev. Lett. 105 256805Google Scholar

    [44]

    Balci S, Balci O, Kakenov N, Atar F B, Kocabas C 2016 Opt. Lett. 41 1241Google Scholar

    [45]

    Li M, Xu H, Xu H Y, Yang X J, Dong Y L, He L H, Nie G Z, Wang X J, Chen Z Q 2024 Opt. Commun. 554 130175Google Scholar

    [46]

    Wang Y X, Cui W, Ma H Q, Xu H, Yi Z, Cao X L, Ren X C, He Z H 2021 Results Phys. 23 104002Google Scholar

    [47]

    Peng B, Ozdemir Ş K, Chen W J, Nori F, Yang L 2014 Nat. Commun. 5 5082Google Scholar

    [48]

    Li Z X, Yang N X, Liu Y T, Li L, Zhong Z Y, Song C, He Z H, Cui W, Xue W W, Li L Q, Li C J, Xu H, Chen Z Q, He H 2022 Diam. Relat. Mater. 126 109071Google Scholar

    [49]

    Jie X, Zhao T, Ran W Y, Feng Z H 2023 Phys. Chem. Chem. Phys. 524 128775Google Scholar

    [50]

    Askari M, Bahadoran M 2022 Optik 253 168589Google Scholar

    [51]

    Zhang T, Zhou J Z, Dai J, Dai Y T, Han X, Li J Q, Yin F F, Zhou Y, Xu K 2018 J. Phys. D Appl. Phys. 51 055103Google Scholar

    [52]

    Liu Y, Zhong R B, Lian Z, Bu C, Liu S G 2018 Sci. Rep. 8 2828Google Scholar

    [53]

    Xiao B G, Tong S J, Fyffe A, Shi Z M 2020 Opt. Express 28 4048Google Scholar

    [54]

    Gao E D, Cao G T, Deng Y, Li H J, Chen X S, Li G H 2024 Opt. Laser Technol. 168 109840Google Scholar

  • 图 1  石墨烯结构图 (a)石墨烯结构侧视图; (b)周期单元俯视图, 其中a1 = 0.8 μm, a2 = 1.6 μm, h2 = 0.8 μm, h3 = 0.9 μm, h4 = 2.3 μm

    Fig. 1.  Graphene structure diagram: (a) Side view of graphene structure; (b) unit structure top view, where a1 = 0.8 μm, a2 = 1.6 μm, h2 = 0.8 μm, h3 = 0.9 μm, h4 = 2.3 μm.

    图 2  耦合模理论模型.

    Fig. 2.  Coupled mode theoretical model.

    图 3  石墨烯等离激元诱导透明效应 (a)石墨烯外加电压与费米能级的关系图; (b)石墨烯等离激元透射谱; (c)—(e) G1, G2和G3电场分布图, 频率是5.13 THz; (f) dip1电场分布图, 共振频率是2.81 THz; (g) dip2电场分布图, 共振频率是6.47 THz

    Fig. 3.  Graphene plasmon induced transparency effect: (a) Relationship between the applied voltage and Fermi energy of graphene; (b) graphene plasmon transmission spectrum; (c)–(e) electric field distribution map of G1, G2 and G3, where the frequency is 5.13 THz; (f) electric field distribution map of dip1, where the resonant frequency is 2.81 THz; (g) electric field distribution map of dip2, where the resonant frequency is 6.47 THz.

    图 4  不同入射光方向下G1, G2, G3的光谱响应 (a)—(d) G1偏振角分别为0°, 30°, 60°, 90°的场图分布; (e)—(h) G2偏振角分别为0°, 30°, 60°, 90°的场图分布; (i)—(l)是G3偏振角分别为0°, 30°, 60°, 90°的场图分布

    Fig. 4.  Spectral responses of G1, G2, and G3 under different incident light directions: (a)–(d) Field plot distribution of G1 polarization angles of 0°, 30°, 60°, 90°, respectively; (e)–(h) field plot distribution of G2 polarization angles of 0°, 30°, 60°, 90°, respectively; (i)–(l) field plot distribution of G2 polarization angles of 0°, 30°, 60°, 90°, respectively.

    图 5  石墨烯太赫兹结构的FDTD和CMT透射曲线和反射曲线 (a)透射率; (b)反射率

    Fig. 5.  Comparison of transmission curve and reflection curve fitting between FDTD and CMT of graphene terahertz structure: (a) Transmission curve; (b) reflection curve.

    图 6  共振频率与费米能级关系图 (a)费米能级和共振频率的线性拟合图; (b)随费米能级连续变化的透射谱图

    Fig. 6.  Relationship diagram between resonant frequency and Fermi energy: (a) Linear fitting graph of Fermi energy and resonance frequency; (b) transmission spectrum with continuous variation of Fermi energy.

    图 7  不同检测介质下结构的透射谱

    Fig. 7.  Transmission spectra of structure under different detection media.

    图 8  石墨烯结构的FOM值 (a) n = 1.2; (b) n = 1.3; (c) n = 1.4; (d) n = 1.5; (e) n = 1.6; (f) n = 1.7

    Fig. 8.  FOM of graphene structure: (a) n = 1.2; (b) n = 1.3; (c) n = 1.4; (d) n = 1.5; (e) n = 1.6; (f) n = 1.7.

    图 9  不同费米能级下石墨烯结构的群折射率与相移 (a) Ef = 0.9 eV; (b) Ef = 1.0 eV; (c) Ef = 1.1 eV; (d) Ef = 1.2 eV

    Fig. 9.  Group index and phase shift of graphene structure under different Fermi energy: (a) Ef = 0.9 eV; (b) Ef = 1.0 eV; (c) Ef = 1.1 eV; (d) Ef = 1.2 eV.

    图 10  当载流子迁移率从0.75 m2/(V·s)增至2.0 m2/(V·s)时, 群折射率与相移的演变(Ef = 1.2 eV) (a) κ = 0.75 m2/(V·s); (b) κ = 1.0 m2/(V·s); (c) κ = 1.25 m2/(V·s); (d) κ = 1.5 m2/(V·s); (e) κ = 1.75 m2/(V·s); (f) κ = 2.0 m2/(V·s)

    Fig. 10.  Evolution of group index and phase shift when carrier mobility increases from 0.75 m2/(V·s) to 2.0 m2/(V·s) when Ef = 1.2 eV: (a) κ = 0.75 m2/(V·s); (b) κ = 1.0 m2/(V·s); (c) κ = 1.25 m2/(V·s); (d) κ = 1.5 m2/(V·s); (e) κ = 1.75 m2/(V·s); (f) κ = 2.0 m2/(V·s).

    表 1  不同费米能级下的耦合强度与本征损耗

    Table 1.  Coupling strength and intrinsic loss at different Fermi energy.

    Ef/eV γ1/(1012 rad·s–1) γ2/(1012 rad·s–1) $\frac{\gamma_1- \gamma_2}{2}$/(1011 rad·s–1) μ/(1011 rad·s–1)
    0.8 2.0899 1.2955 3.972 2.6
    0.9 2.1826 1.2772 4.527 2.6
    1.0 2.2656 1.2670 4.993 2.6
    1.1 2.3394 1.26 5.397 2.6
    1.2 2.4304 1.2496 5.904 2.6
    下载: 导出CSV

    表 2  两个透射谷的频率差与灵敏度

    Table 2.  Frequency difference and sensitivity of two transmission dips.

    Δf1/THz Δf2/THz S1/(THz·RIU–1) S2/(THz·RIU–1)
    0.0689 0.1444 0.689 1.444
    0.0689 0.1456 0.689 1.456
    0.0663 0.1456 0.663 1.456
    0.0663 0.1457 0.663 1.457
    0.0677 0.1430 0.677 1.430
    0.0637 0.1404 0.637 1.404
    下载: 导出CSV

    表 3  与其他文献报道传感器的FOM比较

    Table 3.  Comparison of FOM with other sensors.

    Our workRef. [48]Ref. [49]Ref. [50]Ref. [2]
    FOM30.565221.926.1112423.61
    下载: 导出CSV
  • [1]

    Gosciniak J, Rasras M, Khurgin J B 2020 Acs Photonics 7 488Google Scholar

    [2]

    He Z H, Li L Q, Ma H Q, Pu L H, Xu H, Yi Z, Cao X L, Cui W 2021 Results Phys. 21 103795Google Scholar

    [3]

    Moon K, Park S 2019 Phys. Rev. Appl. 11 034074Google Scholar

    [4]

    Yang H, Ou K, Wan H Y, Hu Y Q, Wei Z Y, Jia H H, Cheng X B, Liu N, Duan H G 2023 Mater. Today 67 424Google Scholar

    [5]

    Yao B C, Liu Y, Huang S W, Choi C, Xie Z D, Flor Flores J, Wu Y, Yu M B, Kwong D L, Huang Y, Rao Y J, Duan X F, Wong C W 2018 Nat. Photonics 12 22Google Scholar

    [6]

    Yang X J, Xu H, Xu H Y, Li M, Yu H F, Cheng Y X, Chen Z Q 2024 Phys. Scr. 99 055518Google Scholar

    [7]

    Wang Y X, Chang B S, Xue J J, Cao X L, Xu H, He H, Cui W, He Z H 2022 Diam. Relat. Mater. 123 108881Google Scholar

    [8]

    Li M, Xu H, Yang X J, Xu H Y, Liu P C, He L H, Nie G Z, Dong Y L, Chen Z Q 2023 Results Phys. 52 106798Google Scholar

    [9]

    Sarker D, Nakti P P, Tahmid M I, Mamun M A Z, Zubair A 2021 Opt. Express 29 42713Google Scholar

    [10]

    Xu H, Li M, Chen Z Q, He L H, Dong Y, Li X L, Wang X J, Nie G Z, He Z H, Zeng B 2023 Phys. Scr. 98 045511Google Scholar

    [11]

    Yan H G, Low T, Zhu W J, Wu Y Q, Freitag M, Li X S, Guinea F, Avouris P, Xia F N 2013 Nat. Photonics 7 394Google Scholar

    [12]

    Kim T T, Kim H D, Zhao R K, Oh S S, Ha T, Chung D S, Lee Y H, Min B, Zhang S 2018 Acs Photonics 5 1800Google Scholar

    [13]

    Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H 2009 Nat. Mater. 8 758Google Scholar

    [14]

    宋瀚法, 胡小永 2019 北京大学学报(自然科学版) 55 871Google Scholar

    Song H F, Hu X Y 2019 Acta Scientiarum Naturalium Universitatis Pekinensis 55 871Google Scholar

    [15]

    Xia S X, Zhai X, Huang Y, Liu J Q, Wang L L, Wen S C 2017 J. Lightwave Technol. 35 4553Google Scholar

    [16]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar

    [17]

    He X Y, Liu F, Lin F T, Shi W Z 2021 Opt. Lett. 46 472Google Scholar

    [18]

    He Z H, Li Z X, Li C J, Xue W W, Cui W 2020 Opt. Express 28 17595Google Scholar

    [19]

    沈常宇, 隋文博, 周俊, 韩伟, 董洁, 方彬, 王兆坤 2023 激光与光电子学进展 60 1106004Google Scholar

    Sheng C N, Sui W B, Zhou J, Han W, Dong J, Fang B, Wang Z K 2023 Laser Optoelectron. Prog. 60 1106004Google Scholar

    [20]

    鲁志琪, 董锐敏, 刘昌宁 2023 中国激光 50 0113020Google Scholar

    Lu Z Q, Dong R M, Liu C N 2023 Chin. J. Lasers 50 0113020Google Scholar

    [21]

    向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健 吴培亨 2023 物理学报 72 128701Google Scholar

    Xiang X C, Ma H B, Wang L, Tian D, Zhang W, Zhang C H, Wu J B, Fan K B, Jin B B, Chen J, Wu P H 2023 Acta Phys. Sin. 72 128701Google Scholar

    [22]

    Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Luo X, Xiong C X, Liu C, Zhang B H, Zhou F Q 2019 Opt. Express 27 13884Google Scholar

    [23]

    许辉, 李铭, 杨肖杰, 徐海烨 陈智全 2024 中国科学: 物理学 力学 天文学 54 234211Google Scholar

    Xu H, Li M, Yang X J, Xu H Y, Chen Z Q 2024 Sci. China Phys. Mech. Astron. 54 234211Google Scholar

    [24]

    Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69Google Scholar

    [25]

    Zhao X Q, Huang R X, Du X, Zhang Z R, Li G Y 2024 Nano Lett. 24 1238Google Scholar

    [26]

    Yang H, He P, Ou K, Hu Y Q, Jiang Y T, Ou X N, Jia H H, Xie Z W, Yuan X C, Duan H G 2023 Light Sci. Appl. 12 79Google Scholar

    [27]

    Ji C, Liu Z M, Zhou F Q, Luo X, Yang G X, Xie Y D, Yang R H 2023 J. Phys. D Appl. Phys. 56 405102Google Scholar

    [28]

    Zhuo S S, Liu Z M, Zhou F Q, Qin Y P, Luo X, Ji C, Yang G X, Yang R H, Xie Y 2022 Opt. Express 30 47647Google Scholar

    [29]

    Jiang L Y, Yuan C, Li Z Y, Su J, Yi Z, Yao W T, Wu P H, Liu Z M, Cheng S B, Pan M 2021 Diam. Relat. Mater. 111 108227Google Scholar

    [30]

    Gao E D, Jin R, Fu Z C, Cao G T, Deng Y, Chen J, Li G H, Chen X S, Li H J 2023 Photonics Res. 11 456Google Scholar

    [31]

    Xu H, Chen Z Q, He Z H, Nie G Z, Li D Q 2020 New J. Phys. 22 123009Google Scholar

    [32]

    Yang H, Jiang Y T, Hu Y Q, Ou K, Duan H G 2022 Laser Photonics Rev. 16 2200351Google Scholar

    [33]

    Zhang X, Liu Z M, Zhang Z B, Gao E D, Luo X, Zhou F Q, Li H J, Yi Z 2020 Opt. Express 28 36771Google Scholar

    [34]

    Tang P R, Li J, Du L H, Liu Q, Peng Q X, Zhao J H, Zhu B, Li Z R, Zhu L G 2018 Opt. Express 26 30655Google Scholar

    [35]

    Xu H, Wang X J, Chen Z Q, Li X L, He L H, Dong Y L, Nie G Z, He Z H 2021 New J. Phys. 23 123025Google Scholar

    [36]

    Ren Y, Cui W, Yang Z M, Xiong B W, Zhang L, Li Z X, Lu S J, Huo Y S, Wu X X, Li G, Bai L, He Z H 2024 Opt. Mater. 149 115073Google Scholar

    [37]

    Yang X J, Xu H, Xu H Y, Li M, He L H, Nie G Z, Chen Z Q 2024 J. Phys. D Appl. Phys. 57 115101Google Scholar

    [38]

    Cui W, Wang Y X, Ma H Q, Xu H, Yi Z, Li L Q, Cao X L, Ren X C, He Z H 2021 Phys. Status Solidi 15 2100036Google Scholar

    [39]

    Xu H, He Z H, Chen Z Q, Nie G Z, Li H 2020 Opt. Express 28 25767Google Scholar

    [40]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [41]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photonics 6 749Google Scholar

    [42]

    Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Zhang X, Luo X, Zhou F Q 2019 Appl. Phys. Express 12 126001Google Scholar

    [43]

    Efetov D K, Kim P 2010 Phys. Rev. Lett. 105 256805Google Scholar

    [44]

    Balci S, Balci O, Kakenov N, Atar F B, Kocabas C 2016 Opt. Lett. 41 1241Google Scholar

    [45]

    Li M, Xu H, Xu H Y, Yang X J, Dong Y L, He L H, Nie G Z, Wang X J, Chen Z Q 2024 Opt. Commun. 554 130175Google Scholar

    [46]

    Wang Y X, Cui W, Ma H Q, Xu H, Yi Z, Cao X L, Ren X C, He Z H 2021 Results Phys. 23 104002Google Scholar

    [47]

    Peng B, Ozdemir Ş K, Chen W J, Nori F, Yang L 2014 Nat. Commun. 5 5082Google Scholar

    [48]

    Li Z X, Yang N X, Liu Y T, Li L, Zhong Z Y, Song C, He Z H, Cui W, Xue W W, Li L Q, Li C J, Xu H, Chen Z Q, He H 2022 Diam. Relat. Mater. 126 109071Google Scholar

    [49]

    Jie X, Zhao T, Ran W Y, Feng Z H 2023 Phys. Chem. Chem. Phys. 524 128775Google Scholar

    [50]

    Askari M, Bahadoran M 2022 Optik 253 168589Google Scholar

    [51]

    Zhang T, Zhou J Z, Dai J, Dai Y T, Han X, Li J Q, Yin F F, Zhou Y, Xu K 2018 J. Phys. D Appl. Phys. 51 055103Google Scholar

    [52]

    Liu Y, Zhong R B, Lian Z, Bu C, Liu S G 2018 Sci. Rep. 8 2828Google Scholar

    [53]

    Xiao B G, Tong S J, Fyffe A, Shi Z M 2020 Opt. Express 28 4048Google Scholar

    [54]

    Gao E D, Cao G T, Deng Y, Li H J, Chen X S, Li G H 2024 Opt. Laser Technol. 168 109840Google Scholar

  • [1] 张逸飞, 刘媛, 梅家栋, 王军转, 王肖沐, 施毅. 基于纳米金属阵列天线的石墨烯/硅近红外探测器. 物理学报, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [2] 段谕, 戴小康, 吴晨晨, 杨晓霞. 可调谐的声学型石墨烯等离激元增强纳米红外光谱. 物理学报, 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [3] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料. 物理学报, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [4] 王鑫, 王俊林. 太赫兹波段电磁超材料吸波器折射率传感特性. 物理学报, 2021, 70(3): 038102. doi: 10.7498/aps.70.20201054
    [5] 王玥, 崔子健, 张晓菊, 张达篪, 张向, 周韬, 王暄. 超材料赋能先进太赫兹生物化学传感检测技术的研究进展. 物理学报, 2021, 70(24): 247802. doi: 10.7498/aps.70.20211752
    [6] 姜悦, 王淑英, 王治业, 周华, 卡马勒, 赵颂, 沈向前. 渔网超结构的等离激元模式及其对薄膜电池的陷光调控. 物理学报, 2021, 70(21): 218801. doi: 10.7498/aps.70.20210693
    [7] 李雪健, 曹敏, 汤敏, 芈月安, 陶洪, 古皓, 任文华, 简伟, 任国斌. M型少模光纤中模间受激布里渊散射特性及其温度和应变传感特性. 物理学报, 2020, 69(11): 114203. doi: 10.7498/aps.69.20200103
    [8] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [9] 涂兴华, 赵宜超. 对称熔融拉锥型光纤光栅温度和应力传感特性. 物理学报, 2019, 68(24): 244204. doi: 10.7498/aps.68.20191034
    [10] 王冲, 邢巧霞, 谢元钢, 晏湖根. 拓扑材料等离激元谱学研究. 物理学报, 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
    [11] 徐飞翔, 李晓光, 张振宇. 量子等离激元光子学在若干方向的最新进展. 物理学报, 2019, 68(14): 147103. doi: 10.7498/aps.68.20190331
    [12] 吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆. 石墨烯等离激元增强红外光谱. 物理学报, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [13] 陈华俊, 方贤文, 陈昌兆, 李洋. 基于双回音壁模式腔光力学系统的光学传播特性和超高分辨率光学质量传感. 物理学报, 2016, 65(19): 194205. doi: 10.7498/aps.65.194205
    [14] 张超杰, 周婷, 杜鑫鹏, 王同标, 刘念华. 利用石墨烯等离激元与表面声子耦合增强量子摩擦. 物理学报, 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [15] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究. 物理学报, 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [16] 尹海峰, 张红, 岳莉. C60富勒烯二聚物的等离激元激发. 物理学报, 2014, 63(12): 127303. doi: 10.7498/aps.63.127303
    [17] 魏巍, 张霞, 于辉, 李宇鹏, 张阳安, 黄永清, 陈伟, 罗文勇, 任晓敏. 高非线性微结构光纤中基于受激布里渊散射的慢光延迟. 物理学报, 2013, 62(18): 184208. doi: 10.7498/aps.62.184208
    [18] 郑狄, 潘炜. 非线性光纤环镜在受激布里渊散射慢光级联系统中的可行性研究. 物理学报, 2011, 60(6): 064210. doi: 10.7498/aps.60.064210
    [19] 王士鹤, 任立勇, 刘宇. 光纤中基于双宽带抽运的受激布里渊散射增益谱展宽及慢光传输中脉冲失真减小的理论研究. 物理学报, 2009, 58(6): 3943-3948. doi: 10.7498/aps.58.3943
    [20] 鲁辉, 田慧平, 李长红, 纪越峰. 基于二维光子晶体耦合腔波导的新型慢光结构研究. 物理学报, 2009, 58(3): 2049-2055. doi: 10.7498/aps.58.2049
计量
  • 文章访问数:  674
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-10
  • 修回日期:  2024-06-09
  • 上网日期:  2024-07-01
  • 刊出日期:  2024-08-05

/

返回文章
返回