搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近红外二区长波发射${\rm Na_3YSi_3O_9}{:}x {\rm Cr^{3+}}$硅酸盐及多格位占据光谱展宽

龚长帅 王建通 王渤文 薛绪岩 王雪娇

引用本文:
Citation:

近红外二区长波发射${\rm Na_3YSi_3O_9}{:}x {\rm Cr^{3+}}$硅酸盐及多格位占据光谱展宽

龚长帅, 王建通, 王渤文, 薛绪岩, 王雪娇

Long wavelength near-infrared II emitting Na3YSi3O9:x Cr3+ silicate and spectral broadening by multi-site occupancy

Gong Chang-Shuai, Wang Jian-Tong, Wang Bo-Wen, Xue Xu-Yan, Wang Xue-Jiao
PDF
HTML
导出引用
  • 以Cr3+为激活剂的荧光粉被认为是目前最有可能实现商业化的近红外材料. 但目前这类荧光粉的发射波长一般位于小于850 nm的近红外一区, 以Cr3+为激活剂实现近红外二区发射仍然具有挑战. 本文采用普适的固相法制备了一系列Na3Y1–x Si3O9:x Cr3+硅酸盐荧光粉, 利用Na3YSi3O9硅酸盐属性及结构中多种适于Cr3+占据的八面体位点有效红移并展宽光谱. 对样品的物相、晶体结构、微观形貌、光致发光、主发射峰衰减和热稳定性等进行了系统研究. 结果显示, 所制样品均为纯相, 形貌不均匀略有团聚, 尺寸在微米量级. Cr3+在Na3YSi3O9晶格中位于弱晶体场环境, 八面体晶体场参数Dq和Racah参数B的比值Dq/B = 2.29. 在485 nm蓝光激发下Na3Y1–x Si3O9:x Cr3+荧光粉最强发射峰位于984 nm处(NIR II区), 长于大多数Cr3+激活的荧光粉. 且得益于Cr3+在晶格中的多格位占据, 发射光谱的半峰宽高达183 nm. Na3Y1–x Si3O9:x Cr3+中最佳掺杂浓度为3%, 猝灭机理为Cr3+离子间的偶极-偶极作用. Na3Y1–x Si3O9:x Cr3+主发射峰荧光衰减动力学分析表明室温荧光寿命约为37.95 μs, 且随着掺杂浓度增大及温度升高(至423 K)逐渐降低.
    Phosphors-converted near-infrared LED (pc-NIR LED) possesses applications in various fields including food quality analysis, night vision, biomedical imaging, and biomedicine. The design and development of broadband near-infrared (NIR) phosphors with the required properties are of decisive significance for pc-NIR LED devices. The Cr3+ doped phosphors are considered to be most promising near-infrared materials for commercialization. Broadband NIR luminescent materials doped with Cr3+ have attracted more and more attention due to their potential applications in NIR light sources. However, the emission wavelength of Cr3+ doped phosphor is generally located in the NIR I region of less than 850 nm, and realizing the NIR II region emission is still a challenge. In this work, a series of Cr3+ doped Na3YSi3O9 new silicate phosphors is prepared by solid-state method in N2 atmosphere at 1150 ℃ for 8 h. We take advantages of the silicate nature and the multi octahedral sites suitable for Cr3+ in the studied Na3YSi3O9 materials to redshift and broaden the spectrum. The phase, crystal structure, microstructure, photoluminescence, main emission peak decay and thermal stability of the samples are systematically studied. The results show that the prepared samples are pure phases, with uneven morphology, slight agglomeration, and the sizes in the micrometer range. The Cr3+ is located in the weak crystal field environment of Na3YSi3O9 lattice, with a Dq/B value of 2.29. Under the excitation of blue light at a wavelength of 485 nm, the strongest emission peaks of Na3Y1–x Si3O9:x Cr3+ phosphors are located at 984 nm (NIR II region), which is longer than those of most Cr3+ activated phosphors. Due to the multi-site occupation of Cr3+ in the lattice, the full width at half maximum (FWHM) of the emission spectrum is as high as 183 nm. The optimal doping concentration of Na3Y1–x Si3O9:x Cr3+ is 3%, and the quenching mechanism is the dipole-dipole interaction between Cr3+ ions. Fluorescence decay curves show that the luminescence lifetime of Na3Y0.97Si3O9:0.03Cr3+ sample gradually decreases with the increase of doping concentration and temperature. The results of the temperature-dependent spectra show that the emission intensity decreases in a temperature range from 298 K to 423 K, and the activation energy ΔE of Cr3+ is 0.157 eV.
      通信作者: 王雪娇, wangxuejiao@bhu.edu.cn
    • 基金项目: 辽宁省教育厅自然科学基金(批准号: JYTMS20231627)和辽宁省科技厅自然科学基金(批准号: 2020-MS-286)资助的课题.
      Corresponding author: Wang Xue-Jiao, wangxuejiao@bhu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of the Educational Department of Liaoning Province, China (Grant No. JYTMS20231627) and the Natural Science Foundation of Liaoning Provincial Department of Science and Technology, China (Grant No. 2020-MS-286).
    [1]

    Chen Y, Wang S F, Zhang F 2023 Nat. Rev. Bioeng. 1 60Google Scholar

    [2]

    Wu H Y, Jiang L H, Li K, Li C Y, Zhang H J 2021 J. Mater. Chem. C 9 11761Google Scholar

    [3]

    Zhong J Y, Li C J, Zhao W R, You S H, Brgoch J 2022 Chem. Mater. 34 337Google Scholar

    [4]

    Zhang H S, Zhong J Y, Du F, Chen L, Zhang X L, Mu Z F, Zhao W R 2022 ACS Appl. Mater. Interfaces 14 11663Google Scholar

    [5]

    Lai J, Shen W H, Qiu J B, Zhou D C, Long Z W, Yang Y, Zhang K, Khan I, Wang Q 2020 J. Am. Ceram. Soc. 103 5067Google Scholar

    [6]

    Liu T Y, Cai H, Mao N, Song Z, Liu Q L 2021 J. Am. Ceram. Soc. 104 4577Google Scholar

    [7]

    Zhong J Y, Zhuo Y, Du F, Zhang H S, Zhao W R, Brgoch J 2021 ACS Appl. Mater. Interfaces 13 31835Google Scholar

    [8]

    Yang Z, Zhao Y, Zhou Y, Qiao J, Chuang Y C, Molokeev M S, Xia Z 2022 Adv. Funct. Mater. 32 2103927Google Scholar

    [9]

    Xiao Y, Xiao W, Wu D, Guan L, Luo M, Sun L D 2022 Adv. Funct. Mater. 32 2109618Google Scholar

    [10]

    Chen X Z, Li Y, Huang K, Huang L, Tian X M, Dong H F, Kang R, Hu Y H, Nie J M, Qiu J R, Han G 2021 Adv. Mater. 33 2008722Google Scholar

    [11]

    Dang P P, Wei Y, Liu D J, Li G G, Lin J 2023 Adv. Opt. Mater. 11 2201739Google Scholar

    [12]

    Liu D J, Dang P P, Zhang G D, Lian H Z, Li G G, Lin J 2024 Infomat 6 e12542Google Scholar

    [13]

    Rajendran V, Huang W T, Chen K C, Chang H, Liu R S 2022 J. Mater. Chem. C 10 14367Google Scholar

    [14]

    Huang W T, Chen K C, Huang M H, Liu R S 2023 Adv. Opt. Mater. 11 2301166Google Scholar

    [15]

    Liu Y, Stasio F D, Bi C H, Zhang J B, Xia Z G, Shi Z F, Manna L 2024 Adv. Mater. 36 2312482Google Scholar

    [16]

    Zhang H, Zhong J, Li C, Wang L, Zhao W 2022 J. Lumin. 251 119211Google Scholar

    [17]

    Zhou Y P, Li X J, Seto Y, Wang Y H 2021 ACS Sustain. Chem. Eng. 9 3145Google Scholar

    [18]

    Malysa B, Meijerink A, Jüstel T 2018 J. Lumin. 202 523Google Scholar

    [19]

    Zou X, Wang X, Zhang H, Kang Y, Yang X, Zhang X, Molokeev M S, Lei B 2022 Chem. Eng. J. 428 132003Google Scholar

    [20]

    Jiang H J, Chen L Y, Zheng G J, Luo Z H, Wu X H, Liu Z H, Li R Y, Liu Y F, Sun P, Jiang J 2022 Adv. Opt. Mater. 10 2102741Google Scholar

    [21]

    Mao M Q, Zhou T L, Zeng H T, Wang L, Huang F, Tang X Y, Xie R J 2020 J. Mater. Chem. C 8 1981Google Scholar

    [22]

    Li C J, Zhong J Y 2023 Adv. Opt. Mater. 11 2202323Google Scholar

    [23]

    Dumesso M U, Xiao W, Zheng G, Basore E T, Tang M, Liu X, Qiu J 2022 Adv. Opt. Mater. 10 2200676Google Scholar

    [24]

    Huang D, Liang S, Chen D, Hu J, Xu K, Zhu H 2021 Chem. Eng. J. 426 131332Google Scholar

    [25]

    Pan L, Lu R, Zhu Q, McGrath J M, Tu K 2015 Postharvest Biol. Tec. 102 42Google Scholar

    [26]

    Cai H, Liu S Q, Song Z, Liu Q L 2021 J. Mater. Chem. C 9 5469Google Scholar

    [27]

    Kenry, Duan Y, Liu B 2018 Adv. Mater. 30 1802394Google Scholar

    [28]

    Xia Z G, Zhou J, Mao Z Y 2013 J. Mater. Chem. C 1 5917Google Scholar

    [29]

    Wang F, Jin Y, Liu Y F, Zhang L L, Dong R, Zhang J H 2019 J. Lumin 206 227Google Scholar

    [30]

    Zhou J B, Zhong J P, Guo J Y, Liang H B, Su Q, Tang Q, Tao Y, Moretti F, Lebbou K, Dujardin C 2016 J. Phys. Chem. C 120 18741Google Scholar

    [31]

    Halada G P, Clayton C R 1991 J. Electrochem. Soc. 138 2921Google Scholar

    [32]

    Kim Y I, Page K, Limarga A M, Clarke D R, Seshadri R 2007 Phys. Rev. B 76 115204Google Scholar

    [33]

    Wang C P, Zhang Y X, Han X, Hu D F, He D P, Wang X M, Jiao H 2021 J. Mater. Chem. C 9 4583Google Scholar

    [34]

    刘云鹏, 盛伟繁, 吴忠华 2021 无机材料学报 36 901Google Scholar

    Liu Y P, Sheng W F, Wu Z H 2021 J. Inorg. Mater. 36 901Google Scholar

    [35]

    Farges F 2009 Phys. Chem. Miner. 36 463Google Scholar

    [36]

    Xie W, Jiang W, Zhou R F, Li J H, Ding J H, Ni H Y, Zhang Q H, Tang Q, Meng J X, Lin L T 2021 Inorg. Chem. 60 2219Google Scholar

    [37]

    Tobase T, Yoshiasa A, Hiratoko T, Nakatsuka A 2018 J. Synchrotron Radiat. 25 1129Google Scholar

    [38]

    Zhu F M, Gao Y, Zhu B M, Huang L, Qiu J B 2024 Chem. Eng. J 479 147568.Google Scholar

    [39]

    Tanabe Y, Sugano S 1954 J. Phys. Soc. Jpn. 9 766Google Scholar

    [40]

    Trueba A, Garcia-Fernandez P, Garcia-Lastra J M, Aramburu J A, Barriuso M T, Moreno M 2011 J. Phys. Chem. A 115 1423Google Scholar

    [41]

    Mondal A, Das S, Manam J 2019 Phys. B Condens. Matter 569 20Google Scholar

    [42]

    Zhang L L, Zhang S, Hao Z D, Zhang X, Pan G H, Luo Y S, Wu H J, Zhang J H 2018 J. Mater. Chem. C 6 4967Google Scholar

    [43]

    Huyen N T, Tu N, Tung D T, Trung D Q, Anh D D, Duc T T, Nga T T T, Huy P T 2020 Opt. Mater. 108 110207Google Scholar

    [44]

    Blasse G 1968 Phys. Lett. A 28 444Google Scholar

    [45]

    Xiao F, Yi R X, Yuan H L, Zang G J, Xie C N 2018 Spectrochim. Acta A 202 352Google Scholar

    [46]

    Hussen M K, Dejene F B 2019 Optik 181 514Google Scholar

    [47]

    Si J Y, Wang L, Liu L H, Yi W, Cai G M, Takeda T, Funahashi S, Hirosaki N, Xie R J 2019 J. Mater. Chem. C 7 733Google Scholar

    [48]

    Wang X J, Wang X J, Wang Z H, Zhu Q, Wang C, Xin S Y, Li J G 2018 J. Am. Ceram. Soc. 101 5477Google Scholar

    [49]

    Wang X J, Meng Q H, Li M T, Wang X J, Wang Z H, Zhu Q, Li J G 2019 J. Am. Ceram. Soc. 102 3296Google Scholar

    [50]

    Sun Z C, Zhou T L, Liu R H, Tang X Y, Xie R J 2023 J. Am. Ceram. Soc. 106 3446Google Scholar

    [51]

    Gao T Y, Zhuang W D, Liu R H, Liu Y H, Chen X X, Xue Y 2020 J. Alloys Compd. 848 156557Google Scholar

  • 图 1  (a) Na3Y1–x Si3O9:x Cr3+ (x = 0—0.1)样品的XRD图谱; (b) Na3Y0.97Si3O9:0.03Cr3+样品Rietveld精修结果; (c) Na3YSi3O9的晶体结构; (d) Na3Y0.97Si3O9:0.03Cr3+样品FE-SEM及元素扫描分布图

    Fig. 1.  (a) The XRD patterns of the Na3Y1–x Si3O9:x Cr3+ (x = 0–0.1) samples; (b) Rietveld refinement results of the Na3Y0.97Si3O9:0.03Cr3+ sample; (c) crystal structure of Na3YSi3O9; (d) the FE-SEM morphology and elemental mapping of the Na3Y0.97Si3O9:0.03Cr3+ sample.

    图 2  Na3Y0.97Si3O9:0.03Cr3+样品 (a) 漫反射光谱; (b) 带隙能量的测定

    Fig. 2.  Na3Y0.97Si3O9:0.03Cr3+ samples: (a) Diffuse reflectance spectrum; (b) determination of band gap energy.

    图 3  (a) Na3Y0.97Si3O9:0.03Cr3+样品的XPS全谱; (b) Cr 2p轨道的精细谱; (c) Cr的 K边X射线吸收近边结构(XANES)光谱

    Fig. 3.  (a) XPS full spectrum for Na3Y0.97Si3O9:0.03Cr3+ sample; (b) high-resolution XPS spectra of Cr 2p orbital; (c) Cr K-edge X-ray absorption near-edge structure (XANES) spectrum.

    图 4  (a)—(c) Na3Y0.97Si3O9:0.03Cr3+样品的(a)归一化的激发和发射光谱、(b) 田边-菅野图、(c) 80—300 K 范围内变温发射光谱; (d)—(f) Na3Y1–x Si3O9:x Cr3+ (x = 0—0.1)样品的(d)发射光谱; (e) log(x)-log(I/x)对应关系; (f) 荧光衰减曲线(λex = 485 nm, λem = 984 nm)

    Fig. 4.  (a) Normalized excitation and emission spectra, (b) Tanabe-Sugano energy level diagram, (c) temperature-dependent emission spectra in the range of 80—300 K for the Na3Y0.97Si3O9:0.03Cr3+ samples; (d) emission spectra, (e) the log(x) versus log(I/x) plot, (f) luminescence decay curves (λex = 485 nm, λem = 984 nm) for the Na3Y1–x Si3O9:x Cr3+ (x = 0–0.1) samples.

    图 5  (a) Na3Y0.97Si3O9:0.03Cr3+样品变温发射光谱的等高线图; (b) 1/kT与ln[(I0/I) -1]的对应关系; (c) Cr3+热猝灭过程的位形坐标示意图; (d) 不同温度下的荧光衰减曲线

    Fig. 5.  (a) Contour plot of the temperature-dependent PL spectra of Na3Y0.97Si3O9:0.03Cr3+; (b) ln[(I0/I) -1] vs. 1/kT relationship; (c) the thermal quenching process of Cr3+ depicted with the configurational coordinate diagram; (d) fluorescence decay curves at different temperatures.

    表 1  由Na3Y0.97Si3O9:0.03Cr3+样品XRD图谱精修所得的结构参数和可靠因子及纯相Na3YSi3O9晶胞参数信息 (PDF #72-2455)

    Table 1.  Structure parameters and reliability factors obtained via refinement of the XRD pattern for Na3Y0.97Si3O9:0.03Cr3+ sample and the cell parameters from pure Na3YSi3O9 (PDF #72-2455).

    Chemical formulaNa3YSi3O9Na3Y0.97Si3O9:0.03Cr3+
    Space groupP212121P212121
    a15.408(4)15.0362(4)
    b15.312(5)15.2116(5)
    c15.222(4)15.1460(4)
    α/(°)9090
    β/(°)9090
    γ /(°)9090
    V33591.016(18)3464.26(18)
    Rp/%4.75
    Rwp/%7.41
    χ22.140
    下载: 导出CSV

    表 2  Na3Y0.97Si3O9:0.03Cr3+样品中4种[YO6]多面体键长及多面体畸变指数汇总

    Table 2.  Bond length and distortion index of four kinds [YO6] polyhedrons in Na3Y0.97Si3O9:0.03Cr3+ sample.

    Bondd1d2d3d4d5d6davddis
    Y1—O2.49372.18672.06432.26233.14273.02362.25890.1461
    Y2—O2.11082.23022.27442.83292.12182.11082.28010.0808
    Y3—O2.27071.95282.76481.80123.80772.89602.58220.2223
    Y4—O2.26422.0521.61691.88743.14013.22492.36430.2307
    下载: 导出CSV

    表 3  Na3Y1–x Si3O9:x Cr3+ (x = 0—0.1)样品荧光衰减曲线拟合结果 (λex = 485 nm, λem = 984 nm)

    Table 3.  Fluorescence decay curve fitting results of Na3Y1–x Si3O9:x Cr3+ (x = 0–0.1) samples (λex = 485 nm, λem = 984 nm)

    浓度λem/nmA1A2τ1τ2χ2τ/μs
    0.0059842020.38802.0916.5054.350.98737.95
    0.019841993.95836.8315.0850.031.05435.42
    0.029841808.84729.5812.1444.471.05931.42
    0.039841963.30726.1912.6145.560.96131.45
    0.059841837.09818.4213.0243.060.98630.91
    0.109841985.01692.6413.2945.200.98430.61
    下载: 导出CSV
  • [1]

    Chen Y, Wang S F, Zhang F 2023 Nat. Rev. Bioeng. 1 60Google Scholar

    [2]

    Wu H Y, Jiang L H, Li K, Li C Y, Zhang H J 2021 J. Mater. Chem. C 9 11761Google Scholar

    [3]

    Zhong J Y, Li C J, Zhao W R, You S H, Brgoch J 2022 Chem. Mater. 34 337Google Scholar

    [4]

    Zhang H S, Zhong J Y, Du F, Chen L, Zhang X L, Mu Z F, Zhao W R 2022 ACS Appl. Mater. Interfaces 14 11663Google Scholar

    [5]

    Lai J, Shen W H, Qiu J B, Zhou D C, Long Z W, Yang Y, Zhang K, Khan I, Wang Q 2020 J. Am. Ceram. Soc. 103 5067Google Scholar

    [6]

    Liu T Y, Cai H, Mao N, Song Z, Liu Q L 2021 J. Am. Ceram. Soc. 104 4577Google Scholar

    [7]

    Zhong J Y, Zhuo Y, Du F, Zhang H S, Zhao W R, Brgoch J 2021 ACS Appl. Mater. Interfaces 13 31835Google Scholar

    [8]

    Yang Z, Zhao Y, Zhou Y, Qiao J, Chuang Y C, Molokeev M S, Xia Z 2022 Adv. Funct. Mater. 32 2103927Google Scholar

    [9]

    Xiao Y, Xiao W, Wu D, Guan L, Luo M, Sun L D 2022 Adv. Funct. Mater. 32 2109618Google Scholar

    [10]

    Chen X Z, Li Y, Huang K, Huang L, Tian X M, Dong H F, Kang R, Hu Y H, Nie J M, Qiu J R, Han G 2021 Adv. Mater. 33 2008722Google Scholar

    [11]

    Dang P P, Wei Y, Liu D J, Li G G, Lin J 2023 Adv. Opt. Mater. 11 2201739Google Scholar

    [12]

    Liu D J, Dang P P, Zhang G D, Lian H Z, Li G G, Lin J 2024 Infomat 6 e12542Google Scholar

    [13]

    Rajendran V, Huang W T, Chen K C, Chang H, Liu R S 2022 J. Mater. Chem. C 10 14367Google Scholar

    [14]

    Huang W T, Chen K C, Huang M H, Liu R S 2023 Adv. Opt. Mater. 11 2301166Google Scholar

    [15]

    Liu Y, Stasio F D, Bi C H, Zhang J B, Xia Z G, Shi Z F, Manna L 2024 Adv. Mater. 36 2312482Google Scholar

    [16]

    Zhang H, Zhong J, Li C, Wang L, Zhao W 2022 J. Lumin. 251 119211Google Scholar

    [17]

    Zhou Y P, Li X J, Seto Y, Wang Y H 2021 ACS Sustain. Chem. Eng. 9 3145Google Scholar

    [18]

    Malysa B, Meijerink A, Jüstel T 2018 J. Lumin. 202 523Google Scholar

    [19]

    Zou X, Wang X, Zhang H, Kang Y, Yang X, Zhang X, Molokeev M S, Lei B 2022 Chem. Eng. J. 428 132003Google Scholar

    [20]

    Jiang H J, Chen L Y, Zheng G J, Luo Z H, Wu X H, Liu Z H, Li R Y, Liu Y F, Sun P, Jiang J 2022 Adv. Opt. Mater. 10 2102741Google Scholar

    [21]

    Mao M Q, Zhou T L, Zeng H T, Wang L, Huang F, Tang X Y, Xie R J 2020 J. Mater. Chem. C 8 1981Google Scholar

    [22]

    Li C J, Zhong J Y 2023 Adv. Opt. Mater. 11 2202323Google Scholar

    [23]

    Dumesso M U, Xiao W, Zheng G, Basore E T, Tang M, Liu X, Qiu J 2022 Adv. Opt. Mater. 10 2200676Google Scholar

    [24]

    Huang D, Liang S, Chen D, Hu J, Xu K, Zhu H 2021 Chem. Eng. J. 426 131332Google Scholar

    [25]

    Pan L, Lu R, Zhu Q, McGrath J M, Tu K 2015 Postharvest Biol. Tec. 102 42Google Scholar

    [26]

    Cai H, Liu S Q, Song Z, Liu Q L 2021 J. Mater. Chem. C 9 5469Google Scholar

    [27]

    Kenry, Duan Y, Liu B 2018 Adv. Mater. 30 1802394Google Scholar

    [28]

    Xia Z G, Zhou J, Mao Z Y 2013 J. Mater. Chem. C 1 5917Google Scholar

    [29]

    Wang F, Jin Y, Liu Y F, Zhang L L, Dong R, Zhang J H 2019 J. Lumin 206 227Google Scholar

    [30]

    Zhou J B, Zhong J P, Guo J Y, Liang H B, Su Q, Tang Q, Tao Y, Moretti F, Lebbou K, Dujardin C 2016 J. Phys. Chem. C 120 18741Google Scholar

    [31]

    Halada G P, Clayton C R 1991 J. Electrochem. Soc. 138 2921Google Scholar

    [32]

    Kim Y I, Page K, Limarga A M, Clarke D R, Seshadri R 2007 Phys. Rev. B 76 115204Google Scholar

    [33]

    Wang C P, Zhang Y X, Han X, Hu D F, He D P, Wang X M, Jiao H 2021 J. Mater. Chem. C 9 4583Google Scholar

    [34]

    刘云鹏, 盛伟繁, 吴忠华 2021 无机材料学报 36 901Google Scholar

    Liu Y P, Sheng W F, Wu Z H 2021 J. Inorg. Mater. 36 901Google Scholar

    [35]

    Farges F 2009 Phys. Chem. Miner. 36 463Google Scholar

    [36]

    Xie W, Jiang W, Zhou R F, Li J H, Ding J H, Ni H Y, Zhang Q H, Tang Q, Meng J X, Lin L T 2021 Inorg. Chem. 60 2219Google Scholar

    [37]

    Tobase T, Yoshiasa A, Hiratoko T, Nakatsuka A 2018 J. Synchrotron Radiat. 25 1129Google Scholar

    [38]

    Zhu F M, Gao Y, Zhu B M, Huang L, Qiu J B 2024 Chem. Eng. J 479 147568.Google Scholar

    [39]

    Tanabe Y, Sugano S 1954 J. Phys. Soc. Jpn. 9 766Google Scholar

    [40]

    Trueba A, Garcia-Fernandez P, Garcia-Lastra J M, Aramburu J A, Barriuso M T, Moreno M 2011 J. Phys. Chem. A 115 1423Google Scholar

    [41]

    Mondal A, Das S, Manam J 2019 Phys. B Condens. Matter 569 20Google Scholar

    [42]

    Zhang L L, Zhang S, Hao Z D, Zhang X, Pan G H, Luo Y S, Wu H J, Zhang J H 2018 J. Mater. Chem. C 6 4967Google Scholar

    [43]

    Huyen N T, Tu N, Tung D T, Trung D Q, Anh D D, Duc T T, Nga T T T, Huy P T 2020 Opt. Mater. 108 110207Google Scholar

    [44]

    Blasse G 1968 Phys. Lett. A 28 444Google Scholar

    [45]

    Xiao F, Yi R X, Yuan H L, Zang G J, Xie C N 2018 Spectrochim. Acta A 202 352Google Scholar

    [46]

    Hussen M K, Dejene F B 2019 Optik 181 514Google Scholar

    [47]

    Si J Y, Wang L, Liu L H, Yi W, Cai G M, Takeda T, Funahashi S, Hirosaki N, Xie R J 2019 J. Mater. Chem. C 7 733Google Scholar

    [48]

    Wang X J, Wang X J, Wang Z H, Zhu Q, Wang C, Xin S Y, Li J G 2018 J. Am. Ceram. Soc. 101 5477Google Scholar

    [49]

    Wang X J, Meng Q H, Li M T, Wang X J, Wang Z H, Zhu Q, Li J G 2019 J. Am. Ceram. Soc. 102 3296Google Scholar

    [50]

    Sun Z C, Zhou T L, Liu R H, Tang X Y, Xie R J 2023 J. Am. Ceram. Soc. 106 3446Google Scholar

    [51]

    Gao T Y, Zhuang W D, Liu R H, Liu Y H, Chen X X, Xue Y 2020 J. Alloys Compd. 848 156557Google Scholar

  • [1] 夏长明, 卢家澳, 黄卓元, 刘建涛, 侯峙云, 周桂耀. 掺铥镧铝硅酸盐玻璃光子晶体光纤制备及光学特性. 物理学报, 2023, 72(20): 204206. doi: 10.7498/aps.72.20230766
    [2] 熊中龙, 吴妍, 景锐平, 马冲, 龙蔚辉, 张超军, 程永进. 掺Yb硅酸盐玻璃的热漂白性能研究. 物理学报, 2016, 65(4): 044208. doi: 10.7498/aps.65.044208
    [3] 吴天娇, 黄衍堂, 马靖, 黄婧, 黄玉, 张培进, 郭长磊. 掺Yb3+ 磷硅酸盐微球腔发光特性的探究. 物理学报, 2014, 63(21): 217805. doi: 10.7498/aps.63.217805
    [4] 马红萍, 刘平, 杨清华, 邓德刚. Cr4+掺杂Li1.14Zn1.43SiO4透明微晶玻璃近红外宽带光谱特性. 物理学报, 2013, 62(17): 177801. doi: 10.7498/aps.62.177801
    [5] 余阳, 刘自军, 陈乔乔, 戴能利, 李进延, 杨旅云. Dy3+掺杂硼硅酸盐玻璃的发光特性. 物理学报, 2013, 62(1): 017804. doi: 10.7498/aps.62.017804
    [6] 周大成, 刘志亮, 宋志国, 杨正文, 何禧佳, 王荣飞, 焦清, 邱建备. 铋离子掺杂RO-Al2O3-SiO2玻璃近红外超宽带发光性质. 物理学报, 2012, 61(12): 127802. doi: 10.7498/aps.61.127802
    [7] 钟瑞霞, 张家骅, 李明亚, 王晓强. Eu2+, Cr3+共掺杂的MAl12O19 (M=Ca, Sr, Ba)的发光性质及能量传递. 物理学报, 2012, 61(11): 117801. doi: 10.7498/aps.61.117801
    [8] 王兴军, 董斌, 周治平. Er硅酸盐化合物薄膜的相转变和光致发光特性研究. 物理学报, 2010, 59(5): 3554-3557. doi: 10.7498/aps.59.3554
    [9] 徐伟, 李成仁, 陈宝玖, 冯志庆. Eu3+作探针研究铋铕共掺硼硅酸盐玻璃光学特性. 物理学报, 2010, 59(2): 1328-1332. doi: 10.7498/aps.59.1328
    [10] 吕景文, 刘 双, 肖洪亮, 郑笑秋, 李 岳, 李 峰. Cr3+/Tm3+/Ho3+共掺氟磷酸盐玻璃的制备及性能表征. 物理学报, 2008, 57(10): 6373-6380. doi: 10.7498/aps.57.6373
    [11] 钱 奇, 王 琰, 张勤远, 杨中民, 杨钢锋, 姜中宏. 可紫外激光刻写的掺铒铋硅酸盐玻璃光谱性质研究. 物理学报, 2007, 56(5): 2736-2741. doi: 10.7498/aps.56.2736
    [12] 王雪俊, 夏海平. GeO2-Bi2O3-MOx(MOx=WO3, BaO)玻璃近红外超宽带发光的研究. 物理学报, 2007, 56(5): 2725-2730. doi: 10.7498/aps.56.2725
    [13] 张旭东, 徐铁峰, 聂秋华, 戴世勋, 沈 祥, 陆龙君, 章向华. Er3+/Yb3+共掺碲硼硅酸盐玻璃的光谱性质和热稳定性研究. 物理学报, 2007, 56(3): 1758-1764. doi: 10.7498/aps.56.1758
    [14] 李善锋, 苗 壮, 彭 扬, 张庆瑜. 掺Yb硼硅酸盐玻璃的光学特性及其双光子合作上转换荧光. 物理学报, 2006, 55(8): 4315-4320. doi: 10.7498/aps.55.4315
    [15] 李善锋, 张庆瑜. Er/Yb共掺硅酸盐玻璃的光致发光. 物理学报, 2005, 54(11): 5462-5467. doi: 10.7498/aps.54.5462
    [16] 柳祝平, 唐景平, 胡丽丽, 姜中宏. Cr3+,Yb3+,Er3+共掺磷酸盐铒玻璃转镜调Q激光性质研究. 物理学报, 2005, 54(9): 4422-4426. doi: 10.7498/aps.54.4422
    [17] 徐时清, 汪国年, 张军杰, 戴世勋, 胡丽丽, 姜中宏. Er3+掺杂重金属氧氟硅酸盐玻璃的上转换发光研究. 物理学报, 2004, 53(6): 1840-1844. doi: 10.7498/aps.53.1840
    [18] 高文斌, 陈俊德, 杨石军, 叶丽丽, 鲁士平, 文根旺. YGG:Cr3+晶体的光谱特性. 物理学报, 1987, 36(5): 584-590. doi: 10.7498/aps.36.584
    [19] 夏元复, 刘荣川, 王述新, 许超, 潘素瑛, 程一兵. 高铁硅酸盐玻璃体系的穆斯堡尔研究. 物理学报, 1984, 33(1): 132-136. doi: 10.7498/aps.33.132
    [20] 干福熹, 邓和, 刘慧民. 磷酸盐、氟磷酸盐和氟化物玻璃中过渡金属离子的顺磁共振研究(Ⅰ)——Cr3+,Mo3+. 物理学报, 1982, 31(3): 404-409. doi: 10.7498/aps.31.404
计量
  • 文章访问数:  1174
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-10
  • 修回日期:  2024-06-25
  • 上网日期:  2024-07-01
  • 刊出日期:  2024-08-05

/

返回文章
返回