-
镧铝硅酸盐玻璃具有稀土离子溶解度高、热稳定性好等优异的光学性能和优良的物理化学性质, 其部分物理化学性质与石英相近, 易与石英玻璃结合进行特种光纤制备, 被认为是一种理想的激光玻璃基质材料. 本文采用传统高温熔融法成功研制出一系列不同浓度Tm3+掺杂镧铝硅酸盐玻璃, 以掺铥镧铝硅酸盐玻璃为纤芯, 采用管棒堆叠法制备出掺铥双包层光子晶体光纤. 实验研究了掺铥镧铝硅酸盐玻璃及其光纤的吸收、荧光、激光等光学特性, 研究结果表明, 掺铥镧铝硅酸盐玻璃及其光子晶体光纤适于2 μm波段激光输出, 为2 μm波段高功率光纤激光器的研究提供了一种新的途径.Lanthanum aluminum silicate glass has excellent optical properties, such as high solubility of rare earth ions, good thermal stability, and excellent physicochemical properties. Some of its physicochemical properties are similar to those of silica glass, so it is easy to combine with silica glass to fabricate special optical fibers. It is considered to be an ideal laser glass matrix material. In this paper, a series of Tm3+ doped lanthanum aluminum silicate glasses with different concentrations for xTm2O3-(70–x)SiO2-21Al2O3-9La2O3 (x = 0.2%, 0.4%, 0.6%, 0.8%, 1%, mole fraction) are successfully developed by the traditional high-temperature melting method. Using thulium-doped lanthanum aluminum silicate glass as the fiber core, thulium-doped double-cladding photonic crystal optical fibers are prepared by the stack-and-draw technique and rod in tube method. The core diameter of the thulium-doped lanthanum aluminosilicate glass double-clad photonic crystal fiber is as long as 21.7 μm, the inner cladding diameter is about 119.3 μm, and the outer diameter is about 236.8 μm. The optical properties of thulium-doped lanthanum aluminum silicate glass and its optical fiber are studied experimentally. Under the excitation of a 793 nm laser, the fluorescence bandwidth of thulium-doped lanthanum aluminum silicate glass reaches 223 nm in a wavelength range of 1550–2050 nm. The fiber laser constructed with thulium-doped lanthanum alumino-silicate glass fiber achieves a laser operating at around 2 μm. The fiber laser resonant cavity consists of a pair of dichroic mirrors. The front dichroic mirror has high transmittance for light at 793 nm and high reflectivity (99.9%) for the light within a wavelength range of 1850–2050 nm. The back dichroic mirror has high reflectivity (99.9%) for light at 793 nm and high transmittance (~ 15%) at 2050 nm. Under the experimental conditions in our laboratory, the laser power reaches 253 mW. The highest slope efficiency is 9.67%, which is close to that of the thulium-doped glass fiber laser reported in the literature. It is also found that the central wavelength of fiber laser is shifted toward the longer wavelength with the increase of the optical fiber's length. These results suggest that thulium-doped lanthanum aluminum silicate glass and thulium-doped photonic crystal fiber are suitable for 2-μm fiber laser.
-
Keywords:
- thulium-doped glass fiber /
- lanthanum aluminum silicate glass /
- photonic crystal fiber /
- 2 μm laser
[1] 张安军, 段嘉霖, 邢颍滨, 李进延 2022 激光与光电子学进展 59 50Google Scholar
Zhang A J, Duan J L, Xing Y B, Li J Y 2022 Laser Opto. Pro. 59 50Google Scholar
[2] 杨昆, 任秋实, 魏石刚, 李万荣 2005 激光与光电子学进展 42 52Google Scholar
Yang K, Ren Q S, Wei S G, Li W R 2005 Laser Opto. Pro. 42 52Google Scholar
[3] Cauni V, Mihai B, Tanase F, Persu C, Irina C 2022 Rev. Roum. Sci. Tech. El. 67 85
[4] 曹正国, 田超, 蒋茂林, 钟苏权, 周琳雄, 陈桂柳 2022 现代泌尿生殖肿瘤杂志 14 156Google Scholar
Cao Z G, Tian C, Jiang M L, Zhong S Q, Zhou L X, Chen G L 2022 J. Cont. Uro. and Repro. Onco. 14 156Google Scholar
[5] McComb T S, Sims R A, Willis C C C, Kadwani P, Shah L, Richardson M 2010 Conference on Lasers and Electro-Optics San Jose, CA, USA, May 16–21, 2010 p2
[6] Hemming A, Simakov N, Davidson A, Bennetts S, Hughes M, Carmody N, Davies P, Corena L, Stepanov D, Haub J, Swain R, Carter A 2013 Conference on Lasers and Electro-Optics San Jose, CA, USA, June 9–14, 2013 p2
[7] Fu Q, Xu L, Liang S J, Shardlow P C, Shepherd D P, Shaif-ul Alam, Richardson D J 2020 Opt. Express 28 5741Google Scholar
[8] 李苏, 张占辉, 韩善果, 任香会, 刘丹, 辛杨桂, 高世一 2020 精密成形工程 12 76Google Scholar
Li S, Zhang Z H, Han S G, Ren X H, Liu D, Xin Y G, Gao S Y 2020 J. Nets. Form. Eng. 12 76Google Scholar
[9] 董亚举, 白雪涛, 郑义 2023 激光与光电子学进展 60 1Google Scholar
Dong Y J, Bai X T, Zheng Y 2023 Laser Opto. Pro. 60 1Google Scholar
[10] Zhang J X, Fu S J, Sheng Q, Zhang L, Shi W, Yao J Q 2022 Opt. Laser Technol. 158 108882Google Scholar
[11] 李鑫, 杨超, 李永亮 2022 激光杂志 43 1Google Scholar
Li X, Yang C, Li Y L 2022 Laser J. 43 1Google Scholar
[12] 钱国权, 唐国武, 吴敏波, 钱奇, 陈东丹, 杨中民 2021 硅酸盐通报 40 2471
Qian G Q, Tang G W, Wu M B, Qian Q, Chen D D, Yang Z M 2021 Bull. Chi. Ceramic. Soc. 40 2471
[13] 刘茵紫, 邢颍滨, 廖雷, 王一礴, 彭景刚, 李海清, 戴能利, 李进延 2020 物理学报 69 259Google Scholar
Liu Y Z, Xing Y B, Liao L, Wang Y B, Peng J G, Li H Q, Dai N L, Li J Y 2020 Acta Phys. Sin. 69 259Google Scholar
[14] 高松, 王欣, 范小康, 李科峰, 廖梅松, 胡丽丽 2014 物理学报 63 323Google Scholar
Gao S, Wang X, Fan X K, Li K F, Liao M S, Hu L L 2014 Acta Phys. Sin. 63 323Google Scholar
[15] Li K F, Zhang G, Hu L L 2010 Opt. Lett. 35 4136Google Scholar
[16] Tu L, Tang G W, Qian Q, Yang Z M 2020 Opt. Lett. 46 310Google Scholar
[17] 沈骁, 杨广利, 王亚飞, 陈应刚, 于春雷, 韦玮, 胡丽丽 2023 光学学报 43 112Google Scholar
Shen X, Yang G L, Wang Y F, Chen Y G, Yu C L, Wei W, Hu L L 2023 Acta Opti. Sin. 43 112Google Scholar
[18] Schuster K, Unger S, Aichele C, Lindner F, Grimm S, Litzkendorf D, Kobelke J, Bierlich J, Wondraczek K, Bartelt H 2014 Advan. Opt. Tech. 3 447Google Scholar
[19] Liang L B, Mo Z F, Ju B, Xia C M, Hou Z Y, Zhou G Y 2021 J. Non-Cryst. Solids 557 120578Google Scholar
[20] Huang Z Y, Yang J H, Mo Z F, Lu J A, Xia C M, Hou Z Y, Zhou G Y 2022 J. Non-Cryst. Solids 591 121718Google Scholar
[21] Huang Z Y, Ma W C, Wu T, Lu J A, Liu J T, Xia C M, Hou Z Y, Zhou G Y 2022 IEEE 7th Optoelectronics Global Conference Shenzhen, China, December 6–11, 2022 pp22–24
[22] Kang J J, Mo Z F, Huang Z Y, Yang J H, Ma W C, Liu J T, Xia C M, Hou Z Y, Zhou G Y 2022 J. Non-Cryst. Solids 596 121869Google Scholar
[23] 周朴, 黄良金, 冷进勇, 肖虎, 许将明, 姚天甫 2020 中国科学: 技术科学 50 123Google Scholar
Zhou P, Huang L J, Leng J Y, Xiao H, Xu J M, Yao T F 2020 Scie. Sini. Tech. 50 123Google Scholar
-
-
[1] 张安军, 段嘉霖, 邢颍滨, 李进延 2022 激光与光电子学进展 59 50Google Scholar
Zhang A J, Duan J L, Xing Y B, Li J Y 2022 Laser Opto. Pro. 59 50Google Scholar
[2] 杨昆, 任秋实, 魏石刚, 李万荣 2005 激光与光电子学进展 42 52Google Scholar
Yang K, Ren Q S, Wei S G, Li W R 2005 Laser Opto. Pro. 42 52Google Scholar
[3] Cauni V, Mihai B, Tanase F, Persu C, Irina C 2022 Rev. Roum. Sci. Tech. El. 67 85
[4] 曹正国, 田超, 蒋茂林, 钟苏权, 周琳雄, 陈桂柳 2022 现代泌尿生殖肿瘤杂志 14 156Google Scholar
Cao Z G, Tian C, Jiang M L, Zhong S Q, Zhou L X, Chen G L 2022 J. Cont. Uro. and Repro. Onco. 14 156Google Scholar
[5] McComb T S, Sims R A, Willis C C C, Kadwani P, Shah L, Richardson M 2010 Conference on Lasers and Electro-Optics San Jose, CA, USA, May 16–21, 2010 p2
[6] Hemming A, Simakov N, Davidson A, Bennetts S, Hughes M, Carmody N, Davies P, Corena L, Stepanov D, Haub J, Swain R, Carter A 2013 Conference on Lasers and Electro-Optics San Jose, CA, USA, June 9–14, 2013 p2
[7] Fu Q, Xu L, Liang S J, Shardlow P C, Shepherd D P, Shaif-ul Alam, Richardson D J 2020 Opt. Express 28 5741Google Scholar
[8] 李苏, 张占辉, 韩善果, 任香会, 刘丹, 辛杨桂, 高世一 2020 精密成形工程 12 76Google Scholar
Li S, Zhang Z H, Han S G, Ren X H, Liu D, Xin Y G, Gao S Y 2020 J. Nets. Form. Eng. 12 76Google Scholar
[9] 董亚举, 白雪涛, 郑义 2023 激光与光电子学进展 60 1Google Scholar
Dong Y J, Bai X T, Zheng Y 2023 Laser Opto. Pro. 60 1Google Scholar
[10] Zhang J X, Fu S J, Sheng Q, Zhang L, Shi W, Yao J Q 2022 Opt. Laser Technol. 158 108882Google Scholar
[11] 李鑫, 杨超, 李永亮 2022 激光杂志 43 1Google Scholar
Li X, Yang C, Li Y L 2022 Laser J. 43 1Google Scholar
[12] 钱国权, 唐国武, 吴敏波, 钱奇, 陈东丹, 杨中民 2021 硅酸盐通报 40 2471
Qian G Q, Tang G W, Wu M B, Qian Q, Chen D D, Yang Z M 2021 Bull. Chi. Ceramic. Soc. 40 2471
[13] 刘茵紫, 邢颍滨, 廖雷, 王一礴, 彭景刚, 李海清, 戴能利, 李进延 2020 物理学报 69 259Google Scholar
Liu Y Z, Xing Y B, Liao L, Wang Y B, Peng J G, Li H Q, Dai N L, Li J Y 2020 Acta Phys. Sin. 69 259Google Scholar
[14] 高松, 王欣, 范小康, 李科峰, 廖梅松, 胡丽丽 2014 物理学报 63 323Google Scholar
Gao S, Wang X, Fan X K, Li K F, Liao M S, Hu L L 2014 Acta Phys. Sin. 63 323Google Scholar
[15] Li K F, Zhang G, Hu L L 2010 Opt. Lett. 35 4136Google Scholar
[16] Tu L, Tang G W, Qian Q, Yang Z M 2020 Opt. Lett. 46 310Google Scholar
[17] 沈骁, 杨广利, 王亚飞, 陈应刚, 于春雷, 韦玮, 胡丽丽 2023 光学学报 43 112Google Scholar
Shen X, Yang G L, Wang Y F, Chen Y G, Yu C L, Wei W, Hu L L 2023 Acta Opti. Sin. 43 112Google Scholar
[18] Schuster K, Unger S, Aichele C, Lindner F, Grimm S, Litzkendorf D, Kobelke J, Bierlich J, Wondraczek K, Bartelt H 2014 Advan. Opt. Tech. 3 447Google Scholar
[19] Liang L B, Mo Z F, Ju B, Xia C M, Hou Z Y, Zhou G Y 2021 J. Non-Cryst. Solids 557 120578Google Scholar
[20] Huang Z Y, Yang J H, Mo Z F, Lu J A, Xia C M, Hou Z Y, Zhou G Y 2022 J. Non-Cryst. Solids 591 121718Google Scholar
[21] Huang Z Y, Ma W C, Wu T, Lu J A, Liu J T, Xia C M, Hou Z Y, Zhou G Y 2022 IEEE 7th Optoelectronics Global Conference Shenzhen, China, December 6–11, 2022 pp22–24
[22] Kang J J, Mo Z F, Huang Z Y, Yang J H, Ma W C, Liu J T, Xia C M, Hou Z Y, Zhou G Y 2022 J. Non-Cryst. Solids 596 121869Google Scholar
[23] 周朴, 黄良金, 冷进勇, 肖虎, 许将明, 姚天甫 2020 中国科学: 技术科学 50 123Google Scholar
Zhou P, Huang L J, Leng J Y, Xiao H, Xu J M, Yao T F 2020 Scie. Sini. Tech. 50 123Google Scholar
计量
- 文章访问数: 2937
- PDF下载量: 59
- 被引次数: 0