搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺铥镧铝硅酸盐玻璃光子晶体光纤制备及光学特性

夏长明 卢家澳 黄卓元 刘建涛 侯峙云 周桂耀

引用本文:
Citation:

掺铥镧铝硅酸盐玻璃光子晶体光纤制备及光学特性

夏长明, 卢家澳, 黄卓元, 刘建涛, 侯峙云, 周桂耀

Preparation and optical properties of thulium doped lanthanum aluminum silicate glass photonic crystal fiber

Xia Chang-Ming, Lu Jia-Ao, Huang Zhuo-Yuan, Liu Jian-Tao, Hou Zhi-Yun, Zhou Gui-Yao
PDF
HTML
导出引用
  • 镧铝硅酸盐玻璃具有稀土离子溶解度高、热稳定性好等优异的光学性能和优良的物理化学性质, 其部分物理化学性质与石英相近, 易与石英玻璃结合进行特种光纤制备, 被认为是一种理想的激光玻璃基质材料. 本文采用传统高温熔融法成功研制出一系列不同浓度Tm3+掺杂镧铝硅酸盐玻璃, 以掺铥镧铝硅酸盐玻璃为纤芯, 采用管棒堆叠法制备出掺铥双包层光子晶体光纤. 实验研究了掺铥镧铝硅酸盐玻璃及其光纤的吸收、荧光、激光等光学特性, 研究结果表明, 掺铥镧铝硅酸盐玻璃及其光子晶体光纤适于2 μm波段激光输出, 为2 μm波段高功率光纤激光器的研究提供了一种新的途径.
    Lanthanum aluminum silicate glass has excellent optical properties, such as high solubility of rare earth ions, good thermal stability, and excellent physicochemical properties. Some of its physicochemical properties are similar to those of silica glass, so it is easy to combine with silica glass to fabricate special optical fibers. It is considered to be an ideal laser glass matrix material. In this paper, a series of Tm3+ doped lanthanum aluminum silicate glasses with different concentrations for xTm2O3-(70–x)SiO2-21Al2O3-9La2O3 (x = 0.2%, 0.4%, 0.6%, 0.8%, 1%, mole fraction) are successfully developed by the traditional high-temperature melting method. Using thulium-doped lanthanum aluminum silicate glass as the fiber core, thulium-doped double-cladding photonic crystal optical fibers are prepared by the stack-and-draw technique and rod in tube method. The core diameter of the thulium-doped lanthanum aluminosilicate glass double-clad photonic crystal fiber is as long as 21.7 μm, the inner cladding diameter is about 119.3 μm, and the outer diameter is about 236.8 μm. The optical properties of thulium-doped lanthanum aluminum silicate glass and its optical fiber are studied experimentally. Under the excitation of a 793 nm laser, the fluorescence bandwidth of thulium-doped lanthanum aluminum silicate glass reaches 223 nm in a wavelength range of 1550–2050 nm. The fiber laser constructed with thulium-doped lanthanum alumino-silicate glass fiber achieves a laser operating at around 2 μm. The fiber laser resonant cavity consists of a pair of dichroic mirrors. The front dichroic mirror has high transmittance for light at 793 nm and high reflectivity (99.9%) for the light within a wavelength range of 1850–2050 nm. The back dichroic mirror has high reflectivity (99.9%) for light at 793 nm and high transmittance (~ 15%) at 2050 nm. Under the experimental conditions in our laboratory, the laser power reaches 253 mW. The highest slope efficiency is 9.67%, which is close to that of the thulium-doped glass fiber laser reported in the literature. It is also found that the central wavelength of fiber laser is shifted toward the longer wavelength with the increase of the optical fiber's length. These results suggest that thulium-doped lanthanum aluminum silicate glass and thulium-doped photonic crystal fiber are suitable for 2-μm fiber laser.
      通信作者: 周桂耀, zguiyao@163.com
    • 基金项目: 国家自然科学基金重点项目(批准号: 61935010, 61735005)资助的课题.
      Corresponding author: Zhou Gui-Yao, zguiyao@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61935010, 61735005).
    [1]

    张安军, 段嘉霖, 邢颍滨, 李进延 2022 激光与光电子学进展 59 50Google Scholar

    Zhang A J, Duan J L, Xing Y B, Li J Y 2022 Laser Opto. Pro. 59 50Google Scholar

    [2]

    杨昆, 任秋实, 魏石刚, 李万荣 2005 激光与光电子学进展 42 52Google Scholar

    Yang K, Ren Q S, Wei S G, Li W R 2005 Laser Opto. Pro. 42 52Google Scholar

    [3]

    Cauni V, Mihai B, Tanase F, Persu C, Irina C 2022 Rev. Roum. Sci. Tech. El. 67 85

    [4]

    曹正国, 田超, 蒋茂林, 钟苏权, 周琳雄, 陈桂柳 2022 现代泌尿生殖肿瘤杂志 14 156Google Scholar

    Cao Z G, Tian C, Jiang M L, Zhong S Q, Zhou L X, Chen G L 2022 J. Cont. Uro. and Repro. Onco. 14 156Google Scholar

    [5]

    McComb T S, Sims R A, Willis C C C, Kadwani P, Shah L, Richardson M 2010 Conference on Lasers and Electro-Optics San Jose, CA, USA, May 16–21, 2010 p2

    [6]

    Hemming A, Simakov N, Davidson A, Bennetts S, Hughes M, Carmody N, Davies P, Corena L, Stepanov D, Haub J, Swain R, Carter A 2013 Conference on Lasers and Electro-Optics San Jose, CA, USA, June 9–14, 2013 p2

    [7]

    Fu Q, Xu L, Liang S J, Shardlow P C, Shepherd D P, Shaif-ul Alam, Richardson D J 2020 Opt. Express 28 5741Google Scholar

    [8]

    李苏, 张占辉, 韩善果, 任香会, 刘丹, 辛杨桂, 高世一 2020 精密成形工程 12 76Google Scholar

    Li S, Zhang Z H, Han S G, Ren X H, Liu D, Xin Y G, Gao S Y 2020 J. Nets. Form. Eng. 12 76Google Scholar

    [9]

    董亚举, 白雪涛, 郑义 2023 激光与光电子学进展 60 1Google Scholar

    Dong Y J, Bai X T, Zheng Y 2023 Laser Opto. Pro. 60 1Google Scholar

    [10]

    Zhang J X, Fu S J, Sheng Q, Zhang L, Shi W, Yao J Q 2022 Opt. Laser Technol. 158 108882Google Scholar

    [11]

    李鑫, 杨超, 李永亮 2022 激光杂志 43 1Google Scholar

    Li X, Yang C, Li Y L 2022 Laser J. 43 1Google Scholar

    [12]

    钱国权, 唐国武, 吴敏波, 钱奇, 陈东丹, 杨中民 2021 硅酸盐通报 40 2471

    Qian G Q, Tang G W, Wu M B, Qian Q, Chen D D, Yang Z M 2021 Bull. Chi. Ceramic. Soc. 40 2471

    [13]

    刘茵紫, 邢颍滨, 廖雷, 王一礴, 彭景刚, 李海清, 戴能利, 李进延 2020 物理学报 69 259Google Scholar

    Liu Y Z, Xing Y B, Liao L, Wang Y B, Peng J G, Li H Q, Dai N L, Li J Y 2020 Acta Phys. Sin. 69 259Google Scholar

    [14]

    高松, 王欣, 范小康, 李科峰, 廖梅松, 胡丽丽 2014 物理学报 63 323Google Scholar

    Gao S, Wang X, Fan X K, Li K F, Liao M S, Hu L L 2014 Acta Phys. Sin. 63 323Google Scholar

    [15]

    Li K F, Zhang G, Hu L L 2010 Opt. Lett. 35 4136Google Scholar

    [16]

    Tu L, Tang G W, Qian Q, Yang Z M 2020 Opt. Lett. 46 310Google Scholar

    [17]

    沈骁, 杨广利, 王亚飞, 陈应刚, 于春雷, 韦玮, 胡丽丽 2023 光学学报 43 112Google Scholar

    Shen X, Yang G L, Wang Y F, Chen Y G, Yu C L, Wei W, Hu L L 2023 Acta Opti. Sin. 43 112Google Scholar

    [18]

    Schuster K, Unger S, Aichele C, Lindner F, Grimm S, Litzkendorf D, Kobelke J, Bierlich J, Wondraczek K, Bartelt H 2014 Advan. Opt. Tech. 3 447Google Scholar

    [19]

    Liang L B, Mo Z F, Ju B, Xia C M, Hou Z Y, Zhou G Y 2021 J. Non-Cryst. Solids 557 120578Google Scholar

    [20]

    Huang Z Y, Yang J H, Mo Z F, Lu J A, Xia C M, Hou Z Y, Zhou G Y 2022 J. Non-Cryst. Solids 591 121718Google Scholar

    [21]

    Huang Z Y, Ma W C, Wu T, Lu J A, Liu J T, Xia C M, Hou Z Y, Zhou G Y 2022 IEEE 7th Optoelectronics Global Conference Shenzhen, China, December 6–11, 2022 pp22–24

    [22]

    Kang J J, Mo Z F, Huang Z Y, Yang J H, Ma W C, Liu J T, Xia C M, Hou Z Y, Zhou G Y 2022 J. Non-Cryst. Solids 596 121869Google Scholar

    [23]

    周朴, 黄良金, 冷进勇, 肖虎, 许将明, 姚天甫 2020 中国科学: 技术科学 50 123Google Scholar

    Zhou P, Huang L J, Leng J Y, Xiao H, Xu J M, Yao T F 2020 Scie. Sini. Tech. 50 123Google Scholar

  • 图 1  (a) 掺铥镧铝硅酸盐玻璃样品; (b) 掺铥光子晶体光纤端面图

    Fig. 1.  (a) Glass samples of Tm3+ doped glass; (b) optical micrograph of Tm3+-doped fiber cross section.

    图 2  掺铥镧铝硅酸盐玻璃的吸收光谱

    Fig. 2.  Absorption spectrum of Tm3+-doped glasses.

    图 3  掺铥镧铝硅酸盐玻璃荧光光谱图

    Fig. 3.  Fluorescence spectra of Tm3+-doped glass under 793 nm laser excitation.

    图 4  掺铥光纤的损耗谱图

    Fig. 4.  Loss spectrum of Tm3+-doped optical fiber.

    图 5  光纤激光器空间光路示意图

    Fig. 5.  Schematic diagram of Tm3+-doped optical fiber laser.

    图 6  掺铥光纤的荧光及激光光谱

    Fig. 6.  Fluorescence and laser spectrum of Tm3+-doped optical fiber.

    图 7  不同长度掺铥光纤的激光输出光谱

    Fig. 7.  Laser spectrum with different length of Tm3+-doped optical fiber.

    图 8  不同长度为掺铥光纤的斜率效率

    Fig. 8.  Slope efficiency of Tm3+-doped fiber with different length.

  • [1]

    张安军, 段嘉霖, 邢颍滨, 李进延 2022 激光与光电子学进展 59 50Google Scholar

    Zhang A J, Duan J L, Xing Y B, Li J Y 2022 Laser Opto. Pro. 59 50Google Scholar

    [2]

    杨昆, 任秋实, 魏石刚, 李万荣 2005 激光与光电子学进展 42 52Google Scholar

    Yang K, Ren Q S, Wei S G, Li W R 2005 Laser Opto. Pro. 42 52Google Scholar

    [3]

    Cauni V, Mihai B, Tanase F, Persu C, Irina C 2022 Rev. Roum. Sci. Tech. El. 67 85

    [4]

    曹正国, 田超, 蒋茂林, 钟苏权, 周琳雄, 陈桂柳 2022 现代泌尿生殖肿瘤杂志 14 156Google Scholar

    Cao Z G, Tian C, Jiang M L, Zhong S Q, Zhou L X, Chen G L 2022 J. Cont. Uro. and Repro. Onco. 14 156Google Scholar

    [5]

    McComb T S, Sims R A, Willis C C C, Kadwani P, Shah L, Richardson M 2010 Conference on Lasers and Electro-Optics San Jose, CA, USA, May 16–21, 2010 p2

    [6]

    Hemming A, Simakov N, Davidson A, Bennetts S, Hughes M, Carmody N, Davies P, Corena L, Stepanov D, Haub J, Swain R, Carter A 2013 Conference on Lasers and Electro-Optics San Jose, CA, USA, June 9–14, 2013 p2

    [7]

    Fu Q, Xu L, Liang S J, Shardlow P C, Shepherd D P, Shaif-ul Alam, Richardson D J 2020 Opt. Express 28 5741Google Scholar

    [8]

    李苏, 张占辉, 韩善果, 任香会, 刘丹, 辛杨桂, 高世一 2020 精密成形工程 12 76Google Scholar

    Li S, Zhang Z H, Han S G, Ren X H, Liu D, Xin Y G, Gao S Y 2020 J. Nets. Form. Eng. 12 76Google Scholar

    [9]

    董亚举, 白雪涛, 郑义 2023 激光与光电子学进展 60 1Google Scholar

    Dong Y J, Bai X T, Zheng Y 2023 Laser Opto. Pro. 60 1Google Scholar

    [10]

    Zhang J X, Fu S J, Sheng Q, Zhang L, Shi W, Yao J Q 2022 Opt. Laser Technol. 158 108882Google Scholar

    [11]

    李鑫, 杨超, 李永亮 2022 激光杂志 43 1Google Scholar

    Li X, Yang C, Li Y L 2022 Laser J. 43 1Google Scholar

    [12]

    钱国权, 唐国武, 吴敏波, 钱奇, 陈东丹, 杨中民 2021 硅酸盐通报 40 2471

    Qian G Q, Tang G W, Wu M B, Qian Q, Chen D D, Yang Z M 2021 Bull. Chi. Ceramic. Soc. 40 2471

    [13]

    刘茵紫, 邢颍滨, 廖雷, 王一礴, 彭景刚, 李海清, 戴能利, 李进延 2020 物理学报 69 259Google Scholar

    Liu Y Z, Xing Y B, Liao L, Wang Y B, Peng J G, Li H Q, Dai N L, Li J Y 2020 Acta Phys. Sin. 69 259Google Scholar

    [14]

    高松, 王欣, 范小康, 李科峰, 廖梅松, 胡丽丽 2014 物理学报 63 323Google Scholar

    Gao S, Wang X, Fan X K, Li K F, Liao M S, Hu L L 2014 Acta Phys. Sin. 63 323Google Scholar

    [15]

    Li K F, Zhang G, Hu L L 2010 Opt. Lett. 35 4136Google Scholar

    [16]

    Tu L, Tang G W, Qian Q, Yang Z M 2020 Opt. Lett. 46 310Google Scholar

    [17]

    沈骁, 杨广利, 王亚飞, 陈应刚, 于春雷, 韦玮, 胡丽丽 2023 光学学报 43 112Google Scholar

    Shen X, Yang G L, Wang Y F, Chen Y G, Yu C L, Wei W, Hu L L 2023 Acta Opti. Sin. 43 112Google Scholar

    [18]

    Schuster K, Unger S, Aichele C, Lindner F, Grimm S, Litzkendorf D, Kobelke J, Bierlich J, Wondraczek K, Bartelt H 2014 Advan. Opt. Tech. 3 447Google Scholar

    [19]

    Liang L B, Mo Z F, Ju B, Xia C M, Hou Z Y, Zhou G Y 2021 J. Non-Cryst. Solids 557 120578Google Scholar

    [20]

    Huang Z Y, Yang J H, Mo Z F, Lu J A, Xia C M, Hou Z Y, Zhou G Y 2022 J. Non-Cryst. Solids 591 121718Google Scholar

    [21]

    Huang Z Y, Ma W C, Wu T, Lu J A, Liu J T, Xia C M, Hou Z Y, Zhou G Y 2022 IEEE 7th Optoelectronics Global Conference Shenzhen, China, December 6–11, 2022 pp22–24

    [22]

    Kang J J, Mo Z F, Huang Z Y, Yang J H, Ma W C, Liu J T, Xia C M, Hou Z Y, Zhou G Y 2022 J. Non-Cryst. Solids 596 121869Google Scholar

    [23]

    周朴, 黄良金, 冷进勇, 肖虎, 许将明, 姚天甫 2020 中国科学: 技术科学 50 123Google Scholar

    Zhou P, Huang L J, Leng J Y, Xiao H, Xu J M, Yao T F 2020 Scie. Sini. Tech. 50 123Google Scholar

  • [1] 王家璐, 杜木清, 张伶莉, 刘永军, 孙伟民. 基于不同液晶填充光子晶体光纤传输特性的研究. 物理学报, 2015, 64(12): 120702. doi: 10.7498/aps.64.120702
    [2] 娄淑琴, 鹿文亮, 王鑫. 新型抗弯曲大模场面积光子晶体光纤. 物理学报, 2013, 62(4): 044201. doi: 10.7498/aps.62.044201
    [3] 王慧琴, 龚旗煌. 随机光纤激光器中光纤与随机介质匹配问题的研究. 物理学报, 2013, 62(21): 214202. doi: 10.7498/aps.62.214202
    [4] 赵兴涛, 刘晓旭, 郑义, 韩颖, 周桂耀, 李曙光, 侯蓝田. 微小空气孔传光的光子晶体光纤研究. 物理学报, 2012, 61(21): 214210. doi: 10.7498/aps.61.214210
    [5] 张大鹏, 胡明列, 谢辰, 柴路, 王清月. 基于非线性偏振旋转锁模的高功率光子晶体光纤飞秒激光振荡器. 物理学报, 2012, 61(4): 044206. doi: 10.7498/aps.61.044206
    [6] 王晓琰, 李曙光, 刘硕, 张磊, 尹国冰, 冯荣普. 中红外高双折射高非线性宽带正常色散As2 S3光子晶体光纤. 物理学报, 2011, 60(6): 064213. doi: 10.7498/aps.60.064213
    [7] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器. 物理学报, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [8] 张鑫, 胡明列, 宋有健, 柴路, 王清月. 大模场面积光子晶体光纤耗散孤子锁模激光器. 物理学报, 2010, 59(3): 1863-1869. doi: 10.7498/aps.59.1863
    [9] 宋有建, 胡明列, 谢辰, 柴路, 王清月. 输出近百纳焦耳脉冲能量的光子晶体光纤锁模激光器. 物理学报, 2010, 59(10): 7105-7110. doi: 10.7498/aps.59.7105
    [10] 方晓惠, 胡明列, 刘博文, 栗岩锋, 柴路, 王清月, 童维军, 罗杰. 光子晶体光纤纤芯整形获得中空模式输出. 物理学报, 2009, 58(9): 6330-6334. doi: 10.7498/aps.58.6330
    [11] 郭铁英, 娄淑琴, 李宏雷, 简水生. 光子晶体光纤拉制中工艺参数的控制. 物理学报, 2009, 58(9): 6308-6315. doi: 10.7498/aps.58.6308
    [12] 方晓惠, 柴路, 胡明列, 栗岩锋, 王清月. 七芯光子晶体光纤结构优化的数值分析. 物理学报, 2009, 58(4): 2495-2500. doi: 10.7498/aps.58.2495
    [13] 张驰, 胡明列, 宋有建, 张鑫, 柴路, 王清月. 自由耦合输出的大模场面积光子晶体光纤锁模激光器. 物理学报, 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [14] 赵振宇, 段开椋, 王建明, 赵 卫, 王屹山. 高功率光子晶体光纤放大器实验研究. 物理学报, 2008, 57(10): 6335-6339. doi: 10.7498/aps.57.6335
    [15] 王建明, 段开椋, 王屹山. 两光纤激光器相干合成的实验研究. 物理学报, 2008, 57(9): 5627-5631. doi: 10.7498/aps.57.5627
    [16] 刘博文, 胡明列, 宋有建, 柴 路, 王清月. 亚百飞秒高功率掺镱大模面积光子晶体光纤飞秒激光放大器的实验研究. 物理学报, 2008, 57(11): 6921-6925. doi: 10.7498/aps.57.6921
    [17] 宋有建, 胡明列, 刘博文, 柴 路, 王清月. 高能量掺Yb偏振型大模场面积光子晶体光纤孤子锁模飞秒激光器. 物理学报, 2008, 57(10): 6425-6429. doi: 10.7498/aps.57.6425
    [18] 刘卫华, 宋啸中, 王屹山, 刘红军, 赵 卫, 刘雪明, 彭钦军, 许祖彦. 飞秒激光脉冲在高非线性光子晶体光纤中产生超连续谱的实验研究. 物理学报, 2008, 57(2): 917-922. doi: 10.7498/aps.57.917
    [19] 娄淑琴, 任国斌, 延凤平, 简水生. 类矩形芯光子晶体光纤的色散与偏振特性. 物理学报, 2005, 54(3): 1229-1234. doi: 10.7498/aps.54.1229
    [20] 胡明列, 王清月, 栗岩峰, 王 专, 张志刚, 柴 路, 章若冰. 飞秒激光在光子晶体光纤中产生超连续光谱机制的实验研究. 物理学报, 2004, 53(12): 4243-4247. doi: 10.7498/aps.53.4243
计量
  • 文章访问数:  1235
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-11
  • 修回日期:  2023-06-20
  • 上网日期:  2023-07-18
  • 刊出日期:  2023-10-20

/

返回文章
返回