搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于不同液晶填充光子晶体光纤传输特性的研究

王家璐 杜木清 张伶莉 刘永军 孙伟民

引用本文:
Citation:

基于不同液晶填充光子晶体光纤传输特性的研究

王家璐, 杜木清, 张伶莉, 刘永军, 孙伟民

Transmission characteristics of photonic crystal fibers based on filling different kinds of liquid crystals

Wang Jia-Lu, Du Mu-Qing, Zhang Ling-Li, Liu Yong-Jun, Sun Wei-Min
PDF
导出引用
  • 将5种不同折射率的液晶分别填入实芯光子晶体光纤的空气孔中, 通过改变外场条件, 研究其输出光谱的变化规律, 并进行了理论模拟分析. 结果表明: 填充液晶后, 输出光谱由全通变为多个波峰的带隙式; 同时, 液晶的折射率差值越大, 其波峰位置越向长波长方向移动, 且相对光强的对比度可以达到16 dB; 温度由20 ℃上升到85 ℃时, 波峰向短波长方向移动, 最大调控范围可达41 nm; 调节电压从0-250 V, 输出光谱的相对光强变小, 但波峰具有较好的稳定性; 在室温下, 波峰不随入射光偏振态的变化而变化. 该液晶光子晶体光纤可应用于温控可调谐滤波器或电控衰减器.
    The transmission characteristics of full-filled photonic liquid crystal fibers (PLCFs) which are filled with five kinds of liquid crystals (LCs) are experimentally studied and theoretically analyzed. The influences of temperature and external electric field on the transmission characteristics of PLCFs are also discussed in this paper. The transmission spectra of PLCFs show obvious bandgaps, and the number and the central wavelengths of the bandgaps depend on the average value of the refractive indices of LCs. By changing the temperature from 20 ℃ to 80 ℃, a blue shift in the bandgap is observed, and the maximum tuning range of the bandgap is 41 nm. Then, with the voltage turning from 0 V to 250 V, the output power of the transmission spectrum decreases, while the central wavelength of the bandgap is almost unchanged. Finally, the transmission spectrum keeps a good stability, even if the polarization state of the input light changes.
    • 基金项目: 国家自然科学基金(批准号:61107059,61308052,61077047)和教育部111引智基地项目(批准号:B13015)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61107059, 61308052, 61077047) and the 111 Project (B13015) to the Harbin Engineering University, China.
    [1]

    Pang M, Xiao L M, Jin W, Arismar Cerqueira S Jr 2012 J. Lightwave Technol. 30 1422

    [2]

    Hou J P, Ning T, Gai S L, Li P, Hao J P, Zhao J L 2010 Acta Phys. Sin. 59 4732 (in Chinese) [侯建平, 宁韬, 盖双龙, 李鹏, 皓建苹, 赵建林 2010 物理学报 59 4732]

    [3]

    Zhang M Y, Li S G, Yao Y Y, Zhang L, Fu B, Yin G B 2010 Acta Phys. Sin. 59 3278 (in Chinese) [张美艳, 李曙光, 姚艳艳, 张磊, 付博, 尹国冰 2010 物理学报 59 3278]

    [4]

    Cubillas A M, Unterkofler S, Euser T G, Etzold B J M, Jones A C, Sadler P J, Wasserscheid P, Russell P St J 2013 Chem. Soc. Rev. 42 8629

    [5]

    Qian W W, Zhao C L, He S L, Dong X Y, Zhang S Q, Zhang Z X, Jin S Z, Gou J T, Wei H F 2011 Opt. Lett. 36 1548

    [6]

    Yu C P, Liou J H 2009 Opt. Express 17 8729

    [7]

    Kuhlmey B T, Eggleton B J, Wu D K C 2009 J. Lightwave Technol. 27 1617

    [8]

    Larsen T T, Bjarklev A 2003 Opt. Express 11 2589

    [9]

    Mathews S, Farrell G, Semenova Y 2011 Microwave Opt. Technol. Lett. 53 539

    [10]

    Tefelska M M, Ertman S, Wolinski T R, Mergo P, Dabrowski R 2012 IEEE Photon. Technol. Lett. 24 631

    [11]

    Ertman S, Rodríguez A H, Tefelska M M, Chychłowski M S, Pysz D, Buczyński R, Nowinowski-Kruszelnicki E, Dąbrowski R, Woliński T R 2012 J. Lightwave Technol. 30 1208

    [12]

    Peng Y, Hou J, Zhang Y, Huang Z H, Xiao R, Lu Q S 2013 Opt. Lett. 38 263

    [13]

    Sun J, Chan C C, Ni N 2007 Opt. Commun. 278 66

    [14]

    Li J, Wu S T 2004 J. Appl. Phys. 95 896

  • [1]

    Pang M, Xiao L M, Jin W, Arismar Cerqueira S Jr 2012 J. Lightwave Technol. 30 1422

    [2]

    Hou J P, Ning T, Gai S L, Li P, Hao J P, Zhao J L 2010 Acta Phys. Sin. 59 4732 (in Chinese) [侯建平, 宁韬, 盖双龙, 李鹏, 皓建苹, 赵建林 2010 物理学报 59 4732]

    [3]

    Zhang M Y, Li S G, Yao Y Y, Zhang L, Fu B, Yin G B 2010 Acta Phys. Sin. 59 3278 (in Chinese) [张美艳, 李曙光, 姚艳艳, 张磊, 付博, 尹国冰 2010 物理学报 59 3278]

    [4]

    Cubillas A M, Unterkofler S, Euser T G, Etzold B J M, Jones A C, Sadler P J, Wasserscheid P, Russell P St J 2013 Chem. Soc. Rev. 42 8629

    [5]

    Qian W W, Zhao C L, He S L, Dong X Y, Zhang S Q, Zhang Z X, Jin S Z, Gou J T, Wei H F 2011 Opt. Lett. 36 1548

    [6]

    Yu C P, Liou J H 2009 Opt. Express 17 8729

    [7]

    Kuhlmey B T, Eggleton B J, Wu D K C 2009 J. Lightwave Technol. 27 1617

    [8]

    Larsen T T, Bjarklev A 2003 Opt. Express 11 2589

    [9]

    Mathews S, Farrell G, Semenova Y 2011 Microwave Opt. Technol. Lett. 53 539

    [10]

    Tefelska M M, Ertman S, Wolinski T R, Mergo P, Dabrowski R 2012 IEEE Photon. Technol. Lett. 24 631

    [11]

    Ertman S, Rodríguez A H, Tefelska M M, Chychłowski M S, Pysz D, Buczyński R, Nowinowski-Kruszelnicki E, Dąbrowski R, Woliński T R 2012 J. Lightwave Technol. 30 1208

    [12]

    Peng Y, Hou J, Zhang Y, Huang Z H, Xiao R, Lu Q S 2013 Opt. Lett. 38 263

    [13]

    Sun J, Chan C C, Ni N 2007 Opt. Commun. 278 66

    [14]

    Li J, Wu S T 2004 J. Appl. Phys. 95 896

计量
  • 文章访问数:  2303
  • PDF下载量:  480
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-24
  • 修回日期:  2015-04-15
  • 刊出日期:  2015-06-05

基于不同液晶填充光子晶体光纤传输特性的研究

  • 1. 哈尔滨工程大学自动化学院, 哈尔滨 150001;
  • 2. 哈尔滨工程大学, 纤维集成光学教育部重点实验室, 哈尔滨 150001;
  • 3. 哈尔滨工业大学物理系, 哈尔滨 150001
    基金项目: 

    国家自然科学基金(批准号:61107059,61308052,61077047)和教育部111引智基地项目(批准号:B13015)资助的课题.

摘要: 将5种不同折射率的液晶分别填入实芯光子晶体光纤的空气孔中, 通过改变外场条件, 研究其输出光谱的变化规律, 并进行了理论模拟分析. 结果表明: 填充液晶后, 输出光谱由全通变为多个波峰的带隙式; 同时, 液晶的折射率差值越大, 其波峰位置越向长波长方向移动, 且相对光强的对比度可以达到16 dB; 温度由20 ℃上升到85 ℃时, 波峰向短波长方向移动, 最大调控范围可达41 nm; 调节电压从0-250 V, 输出光谱的相对光强变小, 但波峰具有较好的稳定性; 在室温下, 波峰不随入射光偏振态的变化而变化. 该液晶光子晶体光纤可应用于温控可调谐滤波器或电控衰减器.

English Abstract

参考文献 (14)

目录

    /

    返回文章
    返回