搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于表面等离子体共振的新型超宽带微结构光纤传感器研究

丁子平 廖健飞 曾泽楷

引用本文:
Citation:

基于表面等离子体共振的新型超宽带微结构光纤传感器研究

丁子平, 廖健飞, 曾泽楷

A new type of ultra-broadband microstructured fiber sensor based on surface plasmon resonance

Ding Zi-Ping, Liao Jian-Fei, Zeng Ze-Kai
PDF
HTML
导出引用
  • 基于表面等离子体共振的微结构光纤传感器具有高灵敏、免标记和实时监控等优点. 如今, 由于此类传感器广泛应用于食品安全控制、环境检测、生物分子分析物检测等诸多领域而受到大量研究. 然而, 目前所报道的绝大多数此类传感器只能应用于可见光或近中红外传感. 因此, 对可应用于中红外传感的表面等离子体共振微结构光纤传感器的研究是一项极具挑战性的工作. 基于此, 本文设计了一种可以工作在近红外和中红外区域的新型高灵敏表面等离子体共振微结构光纤传感器. 传感器采用双芯单样品通道结构, 该结构不仅可以消除相邻样品通道间的相互干扰和提高传感器的信噪比, 还可以在超宽带波长范围内实现高灵敏检测. 采用全矢量有限元法对其传感特性进行了系统的研究, 研究结果表明: 当待测样品折射率分布在1.423—1.513范围内时, 传感器不仅可以在1.548—2.796 μm的超宽带波长范围内进行工作, 而且其平均灵敏度高达13964 nm/RIU. 此外, 传感器的最高波长灵敏度和折射率分辨率分别为17900 nm/RIU, 5.59 × 10–7 RIU.
    Microstructured fiber (MF) sensors based on surface plasmon resonance (SPR) have been widely investigated because they have many merits including high sensitivity, label-free and real-time detection and so on, thus they possess extensive applications such as in food safety control, environmental monitoring, biomolecular analytes detection, antibody-antigen interaction, liquid detection and many others. However, most of reported SPR-based MF sensors can only work in the visible or near-infrared wavelength region. Hence, the investigation of high-performance mid-infrared SPR-based MF sensors is a challenge task. In this paper, with the aim of overcoming the above limitation, a new type of high-sensitivity SPR-based MF sensor coated with indium tin oxide (ITO) layer is proposed. The proposed sensor can work in both the near-infrared and mid-infrared wavelength region. Benefitting from its two-core and single analyte channel structure, our proposed sensor can effectively eliminate the interference among neighboring analyte channels, improving its signal-to-noise ratio, and achieving high-sensitivity detection in ultra-broadband wavelength range. By using the full-vector finite method with the PML boundary conditions, the sensing properties of our proposed sensor are numerically studied in detail. The numerical results show that the resonance wavelength of the proposed sensor shifts toward a long wavelength region as the refractive index of analyte increases from 1.423 to 1.513, and a similar phenomenon can be found if the thickness of the ITO layer increases from 40 nm to 60 nm. Nevertheless, the wavelength sensitivity of the proposed sensor decreases with the increase of the diameter of the hole located in the fiber core region. On the other hand, when the refractive index of analyte varies in a large range of 1.423–1.513, the proposed sensor can operate in an ultra-broad wavelength range of 1.548–2.796 μm, and the average wavelength sensitivity is as high as 13964 nm/refractive index unit (RIU). Moreover, the maximum wavelength sensitivity and refractive index resolution increase up to 17900 nm/RIU and 5.59 × 10–7 RIU, respectively. Hence, our proposed SPR-based MF sensor can be applied to environmental monitoring, biomolecular analyte detection and chemical detection.
      通信作者: 廖健飞, jfliao@126.com
    • 基金项目: 国家自然科学基金(批准号: 61765003)、江西省自然科学基金(批准号: 20181BAB202029)和赣南师范大学研究生创新基金(批准号: YCX19A043)资助的课题
      Corresponding author: Liao Jian-Fei, jfliao@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61765003), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20181BAB202029), and the Graduate Innovation Foundation of Gannan Normal University, China (Grant No. YCX19A043)
    [1]

    梁瑞冰, 孙琪真, 沃江海, 刘德明 2011 物理学报 60 104221Google Scholar

    Liang R B, Sun Q Z, Wo J H, Liu D M 2011 Acta Phys. Sin. 60 104221Google Scholar

    [2]

    李桂成, 张微波 2011 计算机测量与控制 19 1420Google Scholar

    Li G C, Zhang W B 2011 Computer Measurement and Control 19 1420Google Scholar

    [3]

    郭双生, 侯继东 1996 中国航天 7 25

    Guo S S, Hou J D 1996 Aerospace China 7 25

    [4]

    施伟华, 尤承杰, 吴静 2015 物理学报 64 224221Google Scholar

    Shi W H, You C J, Wu J 2015 Acta Phys. Sin. 64 224221Google Scholar

    [5]

    Hassani A, Skorobogatiy M 2006 Opt. Express 14 11616Google Scholar

    [6]

    Yu X, Zhang Y, Pan S, Shum P, Yan M, Leviatan Y, Li C 2010 J. Opt. 12 015005Google Scholar

    [7]

    帅彬彬 2013 硕士学位论文 (武汉: 华中科技大学)

    Shuai B B 2013 M. S. Thesis (Wuha: Huazhong University of Science & Technology) (in Chinese)

    [8]

    Otupiri R, Akowuah E K, Haxha S, Ademgil H, AbdelMalek F, Aggoun A 2014 IEEE Photon. J. 6 1Google Scholar

    [9]

    Liu C, Wang F, Lv J, Sun T, Liu Q, Mu H, Chu P C 2015 J. Nanophotonics 9 0930501Google Scholar

    [10]

    Huang T Y 2017 Plasmonics 12 583Google Scholar

    [11]

    Chen X, Xia L, Li C 2018 IEEE Photon. J. 10 6800709Google Scholar

    [12]

    Li T, Zhu L, Yang X, Lou X, Yu L 2020 Sensor 20 741Google Scholar

    [13]

    Rifat A A, Mahdiraji G A, Shee Y G, Shawon M J, Adikan F R M 2016 Procedia Eng. 140 1Google Scholar

    [14]

    Yang Z, Xia L, Li C, Chen X, Liu D, 2019 Opt. Commun. 430 195Google Scholar

    [15]

    Petracek J, Selleri S 2001 Opt. Quant. Electron. 33 373Google Scholar

    [16]

    Zhang Z, Li S, Liu Q, Feng X, Zhang S, Wang Y, Wu J 2018 Opt. Fiber Technol. 43 45Google Scholar

    [17]

    Haque E, Hossain M A, Ahmed F, Namihira Y 2018 IEEE Sens. J. 18 8287Google Scholar

    [18]

    An G, Li S, Yan X, Zhang X, Yuan Z, Wang H, Zhang Y, Hao X, Shao Y, Han Z 2017 Plasmonics 12 465Google Scholar

    [19]

    Rifat A A, Mahdiraji G A, Chow D M, Shee Y G, Ahmed R, Adikan F R M 2015 Sensor 15 11499Google Scholar

    [20]

    Tong K, Wang F, Wang M, Dang P, Wang Y 2018 Opt. Fiber Technol. 46 306Google Scholar

    [21]

    Shuai B, Xia L, Zhang Y, Liu D 2012 Opt. Express 20 5974Google Scholar

    [22]

    Rahman M M, Molla M A, Paul A K, Based M A, Rana M M, Anower M S 2020 Results Phys. 18 103313Google Scholar

    [23]

    Abdullah H, Ahmed K, Mitu S A 2020 Results Phys. 17 103151Google Scholar

  • 图 1  SPR-MF传感器的横截面示意图

    Fig. 1.  Cross section of the proposed multi-core PCF sensor based on SPR.

    图 2  (a) Y偏振模与SPP模的色散曲线; (b) Y偏振模与SPP模的损耗曲线

    Fig. 2.  (a) The dispersion curve of Y-polarized mode and SPP mode; (b) the loss curve of Y-polarized mode and SPP mode.

    图 3  na从1.423增加到1.513时, (a) Y偏振模的损耗曲线和共振波长与(b)na的线性拟合曲线

    Fig. 3.  (a) Loss curve of Y-polarized mode and (b) linear fitting line of the resonance wavelength versus na by changing na from 1.423 to 1.523.

    图 4  ITO厚度对Y偏振模损耗的影响

    Fig. 4.  Influence of the thickness of ITO film on the loss of Y-polarized mode.

    图 5  d3对Y偏振模损耗的影响

    Fig. 5.  The influence of d3 on the loss of Y-polarized model.

    图 6  na由1.423增大到1.433时, 结构参数td3对波长灵敏度的影响 (a)结构参数t; (b) d3

    Fig. 6.  The influence of fiber parameters t and d3 on the wavelength sensitivity with na increasing from 1.423 to 1.433: (a) Fiber parameters t; (b) d3.

  • [1]

    梁瑞冰, 孙琪真, 沃江海, 刘德明 2011 物理学报 60 104221Google Scholar

    Liang R B, Sun Q Z, Wo J H, Liu D M 2011 Acta Phys. Sin. 60 104221Google Scholar

    [2]

    李桂成, 张微波 2011 计算机测量与控制 19 1420Google Scholar

    Li G C, Zhang W B 2011 Computer Measurement and Control 19 1420Google Scholar

    [3]

    郭双生, 侯继东 1996 中国航天 7 25

    Guo S S, Hou J D 1996 Aerospace China 7 25

    [4]

    施伟华, 尤承杰, 吴静 2015 物理学报 64 224221Google Scholar

    Shi W H, You C J, Wu J 2015 Acta Phys. Sin. 64 224221Google Scholar

    [5]

    Hassani A, Skorobogatiy M 2006 Opt. Express 14 11616Google Scholar

    [6]

    Yu X, Zhang Y, Pan S, Shum P, Yan M, Leviatan Y, Li C 2010 J. Opt. 12 015005Google Scholar

    [7]

    帅彬彬 2013 硕士学位论文 (武汉: 华中科技大学)

    Shuai B B 2013 M. S. Thesis (Wuha: Huazhong University of Science & Technology) (in Chinese)

    [8]

    Otupiri R, Akowuah E K, Haxha S, Ademgil H, AbdelMalek F, Aggoun A 2014 IEEE Photon. J. 6 1Google Scholar

    [9]

    Liu C, Wang F, Lv J, Sun T, Liu Q, Mu H, Chu P C 2015 J. Nanophotonics 9 0930501Google Scholar

    [10]

    Huang T Y 2017 Plasmonics 12 583Google Scholar

    [11]

    Chen X, Xia L, Li C 2018 IEEE Photon. J. 10 6800709Google Scholar

    [12]

    Li T, Zhu L, Yang X, Lou X, Yu L 2020 Sensor 20 741Google Scholar

    [13]

    Rifat A A, Mahdiraji G A, Shee Y G, Shawon M J, Adikan F R M 2016 Procedia Eng. 140 1Google Scholar

    [14]

    Yang Z, Xia L, Li C, Chen X, Liu D, 2019 Opt. Commun. 430 195Google Scholar

    [15]

    Petracek J, Selleri S 2001 Opt. Quant. Electron. 33 373Google Scholar

    [16]

    Zhang Z, Li S, Liu Q, Feng X, Zhang S, Wang Y, Wu J 2018 Opt. Fiber Technol. 43 45Google Scholar

    [17]

    Haque E, Hossain M A, Ahmed F, Namihira Y 2018 IEEE Sens. J. 18 8287Google Scholar

    [18]

    An G, Li S, Yan X, Zhang X, Yuan Z, Wang H, Zhang Y, Hao X, Shao Y, Han Z 2017 Plasmonics 12 465Google Scholar

    [19]

    Rifat A A, Mahdiraji G A, Chow D M, Shee Y G, Ahmed R, Adikan F R M 2015 Sensor 15 11499Google Scholar

    [20]

    Tong K, Wang F, Wang M, Dang P, Wang Y 2018 Opt. Fiber Technol. 46 306Google Scholar

    [21]

    Shuai B, Xia L, Zhang Y, Liu D 2012 Opt. Express 20 5974Google Scholar

    [22]

    Rahman M M, Molla M A, Paul A K, Based M A, Rana M M, Anower M S 2020 Results Phys. 18 103313Google Scholar

    [23]

    Abdullah H, Ahmed K, Mitu S A 2020 Results Phys. 17 103151Google Scholar

  • [1] 庞慧中, 王鑫, 王俊林, 王宗利, 刘苏雅拉图, 田虎强. 双频带太赫兹超材料吸波体传感器传感特性. 物理学报, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [2] 肖士妍, 贾大功, 聂安然, 余辉, 吉喆, 张红霞, 刘铁根. 开放式多通道多芯少模光纤表面等离子体共振生物传感器. 物理学报, 2020, 69(13): 137802. doi: 10.7498/aps.69.20200353
    [3] 饶云江. 长距离分布式光纤传感技术研究进展. 物理学报, 2017, 66(7): 074207. doi: 10.7498/aps.66.074207
    [4] 陈其杰, 周桂耀, 石富坤, 李端明, 苑金辉, 夏长明, 葛姝. 微结构光纤近红外色散波产生的研究. 物理学报, 2015, 64(3): 034215. doi: 10.7498/aps.64.034215
    [5] 肖亚玲, 刘艳格, 王志, 刘晓颀, 罗明明. 基于少模光纤的全光纤熔融模式选择耦合器的设计及实验研究. 物理学报, 2015, 64(20): 204207. doi: 10.7498/aps.64.204207
    [6] 施伟华, 尤承杰, 吴静. 基于表面等离子体共振和定向耦合的D形光子晶体光纤折射率和温度传感器. 物理学报, 2015, 64(22): 224221. doi: 10.7498/aps.64.224221
    [7] 廖文英, 范万德, 李海鹏, 隋佳男, 曹学伟. 准晶体结构光纤表面等离子体共振传感器特性研究. 物理学报, 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [8] 陈艳, 周桂耀, 夏长明, 侯峙云, 刘宏展, 王超. 具有双模特性的大模场面积微结构光纤的设计. 物理学报, 2014, 63(1): 014701. doi: 10.7498/aps.63.014701
    [9] 苗银萍, 姚建铨. 基于磁流体填充微结构光纤的温度特性研究. 物理学报, 2013, 62(4): 044223. doi: 10.7498/aps.62.044223
    [10] 张喆, 柳倩, 祁志美. 基于金银合金薄膜的近红外表面等离子体共振传感器研究. 物理学报, 2013, 62(6): 060703. doi: 10.7498/aps.62.060703
    [11] 冯李航, 曾捷, 梁大开, 张为公. 契形结构光纤表面等离子体共振传感器研究. 物理学报, 2013, 62(12): 124207. doi: 10.7498/aps.62.124207
    [12] 周亚训, 於杏燕, 徐星辰, 戴世勋. 掺铒硫系玻璃的制备及其微结构光纤的中红外信号放大特性研究. 物理学报, 2012, 61(15): 157701. doi: 10.7498/aps.61.157701
    [13] 周锐, 张菁, 忽满利, 冯忠耀, 高宏, 杨扬, 张敬花, 乔学光. 基于二阶保偏光纤Sagnac环光纤激光器的振动检测研究. 物理学报, 2012, 61(1): 014216. doi: 10.7498/aps.61.014216
    [14] 郝鹏, 吴一辉, 张平. 纳米金表面修饰与表面等离子体共振传感器的相互作用研究. 物理学报, 2010, 59(9): 6532-6537. doi: 10.7498/aps.59.6532
    [15] 周桂耀, 侯峙云, 李曙光, 韩 颖, 侯蓝田. 微结构光纤制备过程中不同位置空气孔的形变量分析. 物理学报, 2007, 56(11): 6486-6489. doi: 10.7498/aps.56.6486
    [16] 王 健, 雷乃光, 余重秀. 椭圆空气孔微结构光纤限制损耗的分析. 物理学报, 2007, 56(2): 946-951. doi: 10.7498/aps.56.946
    [17] 周桂耀, 侯峙云, 潘普丰, 侯蓝田, 李曙光, 韩 颖. 微结构光纤预制棒拉制过程的温度场分布. 物理学报, 2006, 55(3): 1271-1275. doi: 10.7498/aps.55.1271
    [18] 李曙光, 周桂耀, 邢光龙, 侯蓝田, 王清月, 栗岩锋, 胡明列. 微结构光纤中超短激光脉冲传输的数值模拟. 物理学报, 2005, 54(4): 1599-1606. doi: 10.7498/aps.54.1599
    [19] 张春书, 开桂云, 王 志, 王 超, 孙婷婷, 张伟刚, 刘艳格, 刘剑飞, 袁树忠, 董孝义. 柚子型微结构光纤Bragg光栅温度和应变传感特性研究. 物理学报, 2005, 54(6): 2758-2763. doi: 10.7498/aps.54.2758
    [20] 胡明列, 王清月, 栗岩峰, 倪晓昌, 张志刚, 王 专, 柴 路, 侯蓝田, 李曙光, 周桂耀. 非均匀微结构光纤中双折射现象的研究. 物理学报, 2004, 53(12): 4248-4252. doi: 10.7498/aps.53.4248
计量
  • 文章访问数:  6450
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-06
  • 修回日期:  2020-11-24
  • 上网日期:  2021-03-24
  • 刊出日期:  2021-04-05

/

返回文章
返回