搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于磁流体填充微结构光纤的温度特性研究

苗银萍 姚建铨

引用本文:
Citation:

基于磁流体填充微结构光纤的温度特性研究

苗银萍, 姚建铨

Temperature sensitivity of microstructured optical fiber filled with ferrofluid

Miao Yin-Ping, Yao Jian-Quan
PDF
导出引用
  • 利用毛细现象将磁流体完全填充到六角形微结构光纤的空气孔中, 分析了磁流体填充长度、浓度对其传导特性的影响. 结合磁流体独特的热光效应, 并对一定浓度、长度下填充的光纤进行了温度特性的研究. 结果表明, 随着温度的升高, 透射谱1460 nm处磁流体的吸收峰逐渐变浅. 基于磁流体载液与表面活性剂对温度的不同敏感性, 吸收峰左右两个边沿表现出不同的温度响应; 在波长为1100–1700 nm之间透射损耗与温度变化成线性关系, 对于填充长度为10 cm的微结构光纤, 敏感度达到0.06 dB/℃, 且液体填充长度越长, 灵敏度越高. 该研究将微结构光纤与磁流体材料有机地结合起来, 并利用填充材料自身的热光特性, 实现了对透射谱的单边调谐, 将其作为热光可调谐器件、滤波器等相关可调谐光子器件在光通信、 光传感等领域将具有很大的应用潜力. 因此, 基于材料填充微结构光纤的研究可为探索新型全光纤光子器件的新技术和新结构提供有效的方法.
    In this paper ferrofluid is infiltrated in the index-guiding microstructured optical fiber (MOF) by the well-known capillary force and air pressure. The influences of the length and concentration of filled fiber on its guidance property are analyzed. Based on the response of fluid refractive index to temperature, the temperature sensitivities of filled MOF with different lengths are investigated without applying any external magnetic field. The results show that the short-wavelength edge of the absorption spectrum near 1460 nm remains unchanged, while the long-wavelength profile is sensitive to the temperature and the transmission power of the filled MOF decreases with the increase of temperature. There is a linear relationship between temperature and transmission power of the filled MOF. For the device with a length of 10 cm, its temperature sensitivity reaches 0.06 dB/℃. Combining the excellent thermo-optic effect of ferrofluid with MOF, the single edge of the device could be tuned by the temperature. It is potential to be used as a thermo-optic modulator, filter, and other adjustable photonics device. Considering a large number of magnetically tunable ferrofluids available and the high degree of freedom in MOF design, ferrofluid-filled MOF shows still a great promise and underexplored possibilities for both basic and applied research, opening new perspectives in optical telecommunication, all-optical switching and fiber-optic sensing applications, such as magnetic field sensors. The present study can offer an effective method for the novel technique and structure of all-in-fiber photonic devices.
    • 基金项目: 国家重点基础研究发展计划(批准号:2010CB327801)、国家自然科学基金(批准号:61274113,11204212)、中国博士后科学基金(批准号:2012M520024)和天津市自然科学基金(批准号:10SYSYJC27700,10ZCKFGX01200,20100703)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2010CB327801), the National Natural Science Foundation of China (Grant Nos. 61274113, 11204212), the China Postdoctoral Science Foundation (Grant No. 2012M520024), and the Natural Science Fund of Tianjin, China (Grant Nos. 10SYSYJC27700, 10ZCKFGX01200, 20100703).
    [1]

    Birks T A, Knight J C, Russell St P J 1997 Opt. Lett. 22 961

    [2]

    Lee C, Chen C, Kao C, Yu C, Yeh S, Cheng W, Lin T 2010 Opt. Express 18 2814

    [3]

    Wei L, Alkeskjold T T, Bjarklev A 2010 Opt. Lett. 35 1608

    [4]

    Wang Y P, Jin W, Jin L, Tan X L, Bartelt H, Ecke W, Moerl K, Schroeder K, Spittel R, Willsch R, Kobelke J, Rothhardt M, Shan L, Brueckner S 2009 Opt. Lett. 34 3683

    [5]

    Steinvurzel P, Moore E D, Mägi E C, Eggleton B J 2006 Opt. Lett. 31 2103

    [6]

    Kerbage C, Hale A, Yablon A, Windeler R S, Eggleton B J 2001 Appl. Phys. Lett. 79 3191

    [7]

    Bise R T, Windeler R S, Kranz K S, Kerbage C, Eggleton B J, Trevor D J 2002 Proceedings of the Optical Fiber Communications Conference Anaheim, USA, March 17-22, 2002 ThK3

    [8]

    Larsen T, Bjarklev A, Hermann D 2003 Opt. Express 11 2589

    [9]

    Kawanishi S, Komukai T 2007 Lasers and Electro-Optics Baltimore, USA, May 6-11, 2007 p4453012

    [10]

    Choi S Y, Cho D K, Song Y W 2012 Opt. Express 20 5652

    [11]

    Rongrui H, Pier J A S, Anna C P, Noel H, Justin R S, Mahesh K, Venkatraman G, John V B 2012 Nature Photonics 6 174

    [12]

    Du Y, Li S G, Liu S 2012 Chin. Phys. B 21 94219

    [13]

    Psaltis D, Quake S R, Yang C 2006 Nature 442 381

    [14]

    Huang Y W, Hu S T, Yang S Y, Horng H E, Hung J C, Hong C Y, Yang H C, Chao C H, Lin C F 2004 Opt. Lett. 29 1867

    [15]

    Horng H E, Chieh J J, Chao Y H, Yang S Y, Hong C Y, Yang H C 2005 Opt. Lett. 30 543

    [16]

    Pu S, Chen X, Chen Y, Xu Y, Liao W, Chen L, Xia Y 2006 J. Appl. Phys. 99 093516

    [17]

    Trigt C 1997 J. Opt. Soc. Am. A 14 741

    [18]

    Thakur H V, Nalawade S M, Gupta S, Kitture R, Kale S N 2011 Appl. Phys. Lett. 99 161101

    [19]

    Candiani A, Konstantaki M, Margulis W 2010 Opt. Express 18 24654

    [20]

    Alessandro C, Walter M, Carola S, Maria K, Stavros P 2011 Opt. Lett. 36 2548

    [21]

    Yang X H, Liu Y X, Tian F J, Yuan L B, Liu Z H, Luo S Z, Zhao E M 2012 Opt. Lett. 37 2115

    [22]

    Du T, Yuan S, Luo W 1994 Appl. Phys. Lett. 65 1844

    [23]

    Du T, Luo W 1998 Appl. Phys. Lett. 72 272

    [24]

    Luo W, Du T, Huang J 1999 J. Magn. Magn. Mater. 201 88

    [25]

    Liberts G, Mitrofanov Y, Cebers A 2003 Proc. SPIE 94 5123

    [26]

    Pu S L, Chen X F, Liao W, Chen L, Chen Y, Xia Y 2004 J. Appl. Phys. 96 5930

    [27]

    Chen Y F, Yang S Y, Tse W S, Horng H E, Hong C Y, Yang H C 2003 Appl. Phys. Lett. 82 348

  • [1]

    Birks T A, Knight J C, Russell St P J 1997 Opt. Lett. 22 961

    [2]

    Lee C, Chen C, Kao C, Yu C, Yeh S, Cheng W, Lin T 2010 Opt. Express 18 2814

    [3]

    Wei L, Alkeskjold T T, Bjarklev A 2010 Opt. Lett. 35 1608

    [4]

    Wang Y P, Jin W, Jin L, Tan X L, Bartelt H, Ecke W, Moerl K, Schroeder K, Spittel R, Willsch R, Kobelke J, Rothhardt M, Shan L, Brueckner S 2009 Opt. Lett. 34 3683

    [5]

    Steinvurzel P, Moore E D, Mägi E C, Eggleton B J 2006 Opt. Lett. 31 2103

    [6]

    Kerbage C, Hale A, Yablon A, Windeler R S, Eggleton B J 2001 Appl. Phys. Lett. 79 3191

    [7]

    Bise R T, Windeler R S, Kranz K S, Kerbage C, Eggleton B J, Trevor D J 2002 Proceedings of the Optical Fiber Communications Conference Anaheim, USA, March 17-22, 2002 ThK3

    [8]

    Larsen T, Bjarklev A, Hermann D 2003 Opt. Express 11 2589

    [9]

    Kawanishi S, Komukai T 2007 Lasers and Electro-Optics Baltimore, USA, May 6-11, 2007 p4453012

    [10]

    Choi S Y, Cho D K, Song Y W 2012 Opt. Express 20 5652

    [11]

    Rongrui H, Pier J A S, Anna C P, Noel H, Justin R S, Mahesh K, Venkatraman G, John V B 2012 Nature Photonics 6 174

    [12]

    Du Y, Li S G, Liu S 2012 Chin. Phys. B 21 94219

    [13]

    Psaltis D, Quake S R, Yang C 2006 Nature 442 381

    [14]

    Huang Y W, Hu S T, Yang S Y, Horng H E, Hung J C, Hong C Y, Yang H C, Chao C H, Lin C F 2004 Opt. Lett. 29 1867

    [15]

    Horng H E, Chieh J J, Chao Y H, Yang S Y, Hong C Y, Yang H C 2005 Opt. Lett. 30 543

    [16]

    Pu S, Chen X, Chen Y, Xu Y, Liao W, Chen L, Xia Y 2006 J. Appl. Phys. 99 093516

    [17]

    Trigt C 1997 J. Opt. Soc. Am. A 14 741

    [18]

    Thakur H V, Nalawade S M, Gupta S, Kitture R, Kale S N 2011 Appl. Phys. Lett. 99 161101

    [19]

    Candiani A, Konstantaki M, Margulis W 2010 Opt. Express 18 24654

    [20]

    Alessandro C, Walter M, Carola S, Maria K, Stavros P 2011 Opt. Lett. 36 2548

    [21]

    Yang X H, Liu Y X, Tian F J, Yuan L B, Liu Z H, Luo S Z, Zhao E M 2012 Opt. Lett. 37 2115

    [22]

    Du T, Yuan S, Luo W 1994 Appl. Phys. Lett. 65 1844

    [23]

    Du T, Luo W 1998 Appl. Phys. Lett. 72 272

    [24]

    Luo W, Du T, Huang J 1999 J. Magn. Magn. Mater. 201 88

    [25]

    Liberts G, Mitrofanov Y, Cebers A 2003 Proc. SPIE 94 5123

    [26]

    Pu S L, Chen X F, Liao W, Chen L, Chen Y, Xia Y 2004 J. Appl. Phys. 96 5930

    [27]

    Chen Y F, Yang S Y, Tse W S, Horng H E, Hong C Y, Yang H C 2003 Appl. Phys. Lett. 82 348

  • [1] 林豪彬, 张少春, 董杨, 郑瑜, 陈向东, 孙方稳. 基于金刚石氮-空位色心的温度传感. 物理学报, 2022, 71(6): 060302. doi: 10.7498/aps.71.20211822
    [2] 史慧敏, 莫润阳, 王成会. 磁流体管内“泡对”在磁声复合场中的振荡行为. 物理学报, 2022, 71(8): 084302. doi: 10.7498/aps.71.20212150
    [3] 丁子平, 廖健飞, 曾泽楷. 基于表面等离子体共振的新型超宽带微结构光纤传感器研究. 物理学报, 2021, 70(7): 074207. doi: 10.7498/aps.70.20201477
    [4] 徐依全, 王聪. 基于二维材料的全光器件. 物理学报, 2020, 69(18): 184216. doi: 10.7498/aps.69.20200654
    [5] 陶弢. 磁化天体准直流中非理想效应的实验室研究. 物理学报, 2020, 69(19): 195202. doi: 10.7498/aps.69.20200559
    [6] 陈木凤, 李翔, 牛小东, 李游, Adnan, 山口博司. 两个非磁性颗粒在磁流体中的沉降现象研究. 物理学报, 2017, 66(16): 164703. doi: 10.7498/aps.66.164703
    [7] 赵浩宇, 邓洪昌, 苑立波. Airy光纤:基于阵列波导耦合的光场调控方法. 物理学报, 2017, 66(7): 074211. doi: 10.7498/aps.66.074211
    [8] 赵勇, 蔡露, 李雪刚, 吕日清. 基于酒精与磁流体填充的单模-空芯-单模光纤结构温度磁场双参数传感器. 物理学报, 2017, 66(7): 070601. doi: 10.7498/aps.66.070601
    [9] 耿滔, 吴娜, 董祥美, 高秀敏. 基于磁流体光子晶体的可调谐近似零折射率研究. 物理学报, 2016, 65(1): 014213. doi: 10.7498/aps.65.014213
    [10] 陈其杰, 周桂耀, 石富坤, 李端明, 苑金辉, 夏长明, 葛姝. 微结构光纤近红外色散波产生的研究. 物理学报, 2015, 64(3): 034215. doi: 10.7498/aps.64.034215
    [11] 魏巍, 张霞, 于辉, 李宇鹏, 张阳安, 黄永清, 陈伟, 罗文勇, 任晓敏. 高非线性微结构光纤中基于受激布里渊散射的慢光延迟. 物理学报, 2013, 62(18): 184208. doi: 10.7498/aps.62.184208
    [12] 刘桂雄, 蒲尧萍, 徐 晨. 磁流体中Helmholtz和Kelvin力的界定. 物理学报, 2008, 57(4): 2500-2503. doi: 10.7498/aps.57.2500
    [13] 王 健, 雷乃光, 余重秀. 椭圆空气孔微结构光纤限制损耗的分析. 物理学报, 2007, 56(2): 946-951. doi: 10.7498/aps.56.946
    [14] 周桂耀, 侯峙云, 潘普丰, 侯蓝田, 李曙光, 韩 颖. 微结构光纤预制棒拉制过程的温度场分布. 物理学报, 2006, 55(3): 1271-1275. doi: 10.7498/aps.55.1271
    [15] 李曙光, 周桂耀, 邢光龙, 侯蓝田, 王清月, 栗岩锋, 胡明列. 微结构光纤中超短激光脉冲传输的数值模拟. 物理学报, 2005, 54(4): 1599-1606. doi: 10.7498/aps.54.1599
    [16] 胡明列, 王清月, 栗岩峰, 王 专, 柴 路, 张伟力. 飞秒激光在双折射微结构光纤中模式控制的四波混频效应的实验研究. 物理学报, 2005, 54(9): 4411-4415. doi: 10.7498/aps.54.4411
    [17] 张春书, 开桂云, 王 志, 王 超, 孙婷婷, 张伟刚, 刘艳格, 刘剑飞, 袁树忠, 董孝义. 柚子型微结构光纤Bragg光栅温度和应变传感特性研究. 物理学报, 2005, 54(6): 2758-2763. doi: 10.7498/aps.54.2758
    [18] 胡明列, 王清月, 栗岩峰, 倪晓昌, 张志刚, 王 专, 柴 路, 侯蓝田, 李曙光, 周桂耀. 非均匀微结构光纤中双折射现象的研究. 物理学报, 2004, 53(12): 4248-4252. doi: 10.7498/aps.53.4248
    [19] 乔学光, 贾振安, 傅海威, 李 明, 周 红. 光纤光栅温度传感理论与实验. 物理学报, 2004, 53(2): 494-497. doi: 10.7498/aps.53.494
    [20] 李红霞, 吴福全, 范吉阳. 空气隙间隔格兰型棱镜偏光器透射光强扰动的温度效应. 物理学报, 2003, 52(8): 2081-2086. doi: 10.7498/aps.52.2081
计量
  • 文章访问数:  3457
  • PDF下载量:  1088
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-27
  • 修回日期:  2012-09-08
  • 刊出日期:  2013-02-05

基于磁流体填充微结构光纤的温度特性研究

  • 1. 天津理工大学电子信息工程学院, 天津薄膜电子与通信器件重点实验室, 天津 300084;
  • 2. 天津大学激光与光电子研究所, 天津大学精仪学院, 天津 300072
    基金项目: 国家重点基础研究发展计划(批准号:2010CB327801)、国家自然科学基金(批准号:61274113,11204212)、中国博士后科学基金(批准号:2012M520024)和天津市自然科学基金(批准号:10SYSYJC27700,10ZCKFGX01200,20100703)资助的课题.

摘要: 利用毛细现象将磁流体完全填充到六角形微结构光纤的空气孔中, 分析了磁流体填充长度、浓度对其传导特性的影响. 结合磁流体独特的热光效应, 并对一定浓度、长度下填充的光纤进行了温度特性的研究. 结果表明, 随着温度的升高, 透射谱1460 nm处磁流体的吸收峰逐渐变浅. 基于磁流体载液与表面活性剂对温度的不同敏感性, 吸收峰左右两个边沿表现出不同的温度响应; 在波长为1100–1700 nm之间透射损耗与温度变化成线性关系, 对于填充长度为10 cm的微结构光纤, 敏感度达到0.06 dB/℃, 且液体填充长度越长, 灵敏度越高. 该研究将微结构光纤与磁流体材料有机地结合起来, 并利用填充材料自身的热光特性, 实现了对透射谱的单边调谐, 将其作为热光可调谐器件、滤波器等相关可调谐光子器件在光通信、 光传感等领域将具有很大的应用潜力. 因此, 基于材料填充微结构光纤的研究可为探索新型全光纤光子器件的新技术和新结构提供有效的方法.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回