搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两个非磁性颗粒在磁流体中的沉降现象研究

陈木凤 李翔 牛小东 李游 Adnan 山口博司

引用本文:
Citation:

两个非磁性颗粒在磁流体中的沉降现象研究

陈木凤, 李翔, 牛小东, 李游, Adnan, 山口博司

Sedimentation of two non-magnetic particles in magnetic fluid

Chen Mu-Feng, Li Xiang, Niu Xiao-Dong, Li You, Adnan, Hiroshi Yamaguchi
PDF
导出引用
  • 在磁场作用下,在磁流体里添加非磁性颗粒(non-magnetic particles,NPs),可以使得NPs形成不同的结构,操控NPs的运动从而影响磁流体的特性,这种应用逐渐受到了研究者的关注.为了更好地操控磁流体里NPs的运动,本文采用一种多物理模型研究在外加磁场作用下,磁流体中两个NPs沉降的运动过程.其中,用格子玻尔兹曼方法模拟磁流体的运动,外加磁场对磁流体的影响用一种自修正方法求解泊松方程,这个自修正方法可以使欧姆定律满足守恒定律.NPs之间的偶极干扰力采用偶极力模型,同时采用一种相对过渡平滑的共轭边界条件处理NPs与磁流体交界面的流固干扰以避免磁场密度过渡的突变.本文主要探究两个NPs在磁流体中的沉降,揭示磁场作用下NPs的相互干扰原理;同时,对控制NPs运动时的参数进行调节,得到NPs不同的运动轨迹,达到操控颗粒运动的目的.本研究可对NPs在磁流体中的应用提供定量的分析结果,对NPs在工业上的应用提供有力的理论支撑.
    Magnetic fluid is a stable suspension of solid phase magnetic particles of diameter about 10 nm in a nonmagnetic carrier fluid like water or alcohol. Nowadays, the magnetic fluid is widely used in industry areas such as sealing, damping, lubricating, sound regulation, heat dissipation, and MHD beneficiation. Researchers have paid great attention to the behaviors of non-magnetic particles (NPs) in the magnetic field because magnetic fluid containing NPs can form different microstructures, which are easily controlled by applying a magnetic field. In order to appropriately use the properties of magnetic fluid in industry, it is necessary to study the interaction among NPs in detail. In this paper, a multi-physical numerical model is employed to investigate the sedimentation of two NPs in magnetic fluid subjected to an applied magnetic field. The magnetic fluid flow is simulated by lattice Boltzmann method, and magneto hydrodynamics is calculated with a self-correcting procedure of a Poisson equation solver, which enables the Ohm's law to satisfy its conservation law. A dipole force model is used to obtain the dipole interaction force between particles. In addition, as the permeability of the magnetic fluid is quite different from those of the NPs and magnetic fluid, correctly establishing the conjugate boundary condition of the magnetic intensity at the interface between the particles and surrounding fluid is a key because it affects the magnetic induction in the fluid-structure interaction area. A smooth transition scheme of the conjugate boundary condition for magnetic intensity at the interface between the particles and surrounding fluid is used in this work. The aim of this work is to investigate sedimentation of two NPs in magnetized magnetic fluid. By changing the ratio of magnetic permeability and the magnetic parameter, it is found that altering the ratio of magnetic permeability is more effective to change the trajectories of NPs, while changing the magnetic parameter can just give rise to a slight transform of particle trajectories. This can provide good theoretical support for the application of magnetic fluid in industry area, because the results in the present simulation can quantitatively analyze the controlling of the movement of NPs.
      通信作者: 李翔, 15xli1@stu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11372168)资助的课题.
      Corresponding author: Li Xiang, 15xli1@stu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11372168).
    [1]

    Halsey T C, Toor W 1990 J. Stat. Phys. 61 1257

    [2]

    Islam M F, Lin K H, Lacoste D, Lubensky T C, Yodh A G 2003 Phys. Rev. E 67 021402

    [3]

    Zhu Y, Umehara N, Ido Y, Sato A 2006 J. Magn. Magn. Mater. 302 96

    [4]

    Ido Y, Inagaki T, Umehara N 2008 Magnetohydrodynamics 44 83

    [5]

    Ido Y, Inagaki T, Yamaguchi T 2010 J. Phys.:Condens. Matter 22 324103

    [6]

    Chen Q, Bae S C, Granick S 2011 Nature 469 381

    [7]

    Iwamoto Y, Yoshioka A, Naito T, Cuya J, Ido Y, Okawa R, Yamaguchi H 2016 Exp. Therm. Fluid Sci. 79 111

    [8]

    Kaiser R, Mir L, Curtis R A 1976 US Patent 3951785

    [9]

    Skjeltorp A T 1983 Phys. Rev. Lett. 51 2306

    [10]

    Fujita T, Mamiya M 1987 J. Magn. Magn. Mater. 65 207

    [11]

    Furst E M, Gast A P 2000 Phys. Rev. E 61 6732

    [12]

    Gao Y, Jian Y C, Zhang L F, Huang J P 2007 J. Phys. Chem. C 111 10785

    [13]

    Peng X, Min Y, Ma T, Luo W, Yan M 2009 T J. Magn. Magn. Mater. 321 1221

    [14]

    Li H, Peng X 2012 J. Comput. Phys. 7 1405

    [15]

    Peskin C S 1977 J. Comput. Phys. 25 220

    [16]

    Peskin C S 2002 Acta Numerica 11 479

    [17]

    Niu X D, Shu C, Chew Y T, Pemg Y 2006 Phys. Lett. A 354 173

    [18]

    He Y L, Wang Y, Li Q 2008 Lattice Boltzmann Method:Theory and Applications (Beijing:Science Press) p31-55(in Chinese)[何雅玲, 王勇, 李庆2008格子Boltzmann方法的理论及应用(第一版) (北京:科学出版社)第31–55页]

    [19]

    Niu X D, Yamaguchi H, Yoshikawa K 2009 Phys. Rev. E 79 046713

    [20]

    Hu P, Zhang X W, Niu X D, Meng H 2014 Acta Mech. Sin. 46 673 (in Chinese)[胡平, 张兴伟, 牛小东, 孟辉2014力学学报46 673]

    [21]

    Chen M F, Niu X D, Ma Y R, Yamaguchi H, Iwamoto Y 2015 Procedia Engineering 126 691

    [22]

    Araseki H, Kotake S 1994 J. Comput. Phys. 110 301

    [23]

    Yamasaki H, Yamaguchi H 2017 J. Magn. Magn. Mater. 431 164

    [24]

    Li L, Chen C, Mei R, Klausner, J F 2014 Phys. Rev. E 89 043308

    [25]

    Guo K, Li L, Xiao G, Au Yeung N, Mei R 2015 Int. J. Heat Mass Transfer 88 306

    [26]

    Hu Y, Li D, Shu S, Niu X D 2015 Comput. Math. Appl. 70 2227

    [27]

    Feng J, Hu H H, Joseph D D 1994 J. Fluid Mech. 261 95

    [28]

    Feng Z G, Michaelides E E 2004 J. Comput. Phys. 195 602

    [29]

    Zhang H, Tan Y, Shu S, Niu X D, Trias F X, Yang D, Sheng Y 2014 Comput. Fluids 94 37

  • [1]

    Halsey T C, Toor W 1990 J. Stat. Phys. 61 1257

    [2]

    Islam M F, Lin K H, Lacoste D, Lubensky T C, Yodh A G 2003 Phys. Rev. E 67 021402

    [3]

    Zhu Y, Umehara N, Ido Y, Sato A 2006 J. Magn. Magn. Mater. 302 96

    [4]

    Ido Y, Inagaki T, Umehara N 2008 Magnetohydrodynamics 44 83

    [5]

    Ido Y, Inagaki T, Yamaguchi T 2010 J. Phys.:Condens. Matter 22 324103

    [6]

    Chen Q, Bae S C, Granick S 2011 Nature 469 381

    [7]

    Iwamoto Y, Yoshioka A, Naito T, Cuya J, Ido Y, Okawa R, Yamaguchi H 2016 Exp. Therm. Fluid Sci. 79 111

    [8]

    Kaiser R, Mir L, Curtis R A 1976 US Patent 3951785

    [9]

    Skjeltorp A T 1983 Phys. Rev. Lett. 51 2306

    [10]

    Fujita T, Mamiya M 1987 J. Magn. Magn. Mater. 65 207

    [11]

    Furst E M, Gast A P 2000 Phys. Rev. E 61 6732

    [12]

    Gao Y, Jian Y C, Zhang L F, Huang J P 2007 J. Phys. Chem. C 111 10785

    [13]

    Peng X, Min Y, Ma T, Luo W, Yan M 2009 T J. Magn. Magn. Mater. 321 1221

    [14]

    Li H, Peng X 2012 J. Comput. Phys. 7 1405

    [15]

    Peskin C S 1977 J. Comput. Phys. 25 220

    [16]

    Peskin C S 2002 Acta Numerica 11 479

    [17]

    Niu X D, Shu C, Chew Y T, Pemg Y 2006 Phys. Lett. A 354 173

    [18]

    He Y L, Wang Y, Li Q 2008 Lattice Boltzmann Method:Theory and Applications (Beijing:Science Press) p31-55(in Chinese)[何雅玲, 王勇, 李庆2008格子Boltzmann方法的理论及应用(第一版) (北京:科学出版社)第31–55页]

    [19]

    Niu X D, Yamaguchi H, Yoshikawa K 2009 Phys. Rev. E 79 046713

    [20]

    Hu P, Zhang X W, Niu X D, Meng H 2014 Acta Mech. Sin. 46 673 (in Chinese)[胡平, 张兴伟, 牛小东, 孟辉2014力学学报46 673]

    [21]

    Chen M F, Niu X D, Ma Y R, Yamaguchi H, Iwamoto Y 2015 Procedia Engineering 126 691

    [22]

    Araseki H, Kotake S 1994 J. Comput. Phys. 110 301

    [23]

    Yamasaki H, Yamaguchi H 2017 J. Magn. Magn. Mater. 431 164

    [24]

    Li L, Chen C, Mei R, Klausner, J F 2014 Phys. Rev. E 89 043308

    [25]

    Guo K, Li L, Xiao G, Au Yeung N, Mei R 2015 Int. J. Heat Mass Transfer 88 306

    [26]

    Hu Y, Li D, Shu S, Niu X D 2015 Comput. Math. Appl. 70 2227

    [27]

    Feng J, Hu H H, Joseph D D 1994 J. Fluid Mech. 261 95

    [28]

    Feng Z G, Michaelides E E 2004 J. Comput. Phys. 195 602

    [29]

    Zhang H, Tan Y, Shu S, Niu X D, Trias F X, Yang D, Sheng Y 2014 Comput. Fluids 94 37

  • [1] 李尚卿, 王伟民, 李玉同. 基于OpenFOAM的磁流体求解器的开发和应用. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212432
    [2] 史慧敏, 莫润阳, 王成会. 磁流体管内“泡对”在磁声复合场中的振荡行为. 物理学报, 2022, 71(8): 084302. doi: 10.7498/aps.71.20212150
    [3] 马奥杰, 陈颂佳, 李玉秀, 陈颖. 纳米颗粒布朗扩散边界条件的分子动力学模拟. 物理学报, 2021, 70(14): 148201. doi: 10.7498/aps.70.20202240
    [4] 彭国良, 张俊杰. 基于流体-磁流体-粒子混合方法的高空核爆炸碎片云模拟. 物理学报, 2021, 70(18): 180703. doi: 10.7498/aps.70.20210347
    [5] 石启陈, 赵志杰, 张焕好, 陈志华, 郑纯. 流向磁场抑制Kelvin-Helmholtz不稳定性机理研究. 物理学报, 2021, 70(15): 154702. doi: 10.7498/aps.70.20202024
    [6] 沙莎, 张焕好, 陈志华, 郑纯, 吴威涛, 石启陈. 纵向磁场抑制Richtmyer-Meshkov不稳定性机理. 物理学报, 2020, 69(18): 184701. doi: 10.7498/aps.69.20200363
    [7] 陶弢. 磁化天体准直流中非理想效应的实验室研究. 物理学报, 2020, 69(19): 195202. doi: 10.7498/aps.69.20200559
    [8] 赵勇, 蔡露, 李雪刚, 吕日清. 基于酒精与磁流体填充的单模-空芯-单模光纤结构温度磁场双参数传感器. 物理学报, 2017, 66(7): 070601. doi: 10.7498/aps.66.070601
    [9] 杨政权, 李成, 雷奕安. 锥形腔等离子体压缩的磁流体模拟. 物理学报, 2016, 65(20): 205201. doi: 10.7498/aps.65.205201
    [10] 耿滔, 吴娜, 董祥美, 高秀敏. 基于磁流体光子晶体的可调谐近似零折射率研究. 物理学报, 2016, 65(1): 014213. doi: 10.7498/aps.65.014213
    [11] 苗银萍, 姚建铨. 基于磁流体填充微结构光纤的温度特性研究. 物理学报, 2013, 62(4): 044223. doi: 10.7498/aps.62.044223
    [12] 邓海东, 李海. 磁性液体中非磁性小球与磁性纳米颗粒的相互作用及磁组装. 物理学报, 2013, 62(12): 127501. doi: 10.7498/aps.62.127501
    [13] 颛孙旭, 马西奎. 一种适用于任意阶空间差分时域有限差分方法的色散介质通用吸收边界条件算法. 物理学报, 2012, 61(11): 110206. doi: 10.7498/aps.61.110206
    [14] 刘桂雄, 徐晨, 张沛强, 吴庭万. 永磁体在磁流体中的磁力学建模及自悬浮位置可控性. 物理学报, 2009, 58(3): 2005-2010. doi: 10.7498/aps.58.2005
    [15] 刘桂雄, 蒲尧萍, 徐 晨. 磁流体中Helmholtz和Kelvin力的界定. 物理学报, 2008, 57(4): 2500-2503. doi: 10.7498/aps.57.2500
    [16] 周 英, 鲍德松, 张训生, 雷哲民, 胡国琦, 唐孝威. 边界条件对二维斜面颗粒流颗粒分布的影响. 物理学报, 2004, 53(10): 3389-3393. doi: 10.7498/aps.53.3389
    [17] 梁昌洪, 褚庆昕. 运动边界的电磁场边界条件. 物理学报, 2002, 51(10): 2202-2204. doi: 10.7498/aps.51.2202
    [18] 颜家壬. 边界条件对非传播孤子运动的影响. 物理学报, 1995, 44(10): 1571-1576. doi: 10.7498/aps.44.1571
    [19] 刘登云. 含时边界条件和Berry相位. 物理学报, 1993, 42(5): 705-710. doi: 10.7498/aps.42.705
    [20] 吴式玉, 周子舫. 边界条件对无序体系本征态的影响. 物理学报, 1984, 33(12): 1650-1660. doi: 10.7498/aps.33.1650
计量
  • 文章访问数:  3386
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-31
  • 修回日期:  2017-06-02
  • 刊出日期:  2017-08-05

两个非磁性颗粒在磁流体中的沉降现象研究

  • 1. 汕头大学工学院, 汕头 515063;
  • 2. 同志社大学能源转换与研究中心, 京都 630-0321, 日本
  • 通信作者: 李翔, 15xli1@stu.edu.cn
    基金项目: 国家自然科学基金(批准号:11372168)资助的课题.

摘要: 在磁场作用下,在磁流体里添加非磁性颗粒(non-magnetic particles,NPs),可以使得NPs形成不同的结构,操控NPs的运动从而影响磁流体的特性,这种应用逐渐受到了研究者的关注.为了更好地操控磁流体里NPs的运动,本文采用一种多物理模型研究在外加磁场作用下,磁流体中两个NPs沉降的运动过程.其中,用格子玻尔兹曼方法模拟磁流体的运动,外加磁场对磁流体的影响用一种自修正方法求解泊松方程,这个自修正方法可以使欧姆定律满足守恒定律.NPs之间的偶极干扰力采用偶极力模型,同时采用一种相对过渡平滑的共轭边界条件处理NPs与磁流体交界面的流固干扰以避免磁场密度过渡的突变.本文主要探究两个NPs在磁流体中的沉降,揭示磁场作用下NPs的相互干扰原理;同时,对控制NPs运动时的参数进行调节,得到NPs不同的运动轨迹,达到操控颗粒运动的目的.本研究可对NPs在磁流体中的应用提供定量的分析结果,对NPs在工业上的应用提供有力的理论支撑.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回