搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁场、流体特性及几何参数对液态金属双扩散对流的影响

尹超男 郑来运 张超男 李许龙 赵秉新

引用本文:
Citation:

磁场、流体特性及几何参数对液态金属双扩散对流的影响

尹超男, 郑来运, 张超男, 李许龙, 赵秉新

Effects of magnetic field, fluid properties, and geometric parameters on double-diffusive convection of liquid metals

Yin Chao-Nan, Zheng Lai-Yun, Zhang Chao-Nan, Li Xu-Long, Zhao Bing-Xin
PDF
HTML
导出引用
  • 磁场作用下导电流体热对流是当前研究的热点问题, 本文采用高精度高分辨率的数值方法对二维腔体内液态金属双扩散对流进行直接数值模拟, 研究了在水平或垂直磁场作用下, 磁场强度、Prandtl数、Lewis数以及高宽比对流动和传热传质的影响. 研究结果表明: 磁场主要表现为对流动和传热传质的抑制作用. 在相同强度下, 水平磁场比垂直磁场的抑制作用更大, 但在较弱磁场和较强磁场时, 二者对传热传质的影响效果相近. 对于不同方向和强度的磁场, 传热传质效率总是随着Prandtl数的增大而增大, 并且在Pr = 0.9附近存在解的分岔现象. 随着Lewis数的增大, 流动从定常流动过渡到周期流动, 且传质效率受到的影响更大. 在所考虑的高宽比范围内, 随着高宽比的增大, 无磁场及弱磁场时传热传质效率振荡变化, 而强磁场下传热传质效率受高宽比的影响较小. 对相同涡卷数量的流动, 高宽比越小, 传热传质越强.
    Thermal convection in conducting fluids under the influence of a magnetic field is a hot research topic. In this study, a high-precision and high-resolution numerical method is used to directly simulate the double-diffusive convection of liquid metal in a two-dimensional cavity. The study covers the effects of magnetic field strength (Ha), Prandtl number (Pr), Lewis number (Le), and aspect ratio on the dynamics of flow and heat/mass transfer under both horizontal magnetic field and vertical magnetic field. The study considers magnetic field intensities ranging from 0 to 100, Prandtl numbers from 0.01 to 1, Lewis numbers varying from 1 to 100, and aspect ratios spanning from 1 to 12. Within these specified parameter ranges, the outcomes under conditions of no magnetic field (Ha = 0), weak magnetic field (Ha = 10), and strong magnetic field (Ha = 50) are compared with each other.The results show that the magnetic field primarily suppresses flow, heat transfer, and mass transfer. Under the same strength of the magnetic field, the horizontal magnetic field has a greater suppressing effect than the vertical magnetic field. However, the cases of weak magnetic field and strong magnetic field, their effects on heat and mass transfer are similar. Regardless of the orientation and strength of the magnetic field, the heat transfer efficiency and mass transfer efficiency always increase with Prandtl number increasing. The application of a magnetic field can reduce the increase in heat and mass transfer, and when the magnetic field strength reaches a certain level, the Lorentz force predominates, making the influence of the Prandtl number on heat and mass transfer very small. In the presence of a magnetic field, a bifurcation phenomenon is observed around Pr = 0.9.Additionally, as the Lewis number increases, the flow transforms from steady flow to periodic flow, and the influence on mass transfer efficiency becomes more significant. For example, under a horizontal magnetic field, the mass transfer efficiency at the maximum Lewis number is about six times that at the minimum Lewis number. Similarly, under a weak vertical magnetic field, the mass transfer efficiency is about nine times higher. The influence of Lewis number on heat transfer efficiency is relatively minor.Within the range of considered aspect ratios, the heat transfer efficiency and mass transfer efficiency exhibit oscillatory behavior under no magnetic field and weak magnetic field as the aspect ratio increases. However, the heat transfer efficiency and mass transfer efficiency under a strong magnetic field are less affected by the aspect ratio. For flows with the same number of vortices, lower aspect ratio can lead to stronger heat and mass transfer.
      通信作者: 赵秉新, zhao_bx@nxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12272196)、宁夏自然科学基金(批准号: 2022AAC03011, 2022AAC03074)、宁夏大学生创新创业项目(批准号: G202210749011)和宁夏大学研究生创新项目(批准号: CXXM2023-09)资助的课题.
      Corresponding author: Zhao Bing-Xin, zhao_bx@nxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12272196), the Natural Science Foundation of Ningxia, China (Grant Nos. 2022AAC03011, 2022AAC03074), the College Students’ Innovation and Entrepreneurship Project of Ningxia, China (Grant No. G202210749011), and the Graduate Innovation Project of Ningxia University, China (Grant No. CXXM2023-09).
    [1]

    Degl'Innocenti E L 2003 The Differential Saturation Mechanism: An Application of the Zeeman Effect to the Diagnostic of Magnetic Fields Toulouse, France, September 17–21, 2002 pp71–75

    [2]

    倪明玖 2013 中国科学: 物理学 力学 天文学 43 1570

    Ni M J 2013 Sci. Sin-Phys Mech As 43 1570

    [3]

    Ihli T, Basu T K, Giancarli L M, Konishi S, Malang S, Najmabadi F, Nishio S, Raffray A R, Rao C V S, Sagara A, Wu Y 2008 Fusion Eng. Des. 83 912Google Scholar

    [4]

    Sun Z H I, Guo M, Vleugels J, Van der Biest O, Blanpain B 2012 Curr. Opin. Solid ST M 16 254Google Scholar

    [5]

    Zhao R X, Wang J, Cao T W, Hu T, Shuai S S, Xu S Z, Chen C Y, Ren Z M, Qian M 2023 Mat. Sci. Eng. A-Struct 871 144926Google Scholar

    [6]

    Bachmann M, Avilov V, Gumenyuk A, Rethmeier M 2013 Int. J. Heat Mass Tran. 60 309Google Scholar

    [7]

    Zhu X O, Liu Z Q, Yin G L, Wang H J, Ren J T 2023 Mater. Res. Express 10 096502Google Scholar

    [8]

    Bendaraa A, Charafi M M, Hasnaoui A 2019 Eur. Phys. J. Plus 134 468Google Scholar

    [9]

    Hussain S H, Hussein A K, Mohammed R N 2012 Comput. Math. Appl. 64 476Google Scholar

    [10]

    Manogaran G, Anbalagan S 2024 Therm. Sci. online firstGoogle Scholar

    [11]

    Yu P X, Xiao Z C, Wu S 2017 Int. J. Heat Mass Tran. 110 613Google Scholar

    [12]

    Teamah M A, Shehata A I 2016 Alex. Eng. J. 55 1037Google Scholar

    [13]

    李炜, 姜燕妮, 颜君毅, 陈启生 2012 力学学报 44 481Google Scholar

    Li W, Jiang Y N, Yan J Y, Chen Q S 2012 Chin. J. Theor. Appl. Mech. 44 481Google Scholar

    [14]

    Uddin M B, Rahman M M, Khan M A H 2015 Numer. Heat TR A-Appl. 68 205Google Scholar

    [15]

    Mondal S, Sibanda P 2016 Int. J. Comp. Meth-Sign. 13 1641015Google Scholar

    [16]

    Reddy N, Murugesan K 2017 Numer. Heat TR A-Appl. 71 448Google Scholar

    [17]

    Makayssi T, Lamsaadi M, Kaddiri M 2021 Eur. Phys. J. Plus 136 996Google Scholar

    [18]

    Liao C C, Li W K, Chu C C 2022 Int. Commun. Heat Mass 130 105817Google Scholar

    [19]

    Sivaraj C, Sheremet M A 2017 J. Magn. Magn. Mater. 426 351Google Scholar

    [20]

    Moolya S, Satheesh A 2020 Int. Commun. Heat Mass 118 104814Google Scholar

    [21]

    Moolya S, Anbalgan S 2021 Int. Commun. Heat Mass 126 105358Google Scholar

    [22]

    Singh R J, Gohil T B 2019 Comput. Fluids 179 476Google Scholar

    [23]

    Singh R J, Chandy A J 2020 Int. J. Heat Mass Tran. 157 119823Google Scholar

    [24]

    Yasin A, Ullah N, Nadeem S, Ghazwani H A 2022 Int. Commun. Heat Mass 135 106066Google Scholar

    [25]

    Pirmohammadi M, Ghassemi M 2009 Int. Comm Heat Mass 36 7766

    [26]

    Tasaka Y, Yanagisawa T, Fujita K, Miyagoshi T, Sakuraba A 2021 J. Fluid Mech. 911 A19Google Scholar

    [27]

    Ghosh M, Ghosh P, Nandukumar Y, Pal P 2020 Phys. Fluids 32 024110Google Scholar

    [28]

    Listratov Y, Ognerubov D, Zikanov O, Sviridov V 2018 Fluid. Dyn. Res. 50 051407Google Scholar

    [29]

    Ren D W, Wu S, Yang J C, Ni M J 2020 Phys. Fluids 32 053311Google Scholar

    [30]

    Parsaee S, Payan S, Payan A 2021 Int. J. Therm Sci 169 107072Google Scholar

    [31]

    Han D Z, Hernandez M, Wang Q 2018 Chaos Soliton. Fract. 114 370Google Scholar

    [32]

    Zürner T, Liu W J, Krasnov D, Schumacher J 2016 Phys. Rev. E 94 043108Google Scholar

    [33]

    Yan M, Calkins M A, Maffei S, Julien K, Tobias S M, Marti P 2019 J. Fluid Mech. 877 1186Google Scholar

    [34]

    Yang J Q, Zhao B X 2021 Comput. Math. Appl. 94 155Google Scholar

    [35]

    Zhao B X, Yang J Q 2022 Phys. Fluids 34 034120Google Scholar

    [36]

    Zhao B X, Tian Z F 2015 Phys. Fluids 27 074102Google Scholar

  • 图 1  物理模型

    Fig. 1.  Physical model.

    图 2  $Nu, Sh$随Hartmann数的变化

    Fig. 2.  Variation of Nusselt number and Sherwood number as a function of Hartmann number.

    图 3  不同磁场下NuSh 随Prandtl数的变化

    Fig. 3.  Variation of Nusselt number and Sherwood number as a function of Prandtl number for different magnetic fields.

    图 4  解的分岔现象

    Fig. 4.  Bifurcation of the solution.

    图 5  Pr = 0.01时流场各特征量的变化情况 (a) $u$随时间$t$变化; (b) $v$随时间$t$变化; (c)速度$u$的频谱分析; (d) $u \text{-} v$相位图

    Fig. 5.  Variations of flow field characteristics when Pr = 0.01: (a) Time trace of the u-velocity; (b) time trace of the v-velocity; (c) Fourier frequency spectrum of the u-velocity; (d) phase-space trajectories.

    图 6  Pr = 0.01时一个周期内的流场结构

    Fig. 6.  The evolution of the flow pattern over a period for Pr = 0.01.

    图 7  不同磁场下NuShLe的变化

    Fig. 7.  Variation of Nusselt number and Sherwood number as a function of Lewis number for different magnetic fields.

    图 8  速度$u$的频率随Le数的变化

    Fig. 8.  Variation of the frequency of the $u$-velocity as a function of Lewis number.

    图 9  不同磁场下NuSh随高宽比的变化

    Fig. 9.  Variation of Nusselt number and Sherwood number as a function of the aspect ratio for different magnetic fields.

    图 10  $Ha = 10,\; \beta = 90^\circ $时不同高宽比下的流场结构

    Fig. 10.  Flow patterns in cavities of different aspect ratio for $Ha = 10,\; \beta = 90^\circ $.

    表 1  $\beta = 90^\circ , Ha = 10$的网格无关性验证

    Table 1.  Grid independence verification of $\beta = 90^\circ , Ha = 10$.

    网格尺寸 umax Error/% vmax Error/% Nu Error/% Sh Error/%
    $21 \times 41$ 7.928265 4.70 10.26546 4.84 1.27839 1.13 1.609945 0.98
    $31 \times 61$ 8.166999 1.83 10.60808 1.66 1.287215 0.44 1.619112 0.42
    $41 \times 81$ 8.269498 0.59 10.73112 0.52 1.291532 0.11 1.624656 0.08
    $51 \times 101$ 8.318981 10.78753 1.292946 1.625911
    下载: 导出CSV

    表 2  $\beta = 0^\circ , Ha = 5$的网格无关性验证

    Table 2.  Grid independence verification of $\beta = 0^\circ , Ha = 5$.

    网格尺寸 umax Error/% vmax Error/% Nu Error/% Sh Error/%
    $21 \times 41$ 9.799929 8.07 11.37238 7.23 1.307235 1.76 1.618727 1.29
    $31 \times 61$ 10.29227 3.45 11.89485 2.97 1.318517 0.91 1.625802 0.86
    $41 \times 81$ 10.51703 1.34 12.11855 1.15 1.326589 0.31 1.635453 0.27
    $51 \times 101$ 10.6599 12.25902 1.330674 1.639908
    下载: 导出CSV

    表 3  弱磁场($Ha = 10$)下Lewis数对流动的影响

    Table 3.  Effect of Lewis number on the flow for $Ha = 10$.

    磁场方向定常解范围(Le)周期解范围(Le)
    $\beta = 0^\circ $$\left[ {1, 8} \right]$$\left[ {9, 100} \right]$
    $\beta = 90^\circ $$\left[ {1, 6} \right]$$\left[ {7, 100} \right]$
    下载: 导出CSV
  • [1]

    Degl'Innocenti E L 2003 The Differential Saturation Mechanism: An Application of the Zeeman Effect to the Diagnostic of Magnetic Fields Toulouse, France, September 17–21, 2002 pp71–75

    [2]

    倪明玖 2013 中国科学: 物理学 力学 天文学 43 1570

    Ni M J 2013 Sci. Sin-Phys Mech As 43 1570

    [3]

    Ihli T, Basu T K, Giancarli L M, Konishi S, Malang S, Najmabadi F, Nishio S, Raffray A R, Rao C V S, Sagara A, Wu Y 2008 Fusion Eng. Des. 83 912Google Scholar

    [4]

    Sun Z H I, Guo M, Vleugels J, Van der Biest O, Blanpain B 2012 Curr. Opin. Solid ST M 16 254Google Scholar

    [5]

    Zhao R X, Wang J, Cao T W, Hu T, Shuai S S, Xu S Z, Chen C Y, Ren Z M, Qian M 2023 Mat. Sci. Eng. A-Struct 871 144926Google Scholar

    [6]

    Bachmann M, Avilov V, Gumenyuk A, Rethmeier M 2013 Int. J. Heat Mass Tran. 60 309Google Scholar

    [7]

    Zhu X O, Liu Z Q, Yin G L, Wang H J, Ren J T 2023 Mater. Res. Express 10 096502Google Scholar

    [8]

    Bendaraa A, Charafi M M, Hasnaoui A 2019 Eur. Phys. J. Plus 134 468Google Scholar

    [9]

    Hussain S H, Hussein A K, Mohammed R N 2012 Comput. Math. Appl. 64 476Google Scholar

    [10]

    Manogaran G, Anbalagan S 2024 Therm. Sci. online firstGoogle Scholar

    [11]

    Yu P X, Xiao Z C, Wu S 2017 Int. J. Heat Mass Tran. 110 613Google Scholar

    [12]

    Teamah M A, Shehata A I 2016 Alex. Eng. J. 55 1037Google Scholar

    [13]

    李炜, 姜燕妮, 颜君毅, 陈启生 2012 力学学报 44 481Google Scholar

    Li W, Jiang Y N, Yan J Y, Chen Q S 2012 Chin. J. Theor. Appl. Mech. 44 481Google Scholar

    [14]

    Uddin M B, Rahman M M, Khan M A H 2015 Numer. Heat TR A-Appl. 68 205Google Scholar

    [15]

    Mondal S, Sibanda P 2016 Int. J. Comp. Meth-Sign. 13 1641015Google Scholar

    [16]

    Reddy N, Murugesan K 2017 Numer. Heat TR A-Appl. 71 448Google Scholar

    [17]

    Makayssi T, Lamsaadi M, Kaddiri M 2021 Eur. Phys. J. Plus 136 996Google Scholar

    [18]

    Liao C C, Li W K, Chu C C 2022 Int. Commun. Heat Mass 130 105817Google Scholar

    [19]

    Sivaraj C, Sheremet M A 2017 J. Magn. Magn. Mater. 426 351Google Scholar

    [20]

    Moolya S, Satheesh A 2020 Int. Commun. Heat Mass 118 104814Google Scholar

    [21]

    Moolya S, Anbalgan S 2021 Int. Commun. Heat Mass 126 105358Google Scholar

    [22]

    Singh R J, Gohil T B 2019 Comput. Fluids 179 476Google Scholar

    [23]

    Singh R J, Chandy A J 2020 Int. J. Heat Mass Tran. 157 119823Google Scholar

    [24]

    Yasin A, Ullah N, Nadeem S, Ghazwani H A 2022 Int. Commun. Heat Mass 135 106066Google Scholar

    [25]

    Pirmohammadi M, Ghassemi M 2009 Int. Comm Heat Mass 36 7766

    [26]

    Tasaka Y, Yanagisawa T, Fujita K, Miyagoshi T, Sakuraba A 2021 J. Fluid Mech. 911 A19Google Scholar

    [27]

    Ghosh M, Ghosh P, Nandukumar Y, Pal P 2020 Phys. Fluids 32 024110Google Scholar

    [28]

    Listratov Y, Ognerubov D, Zikanov O, Sviridov V 2018 Fluid. Dyn. Res. 50 051407Google Scholar

    [29]

    Ren D W, Wu S, Yang J C, Ni M J 2020 Phys. Fluids 32 053311Google Scholar

    [30]

    Parsaee S, Payan S, Payan A 2021 Int. J. Therm Sci 169 107072Google Scholar

    [31]

    Han D Z, Hernandez M, Wang Q 2018 Chaos Soliton. Fract. 114 370Google Scholar

    [32]

    Zürner T, Liu W J, Krasnov D, Schumacher J 2016 Phys. Rev. E 94 043108Google Scholar

    [33]

    Yan M, Calkins M A, Maffei S, Julien K, Tobias S M, Marti P 2019 J. Fluid Mech. 877 1186Google Scholar

    [34]

    Yang J Q, Zhao B X 2021 Comput. Math. Appl. 94 155Google Scholar

    [35]

    Zhao B X, Yang J Q 2022 Phys. Fluids 34 034120Google Scholar

    [36]

    Zhao B X, Tian Z F 2015 Phys. Fluids 27 074102Google Scholar

  • [1] 史慧敏, 莫润阳, 王成会. 磁流体管内“泡对”在磁声复合场中的振荡行为. 物理学报, 2022, 71(8): 084302. doi: 10.7498/aps.71.20212150
    [2] 尹慧, 赵秉新. 倾角对方腔内热对流非线性演化与分岔的影响. 物理学报, 2021, 70(11): 114401. doi: 10.7498/aps.70.20201513
    [3] 陶弢. 磁化天体准直流中非理想效应的实验室研究. 物理学报, 2020, 69(19): 195202. doi: 10.7498/aps.69.20200559
    [4] 赵勇, 蔡露, 李雪刚, 吕日清. 基于酒精与磁流体填充的单模-空芯-单模光纤结构温度磁场双参数传感器. 物理学报, 2017, 66(7): 070601. doi: 10.7498/aps.66.070601
    [5] 杨雄, 程谋森, 王墨戈, 李小康. 螺旋波等离子体放电三维直接数值模拟. 物理学报, 2017, 66(2): 025201. doi: 10.7498/aps.66.025201
    [6] 陈木凤, 李翔, 牛小东, 李游, Adnan, 山口博司. 两个非磁性颗粒在磁流体中的沉降现象研究. 物理学报, 2017, 66(16): 164703. doi: 10.7498/aps.66.164703
    [7] 耿滔, 吴娜, 董祥美, 高秀敏. 基于磁流体光子晶体的可调谐近似零折射率研究. 物理学报, 2016, 65(1): 014213. doi: 10.7498/aps.65.014213
    [8] 刘汉涛, 江山, 王艳华, 王婵娟, 李海桥. 溶解椭圆颗粒沉降的介观尺度数值模拟. 物理学报, 2015, 64(11): 114401. doi: 10.7498/aps.64.114401
    [9] 吴文堂, 洪延姬, 范宝春. 确定分布的展向Lorentz力调制下的槽道湍流涡结构. 物理学报, 2014, 63(5): 054702. doi: 10.7498/aps.63.054702
    [10] 刘汉涛, 常建忠. 直接模拟中不同边界条件的实施及对沉降规律的影响. 物理学报, 2013, 62(8): 084401. doi: 10.7498/aps.62.084401
    [11] 苗银萍, 姚建铨. 基于磁流体填充微结构光纤的温度特性研究. 物理学报, 2013, 62(4): 044223. doi: 10.7498/aps.62.044223
    [12] 仝志辉, 刘汉涛, 常建忠, 安康. 双颗粒在溶解条件下沉降的多相流动特性. 物理学报, 2012, 61(2): 024401. doi: 10.7498/aps.61.024401
    [13] 王楠, 韩海年, 李德华, 魏志义. 光学频率梳空间光谱分辨精度研究. 物理学报, 2012, 61(18): 184201. doi: 10.7498/aps.61.184201
    [14] 陈林, 唐登斌, Chaoqun Liu. 转捩边界层中流向条纹的新特性. 物理学报, 2011, 60(9): 094702. doi: 10.7498/aps.60.094702
    [15] 仝志辉. 热对流条件下固液密度比对颗粒沉降运动影响的直接数值模拟. 物理学报, 2010, 59(3): 1884-1889. doi: 10.7498/aps.59.1884
    [16] 刘桂雄, 徐晨, 张沛强, 吴庭万. 永磁体在磁流体中的磁力学建模及自悬浮位置可控性. 物理学报, 2009, 58(3): 2005-2010. doi: 10.7498/aps.58.2005
    [17] 刘汉涛, 仝志辉, 安康, 马理强. 溶解与热对流对固体颗粒运动影响的直接数值模拟. 物理学报, 2009, 58(9): 6369-6375. doi: 10.7498/aps.58.6369
    [18] 刘桂雄, 蒲尧萍, 徐 晨. 磁流体中Helmholtz和Kelvin力的界定. 物理学报, 2008, 57(4): 2500-2503. doi: 10.7498/aps.57.2500
    [19] 罗莹莹, 詹杰民, 李毓湘. 多孔介质中盐指现象的数值模拟. 物理学报, 2008, 57(4): 2306-2313. doi: 10.7498/aps.57.2306
    [20] 赵培涛, 李国华, 吴福全, 彭捍东, 张寅超, 赵曰峰, 王 莲, 刘玉丽. 高精度消色差相位延迟器性能测试研究. 物理学报, 2006, 55(9): 4582-4587. doi: 10.7498/aps.55.4582
计量
  • 文章访问数:  2175
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-14
  • 修回日期:  2024-03-02
  • 上网日期:  2024-04-11
  • 刊出日期:  2024-06-05

/

返回文章
返回