搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

计入粗糙峰的微纳结构表面水润滑流体动力学仿真

谷靖萱 郑庭 郭明帅 夏冬生 张会臣

引用本文:
Citation:

计入粗糙峰的微纳结构表面水润滑流体动力学仿真

谷靖萱, 郑庭, 郭明帅, 夏冬生, 张会臣

Fluid dynamics simulation on water lubricating performance of micro-/nano-textured surfaces considering roughness structures

Gu Jing-Xuan, Zheng Ting, Guo Ming-Shuai, Xia Dong-Sheng, Zhang Hui-Chen
PDF
HTML
导出引用
  • 随着表面精密加工技术与润滑减摩研究的发展, 利用表面织构化技术提升其表面减摩效果的研究已引起广泛关注, 但少有研究考虑摩擦副表面粗糙形貌对润滑特性带来影响. 本研究采用计算流体动力学(CFD)模拟方法, 建立了矩形织构模型, 并在其表面计入粗糙峰结构, 讨论水润滑条件下不同粗糙峰结构模型润滑特性变化规律. 结果表明: 调节微纳复合表面结构参数, 将改变润滑水膜承载力, 进而影响微纳复合结构表面的动压润滑效果. 此外, 织构内涡流生成导致涡量变化, 引起能量耗散并影响摩擦力. 对矩形织构模型, 适当的深度比(H = 0.6)可使其表面动压润滑效应达到最优; 而增大织构宽度比(W), 动压润滑效应增强. 在微织构表面引入高斯随机粗糙峰后, 当随机粗糙峰高度变化标准差δ为0.5时, 承载力可提升44%, 摩擦系数降低30.9%. 若引入半正弦粗糙峰, 承载力和摩擦系数的变化范围均小于10%, 对润滑效果的影响不明显. 若同时引入高斯随机粗糙峰和半正弦粗糙峰, 承载力可提升42%, 摩擦系数下降31.1%, 即表面动压润滑效果提升也较为显著.
    With the development of surface precision machining technology and extensive studies on lubrication and friction reduction, the use of surface texture to reduce friction has attracted widespread attention, but few studies have considered the influence of surface roughness on lubrication characteristics. By employing the computational fluid dynamics (CFD) simulation method, the lubrication models with rectangular textures and the introduction of rough asperity structures at the same time are established. The effects of the corresponding structure parameters on the lubrication performance of textured and roughed surfaces are studied under water lubrication conditions. Our results suggest that the adjustment of geometric parameters on the micro-/nano-structured surfaces can influence the load-bearing capacity of the water lubrication film, thus affecting the hydrodynamic lubrication performance on the surface. In addition, the generation of vortex in the micro-textures can bring changes in vorticity, which causes energy dissipation and affects frictional forces. In the lubrication model with rectangular textures, optimal hydrodynamic lubrication performance is obtained under the appropriate depth ratio H = 0.6. Meanwhile, the corresponding lubrication performance can be enhanced by increasing the width ratio (W) of surface texture. After introducing random asperity structures on the micro-textured surface with a standard deviation δ = 0.5, the bearing capacity is increased by 44%, and the friction coefficient is reduced by 30.9%. Moreover, the introduction of half-sine rough asperity structures can only result in relatively minor differences in the lubrication performance, i.e. the changes of bearing capacity and friction coefficient are less than 10%. However, the introduction of compound hierarchical structure consisting of random asperity structures and half-sine rough asperity structures can result in an increase in the corresponding bearing capacity by 42% and a reduction in the friction coefficient by 31.1%, which implies a significant enhancement in the hydrodynamic lubrication performance.
      通信作者: 郑庭, whlgzt@163.com
    • 基金项目: 国家自然科学基金 (批准号: 51909023, 51775077)、辽宁省自然科学基金面上项目(批准号: 2021-MS-140)和中央高校基本科研业务费 (批准号: 3132023122, 3132023516)资助的课题.
      Corresponding author: Zheng Ting, whlgzt@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51909023, 51775077), the Natural Science Foundation of Liaoning Province, China (Grant No. 2021-MS-140), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3132023122, 3132023516).
    [1]

    Hamilton D B, Walowit J A, Allen C M 1966 J. Fluids Eng. 88 177

    [2]

    Zhong Y H, Zheng L, Gao Y H, Liu Z N 2019 Tribol. Int. 129 151Google Scholar

    [3]

    Mourier L, Mazuyer D, Ninove F P, Lubrecht A A 2010 Proc. Inst. Mech. Eng. , Part J: J. Eng. Tribol. 224 697.Google Scholar

    [4]

    Zhang J Y, Meng Y G 2012 Tribol. Lett. 46 147Google Scholar

    [5]

    Gropper D, Wang L, Harvey T J 2016 Tribol. Int. 94 509Google Scholar

    [6]

    Braun D, Greiner C, Schneider J, Gumbsch P 2014 Tribol. Int. 77 142Google Scholar

    [7]

    Hsu S M, Jing Y, Hua D, Zhang H 2014 J. Phys. D: Appl. Phys. 47 335307Google Scholar

    [8]

    安书董, 王晓燕, 陈仙, 王炎武, 王晓波, 赵玉清 2015 物理学报 64 036801Google Scholar

    An S D, Wang X Y, Chen X, Wang Y W, Wang X B, Zhao Y Q 2015 Acta Phys. Sin. 64 036801Google Scholar

    [9]

    Rosenkranz A, Szurdak A, Gachot C, Hirt G, Mücklich F 2016 Tribol. Int. 95 290.Google Scholar

    [10]

    纪敬虎, 管采薇, 符昊, 华希俊, 符永宏 2018 润滑与密封 43 20Google Scholar

    Ji J H, Guan C W, Fu H, Hua X J, Fu Y H 2018 Lubr. Eng. 43 20Google Scholar

    [11]

    Qiu Y, Khonsari M M 2011 J. Tribol. 133 021704Google Scholar

    [12]

    Lahayne O, Pichler B, Reihsner R, Eberhardsteiner J, Suh J, Kim D, Nam S, Paek H, Lorenz B, Persson B N J 2016 Tribol. Lett. 62 17Google Scholar

    [13]

    Feng D, Shen M X, Peng X D, Meng X K 2017 Tribol. Lett. 65 1Google Scholar

    [14]

    Sedlaček M, Podgornik B, Vižintin J 2009 Wear 266 482Google Scholar

    [15]

    Menezes P L, Kishore, Kailas S V, Lovell M R 2011 Tribol. Lett. 41 1Google Scholar

    [16]

    Rasp W, Wichern C M 2002 J. Mater. Process. Technol. 125 379

    [17]

    王悦昶, 刘莹, 黄伟峰, 郭飞, 王玉明 2016 摩擦学学报 36 520

    Wang Y C, Liu Y, Huang W F, Guo F, Wang Y M 2016 Tribology 36 520

    [18]

    Rosenkranz A, Costa H L, Profito F, Gachot C, Medina S, Dini D 2019 Tribol. Int. 134 190Google Scholar

    [19]

    Brajdic-Mitidieri P, Gosman A D, Ioannides E, Spikes H A 2005 J. Tribol. 127 803Google Scholar

    [20]

    Sahlin F, Glavatskih S B, Almqvist T, Larsson R 2005 J. Tribol. 127 96Google Scholar

    [21]

    Vilhena L, Sedlaček M, Podgornik B, Rek Z, Žun I 2018 Lubricants 6 15Google Scholar

    [22]

    Zhang L, Luo J, Yuan R B, He M 2012 Procedia Eng. 31 220Google Scholar

    [23]

    禄晓敏, 王权岱, 肖继明, 杨振朝 2016 润滑与密封 41 70Google Scholar

    Lu X M, Wang Q D, Xiao J M, Yang Z C 2016 Lubr. Eng. 41 70Google Scholar

    [24]

    Mao Y, Zeng L C, Lu Y 2016 Tribol. Int. 104 212Google Scholar

    [25]

    Ma X 2023 Lubricants 11 270Google Scholar

    [26]

    Li Q, Zhang S, Wang Y J, Xu W W, Wang Z B 2019 Ind. Lubr. Tribol. 71 109Google Scholar

    [27]

    He T, Li J M, Deng H S, Wang C L, Shi R, Chen G Y, Li Z P 2021 AIP Adv. 11 015222Google Scholar

    [28]

    Singhal A K, Athavale M M, Li H, Jiang Y 2002 ASME J. Fluids Eng. 124 617Google Scholar

    [29]

    Pellone C, Franc J P, Perrin M 2004 C. R. Math. 332 827

    [30]

    Buscaglia G C, El Alaoui Talibi M, Jai M 2015 Math. Comput. Simul 118 130Google Scholar

    [31]

    Wei Y, Tomkowski R, Archenti A 2020 Metals 10 361Google Scholar

    [32]

    Wang W, He Y Y, Li Y, Wei B, Hu Y T, Luo J B 2018 Ind. Lubr. Tribol. 70 754Google Scholar

    [33]

    Gao G Y, Yin Z W, Jiang D, Zhang X L 2014 Tribol. Int. 75 31Google Scholar

    [34]

    Podgornik B, Vilhena L M, Sedlaček M, Rek Z, Žun I 2012 Meccanica 47 1613Google Scholar

    [35]

    Shankar P N, Deshpande M D 2000 Annu. Rev. Fluid Mech. 32 93Google Scholar

    [36]

    Sahlin F, Almqvist A, Larsson R, Glavatskih S 2007 Tribol. Int. 40 1294Google Scholar

    [37]

    Ausas R, Ragot P, Leiva J, Jai M, Bayada G, Buscaglia G C 2007 J. Tribol. 129 868Google Scholar

    [38]

    Wahl R, Schneider J, Gumbsch P 2012 Tribol. Int. 55 81.Google Scholar

    [39]

    刘天霞, 李靖, 卢星, 江志波 2023 润滑与密封 48 74Google Scholar

    Liu T X, Li J, Lu X, Jiang Z B 2023 Lubr. Eng. 48 74Google Scholar

    [40]

    Babu P V, Ismail S, Ben B S 2021 Proc. Inst. Mech. Eng. , Part J: J. Eng. Tribol. 235 360Google Scholar

    [41]

    Wos S, Koszela W, Pawlus P 2020 Tribol. Int. 146 106205.Google Scholar

    [42]

    Wang J H, Yan Z J, Fang X, Shen Z Y, Pan X X 2020 Lubr. Sci. 32 404Google Scholar

    [43]

    Venkateswara Babu P, Syed I, Benbeera S 2020 Mater. Today Proc. 24 1112Google Scholar

    [44]

    樊智敏, 马瑞磷, 江峰 2021 润滑与密封 46 44Google Scholar

    Fan Z M, Ma R L, Jiang F 2021 Lubr. Eng. 46 44Google Scholar

    [45]

    纪敬虎, 周加鹏, 王沫阳, 王伟, 符永宏 2019 表面技术 48 139

    Ji J H, Zhou J P, Wang M Y, Wang W, Fu Y H 2019 Surf. Technol. 48 139

    [46]

    Jiang Y Y, Yan Z J, Zhang S W, Shen Z Y, Sun H C 2022 Sci. Rep. 12 13455Google Scholar

    [47]

    Wang Y, Jacobs G, König F, Zhang S, von Goeldel S 2023 Lubricants 11 20Google Scholar

    [48]

    Huang J Y, Guan Y C, Ramakrishna S 2021 Tribol. Int. 162 107115Google Scholar

  • 图 1  计入粗糙峰的矩形微观复合织构的润滑模型

    Fig. 1.  The lubrication model of textured surfaces consisting of rectangular grooves and rough peaks.

    图 2  润滑模型Ⅰ和Ⅱ的润滑特性 (a) 模型Ⅰ的承载力与摩擦力; (b) 模型Ⅰ的摩擦系数; (c) 模型Ⅱ的承载力与摩擦力; (d) 模型Ⅱ的摩擦系数

    Fig. 2.  The lubrication performance in models I and II: (a) Bearing capacity and friction force in model I; (b) frictional coefficient in model I; (c) bearing capacity and friction force in model II; (d) frictional coefficient in model II.

    图 3  润滑模型Ⅰ和Ⅱ中流场流线分布图 (a) 模型Ⅰ; (b) 模型Ⅱ

    Fig. 3.  Distribution of streamlines in models I and II: (a) Model I; (b) Model II.

    图 4  润滑模型Ⅰ和Ⅱ中的上表面涡量云图 (a) 模型Ⅰ; (b) 模型Ⅱ

    Fig. 4.  Distribution of vorticity in models I and II: (a) Model I; (b) Model II.

    图 5  润滑模型Ⅰ和Ⅱ中的上表面压力和空化气相分布图 (a) 模型Ⅰ; (b) 模型Ⅱ

    Fig. 5.  Distribution of pressure and gas volume fraction on the upper surfaces of models I and II: (a) Model I; (b) Model II.

    图 6  计入不同粗糙峰结构的润滑模型的润滑特性 (a) Gauss模型中承载力、摩擦力与摩擦系数; (b) Sin模型中承载力、摩擦力与摩擦系数; (c) Sin+Gauss模型中承载力、摩擦力与摩擦系数

    Fig. 6.  The lubrication performance on the textured models with rough peaks: (a) The bearing capacity, frictional force and frictional coefficient in the Gauss model; (b) the bearing capacity, frictional force and frictional coefficient in the Sin model; (c) the bearing capacity, frictional force and frictional coefficient in the Sin+Gauss model.

    图 7  不同粗糙峰结构模型组流场流线分布图

    Fig. 7.  Distribution of streamlines in the lubrication models with rough peaks.

    图 8  不同粗糙峰结构模型组上、下壁面涡量云图 (a)下壁面涡量云图; (b)上表面涡量云图

    Fig. 8.  Distribution of vorticity on the surfaces of lubrication models with rough peaks: (a) Distribution of vorticity on the lower wall surfaces; (b) distribution of vorticity on the upper wall surfaces.

    图 9  不同粗糙峰结构模型组上表面压力和气相体积分数图

    Fig. 9.  Distribution of pressure and gas volume fraction on the upper wall surface of lubrication models with rough peaks.

    表 1  水润滑微织构模型参数变化

    Table 1.  The geometrical parameters for textured models.

    模型 T0 W H
    模型Ⅰ (恒定宽度比W ) 500/600 0.60 0.2/ 0.4/ 0.6/ 0.8 /1.0/ 1.2
    模型Ⅱ (恒定深度比H ) 400/500/600 0.50/ 0.55/ 0.60 /0.65/ 0.70 1.0
    下载: 导出CSV

    表 2  润滑模型中的下壁面微观形貌示意图

    Table 2.  Sketch maps of textures on the lower wall surfaces of the lubrication models.

    模型名称 微织构表面粗糙峰轮廓 函数变化参数
    光滑表面
    (Smooth)
    δ = 0
    hs = 0
    Gauss δ = 0.25/0.5/0.75/1
    hs = 0
    Sin δ = 0
    hs = 1/2/3/4/5
    l = 3
    i = 1
    Sin+Gauss δ = 0.25/0.5/0.75/1
    hs = 1/2/3/4/5
    l = 3
    i = 3
    下载: 导出CSV
  • [1]

    Hamilton D B, Walowit J A, Allen C M 1966 J. Fluids Eng. 88 177

    [2]

    Zhong Y H, Zheng L, Gao Y H, Liu Z N 2019 Tribol. Int. 129 151Google Scholar

    [3]

    Mourier L, Mazuyer D, Ninove F P, Lubrecht A A 2010 Proc. Inst. Mech. Eng. , Part J: J. Eng. Tribol. 224 697.Google Scholar

    [4]

    Zhang J Y, Meng Y G 2012 Tribol. Lett. 46 147Google Scholar

    [5]

    Gropper D, Wang L, Harvey T J 2016 Tribol. Int. 94 509Google Scholar

    [6]

    Braun D, Greiner C, Schneider J, Gumbsch P 2014 Tribol. Int. 77 142Google Scholar

    [7]

    Hsu S M, Jing Y, Hua D, Zhang H 2014 J. Phys. D: Appl. Phys. 47 335307Google Scholar

    [8]

    安书董, 王晓燕, 陈仙, 王炎武, 王晓波, 赵玉清 2015 物理学报 64 036801Google Scholar

    An S D, Wang X Y, Chen X, Wang Y W, Wang X B, Zhao Y Q 2015 Acta Phys. Sin. 64 036801Google Scholar

    [9]

    Rosenkranz A, Szurdak A, Gachot C, Hirt G, Mücklich F 2016 Tribol. Int. 95 290.Google Scholar

    [10]

    纪敬虎, 管采薇, 符昊, 华希俊, 符永宏 2018 润滑与密封 43 20Google Scholar

    Ji J H, Guan C W, Fu H, Hua X J, Fu Y H 2018 Lubr. Eng. 43 20Google Scholar

    [11]

    Qiu Y, Khonsari M M 2011 J. Tribol. 133 021704Google Scholar

    [12]

    Lahayne O, Pichler B, Reihsner R, Eberhardsteiner J, Suh J, Kim D, Nam S, Paek H, Lorenz B, Persson B N J 2016 Tribol. Lett. 62 17Google Scholar

    [13]

    Feng D, Shen M X, Peng X D, Meng X K 2017 Tribol. Lett. 65 1Google Scholar

    [14]

    Sedlaček M, Podgornik B, Vižintin J 2009 Wear 266 482Google Scholar

    [15]

    Menezes P L, Kishore, Kailas S V, Lovell M R 2011 Tribol. Lett. 41 1Google Scholar

    [16]

    Rasp W, Wichern C M 2002 J. Mater. Process. Technol. 125 379

    [17]

    王悦昶, 刘莹, 黄伟峰, 郭飞, 王玉明 2016 摩擦学学报 36 520

    Wang Y C, Liu Y, Huang W F, Guo F, Wang Y M 2016 Tribology 36 520

    [18]

    Rosenkranz A, Costa H L, Profito F, Gachot C, Medina S, Dini D 2019 Tribol. Int. 134 190Google Scholar

    [19]

    Brajdic-Mitidieri P, Gosman A D, Ioannides E, Spikes H A 2005 J. Tribol. 127 803Google Scholar

    [20]

    Sahlin F, Glavatskih S B, Almqvist T, Larsson R 2005 J. Tribol. 127 96Google Scholar

    [21]

    Vilhena L, Sedlaček M, Podgornik B, Rek Z, Žun I 2018 Lubricants 6 15Google Scholar

    [22]

    Zhang L, Luo J, Yuan R B, He M 2012 Procedia Eng. 31 220Google Scholar

    [23]

    禄晓敏, 王权岱, 肖继明, 杨振朝 2016 润滑与密封 41 70Google Scholar

    Lu X M, Wang Q D, Xiao J M, Yang Z C 2016 Lubr. Eng. 41 70Google Scholar

    [24]

    Mao Y, Zeng L C, Lu Y 2016 Tribol. Int. 104 212Google Scholar

    [25]

    Ma X 2023 Lubricants 11 270Google Scholar

    [26]

    Li Q, Zhang S, Wang Y J, Xu W W, Wang Z B 2019 Ind. Lubr. Tribol. 71 109Google Scholar

    [27]

    He T, Li J M, Deng H S, Wang C L, Shi R, Chen G Y, Li Z P 2021 AIP Adv. 11 015222Google Scholar

    [28]

    Singhal A K, Athavale M M, Li H, Jiang Y 2002 ASME J. Fluids Eng. 124 617Google Scholar

    [29]

    Pellone C, Franc J P, Perrin M 2004 C. R. Math. 332 827

    [30]

    Buscaglia G C, El Alaoui Talibi M, Jai M 2015 Math. Comput. Simul 118 130Google Scholar

    [31]

    Wei Y, Tomkowski R, Archenti A 2020 Metals 10 361Google Scholar

    [32]

    Wang W, He Y Y, Li Y, Wei B, Hu Y T, Luo J B 2018 Ind. Lubr. Tribol. 70 754Google Scholar

    [33]

    Gao G Y, Yin Z W, Jiang D, Zhang X L 2014 Tribol. Int. 75 31Google Scholar

    [34]

    Podgornik B, Vilhena L M, Sedlaček M, Rek Z, Žun I 2012 Meccanica 47 1613Google Scholar

    [35]

    Shankar P N, Deshpande M D 2000 Annu. Rev. Fluid Mech. 32 93Google Scholar

    [36]

    Sahlin F, Almqvist A, Larsson R, Glavatskih S 2007 Tribol. Int. 40 1294Google Scholar

    [37]

    Ausas R, Ragot P, Leiva J, Jai M, Bayada G, Buscaglia G C 2007 J. Tribol. 129 868Google Scholar

    [38]

    Wahl R, Schneider J, Gumbsch P 2012 Tribol. Int. 55 81.Google Scholar

    [39]

    刘天霞, 李靖, 卢星, 江志波 2023 润滑与密封 48 74Google Scholar

    Liu T X, Li J, Lu X, Jiang Z B 2023 Lubr. Eng. 48 74Google Scholar

    [40]

    Babu P V, Ismail S, Ben B S 2021 Proc. Inst. Mech. Eng. , Part J: J. Eng. Tribol. 235 360Google Scholar

    [41]

    Wos S, Koszela W, Pawlus P 2020 Tribol. Int. 146 106205.Google Scholar

    [42]

    Wang J H, Yan Z J, Fang X, Shen Z Y, Pan X X 2020 Lubr. Sci. 32 404Google Scholar

    [43]

    Venkateswara Babu P, Syed I, Benbeera S 2020 Mater. Today Proc. 24 1112Google Scholar

    [44]

    樊智敏, 马瑞磷, 江峰 2021 润滑与密封 46 44Google Scholar

    Fan Z M, Ma R L, Jiang F 2021 Lubr. Eng. 46 44Google Scholar

    [45]

    纪敬虎, 周加鹏, 王沫阳, 王伟, 符永宏 2019 表面技术 48 139

    Ji J H, Zhou J P, Wang M Y, Wang W, Fu Y H 2019 Surf. Technol. 48 139

    [46]

    Jiang Y Y, Yan Z J, Zhang S W, Shen Z Y, Sun H C 2022 Sci. Rep. 12 13455Google Scholar

    [47]

    Wang Y, Jacobs G, König F, Zhang S, von Goeldel S 2023 Lubricants 11 20Google Scholar

    [48]

    Huang J Y, Guan Y C, Ramakrishna S 2021 Tribol. Int. 162 107115Google Scholar

  • [1] 唐鹏博, 王关晴, 王路, 石中玉, 李源, 徐江荣. 单液滴正碰球面动态行为特性实验研究. 物理学报, 2020, 69(2): 024702. doi: 10.7498/aps.69.20191141
    [2] 刘晨昊, 刘天宇, 黄仁忠, 高天附, 舒咬根. 粗糙势中耦合布朗粒子的定向输运性能. 物理学报, 2019, 68(24): 240501. doi: 10.7498/aps.68.20191203
    [3] 李瑞涛, 唐刚, 夏辉, 寻之朋, 李嘉翔, 朱磊. 二维随机蜂巢网格熔断动力学过程和熔断面标度性质的数值模拟. 物理学报, 2019, 68(5): 050301. doi: 10.7498/aps.68.20181774
    [4] 梅涛, 陈占秀, 杨历, 王坤, 苗瑞灿. 纳米通道粗糙内壁对流体流动行为的影响. 物理学报, 2019, 68(9): 094701. doi: 10.7498/aps.68.20181956
    [5] 张永建, 叶芳霞, 戴君, 何斌锋, 臧渡洋. 纳米粗糙度对胶体液滴蒸发图案的影响机制. 物理学报, 2017, 66(6): 066101. doi: 10.7498/aps.66.066101
    [6] 陈雷鸣. 干活性物质的动力学理论. 物理学报, 2016, 65(18): 186401. doi: 10.7498/aps.65.186401
    [7] 江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强. 粗糙表面涂覆目标的太赫兹波散射特性研究. 物理学报, 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [8] 冒晓莉, 肖韶荣, 刘清惓, 李敏, 张加宏. 探空湿度测量太阳辐射误差修正流体动力学研究. 物理学报, 2014, 63(14): 144701. doi: 10.7498/aps.63.144701
    [9] 张程宾, 许兆林, 陈永平. 粗糙纳通道内流体流动与传热的分子动力学模拟研究. 物理学报, 2014, 63(21): 214706. doi: 10.7498/aps.63.214706
    [10] 宋保维, 郭云鹤, 罗荘竹, 徐向辉, 王鹰. 疏水表面减阻环带实验研究. 物理学报, 2013, 62(15): 154701. doi: 10.7498/aps.62.154701
    [11] 蒋亦民, 刘佑. 水-气-颗粒固体三相混合系统的流体动力学. 物理学报, 2013, 62(20): 204501. doi: 10.7498/aps.62.204501
    [12] 杜萌, 金宁德, 高忠科, 朱雷, 王振亚. 油水两相流水包油流型多尺度排列熵分析. 物理学报, 2012, 61(23): 230507. doi: 10.7498/aps.61.230507
    [13] 高忠科, 金宁德, 杨丹, 翟路生, 杜萌. 多元时间序列复杂网络流型动力学分析. 物理学报, 2012, 61(12): 120510. doi: 10.7498/aps.61.120510
    [14] 薛伟, 解国新, 王权, 张淼, 郑蓓蓉. 几种微构件材料的表面能及纳观黏附行为研究. 物理学报, 2009, 58(4): 2518-2522. doi: 10.7498/aps.58.2518
    [15] 张宝玲, 何智兵, 吴卫东, 刘兴华, 杨向东. 占空比对微球a-C:H薄膜制备的影响. 物理学报, 2009, 58(9): 6436-6440. doi: 10.7498/aps.58.6436
    [16] 张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰. 表面粗糙度的分形特征及其对微通道内层流流动的影响. 物理学报, 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
    [17] 王 薇, 张 杰, 赵 刚. 普朗克谱分布的辐射场对束缚电子布居的影响. 物理学报, 2008, 57(3): 1759-1764. doi: 10.7498/aps.57.1759
    [18] 郝鹏飞, 姚朝晖, 何 枫. 粗糙微管道内液体流动特性的实验研究. 物理学报, 2007, 56(8): 4728-4732. doi: 10.7498/aps.56.4728
    [19] 张翠玲, 郑瑞伦, 滕 蛟. NiFeNb种子层对坡莫合金磁滞回线的影响. 物理学报, 2005, 54(11): 5389-5394. doi: 10.7498/aps.54.5389
    [20] 夏江帆, 张军, 张杰. 用激光等离子体实验对天体物理动力学过程进行模拟的可行性研究. 物理学报, 2001, 50(5): 994-1000. doi: 10.7498/aps.50.994
计量
  • 文章访问数:  1738
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-07
  • 修回日期:  2024-04-10
  • 上网日期:  2024-04-23
  • 刊出日期:  2024-06-05

/

返回文章
返回