-
强流重离子束驱动产生的高能量密度物质具有大体积、状态均匀、材料种类多样等显著特色,为高能量密度物理研究提供了新的研究途径。我国的“十二五”规划建设的强流重离子加速器装置(HIAF)正加速推进,将为重离子束驱动的高能量密度物理实验研究提供了独特的实验平台与新的机遇。本文基于HIAF上重离子束流参数特点,利用自主研发的一维辐射流体程序Aardvark进行了数值模拟计算,预测了铀离子束与铅靶相互作用下可产生的物质状态。结果清晰展示了重离子束能量加载过程中,靶物质的单位质量的能量沉积、温度、压强和密度的含时演化图像,以及靶物质轴心处产生的大面积均匀区。研究发现随着重离子束流强度的逐步提升,靶物质的温度等状态参数呈现出非线性的增长趋势,靶物质内部还引发了冲击波现象。本研究还构建了铀离子束与多种靶物质相互作用产生的靶物质状态参数的数据库。相关模拟数据不仅为HIAF上重离子束驱动的高能量密度物理实验研究规划提供重要的前期理论指导,而且为深入研究高能量密度物质的产生、演化及其特性等提供了关键的理论支持。此研究工作将为推动我国在强流重离子束驱动的高能量密度物理研究领域发挥重要作用。
-
关键词:
- 强流重离子束 /
- 高能量密度物质 /
- 流体动力学 /
- Aardvark程序 /
- 强流重离子加速器装置
The unique properties of heavy-ion beam-driven high-energy density matter (HEDM)—characterized by macroscale uniformity, extended volumetric dimensions, and material diversity—present novel oppor-tunities for advancing high-energy density physics (HEDP). The High Intensity Heavy-Ion Accelerator Facility (HIAF), a cornerstone project initiated during China’ s 12th Five-Year Plan, is currently under accelerated construction. Upon completion, it will serve as a premier platform for experimental studies of HEDP phenomena induced by intense heavy-ion beams.
This study employs the self-developed 1D radiation hydrodynamics code Aardvark to simulate the interaction dynamics between uranium ion beams (500 MeV/u) and cylindrical targets under HIAFrelevant beam parameters. The results demonstrate time-evolution images of specific energy deposition, temperature, pressure, and density of the target material with radial direction during heavy ion beam energy loading.Figures (a, c, e, g) illustrate the comparison of the state-of-matter parameters produced by the ion beam hitting the target at different beam intensities, revealing a noteworthy phenomenon: the formation of a plateau region of temperature and pressure near the axis. This observation indicates that a substantial homogeneous region is formed at the axis of the target material under the action of the heavy ion beam.This phenomenon further elucidates the salient characteristics of the heavy ion beam-driven high energy density material, i.e., its substantial volume and homogeneous state. As illustrated in Figures (b, d, f, h), the state parameters of the target material undergo significant alterations during the course of the process, particularly in the later stages, for a beam cluster length of 150 ns and a beam intensity of 4×1011ppp. These alterations are characterized by substantial changes in both the density and the pressure of the target material, which are often referred to as shock waves, as depicted in the shaded regions of the figures. The generation and propagation rate of these shock waves can be significantly controlled by adjusting the intensity of the ion beam.
This study further constructs a systematic database that meticulously records the state parameters of target materials when uranium ion beams interact with various types of targets. The relevant simulation data provide important theoretical guidance for planning heavy-ion beam-driven high-energy density physics experiments at HIAF and offer crucial theoretical support for in-depth research on the generation, evolution, and properties of high-energy density matter. The study establishes database that meticulously documents the state parameters of target materials during interactions with uranium ion beams. These computational advances position HIAF as a transformative platform for probing extreme-state matter, with direct implications for inertial confinement fusion research and astrophysical plasma modeling.-
Keywords:
- Intense heavy ion beam /
- High energy density matter /
- Fluid dynamics /
- Aardvark program /
- High Intensity heavy-ion Accelerator Facility
-
[1] Zhao Y T, Zhang Z M, Cheng R, Hoffmann D, Ma B B, Wang Y N, Wang Y Y, Wang X, Deng Z G, Ren J R, Liu W, Qi W, Qi X, Su Y W, Du Y C, Li F L, Li J Y, Yang J, Yang J C, Yang L, Xiao G Q, Wu D, He B, Song Y H, Zhang X A, Zhang S Z, Zhang L, Zhang Y, Zhang Y N, Chen B Z, Chen Y H, Zhou Z, Zhou X M, Zhou W M, Zhao H W, Zhao Q T, Zhao Z Q, Zhao X Y, Hu Z H, Wan F, Li J X, Xu Z F, Gao F, Tang C X, Huang W H, Cao S C, Cao L F, Sheng L N, Kang W, Lei Y, Zhan W L 2020 Sci Sin-Phys Mech Astron 50112004(in Chinses) [赵永涛, 张子民, 程锐, HOFFMANN Dieter, 马步博, 王友年, 王瑜玉, 王兴, 邓志刚, 任洁茹, 刘巍, 齐伟, 齐新, 苏有武, 杜应超, 李福利, 李锦钰, 杨杰, 杨建成, 杨磊, 肖国青, 吴栋, 何斌, 宋远红, 张小安, 张世政, 张琳, 张雅, 张艳宁, 陈本正, 陈燕红, 周征, 周贤明, 周维民, 赵红卫, 赵全堂, 赵宗清, 赵晓莹, 胡章虎, 弯峰, 栗建兴, 徐忠锋, 高飞, 唐传祥, 黄文会, 曹树春, 曹磊峰, 盛丽娜, 康炜, 雷瑜, 詹文龙2020中国科学: 物理学力学天文学50112004]
[2] Cheng R, Zhang S, Shen G D, Chen Y H, Zhang Y S, Chen L W, Zhang Z M, Zhao Q T, Yang J C, Wang Y Y, Lei Y, Lin P, Yang J, Yang L, Ma X W, Xiao G Q, Zhao H W, Zhan W L 2020 Sci Sin-Phys Mech Astron 50112011(in Chinses) [程锐, 张晟, 申国栋, 陈燕红, 张延师, 陈良文, 张子民, 赵全堂, 杨建成, 王瑜玉, 雷瑜, 林平, 杨杰, 杨磊, 马新文, 肖国青, 赵红卫, 詹文龙2020中国科学: 物理学力学天文学50112011]
[3] Ren J R, Wang J L, Chen B Z, Xu H, Zhang Y N, Wei W q, Xu X, Ma B B, Hu Z M, Yin S, Feng J H, Song S S, Zhang S Z, Hoffmann D, Zhao Y 2021 High Power Laser and Particle Beams 33012005(in Chinses) [任洁茹, 王佳乐, 陈本正, 徐皓, 张艳宁, 魏文青, 徐星, 马步博, 胡忠敏, 尹帅, 冯建华, 宋莎莎, 张世政, Hoffmann Dieter, 赵永涛2021强激光与粒子束33012005]
[4] Ren J R, Zhao Y T, Cheng R, Xu Z F, Xiao G Q 2017 Nucl. Instrum. Methods Phys. Res., Sect. B 406703
[5] Wei Z H 2024 Mod. Phys. 3642(in Chinses) [赵红卫2024现代物理知识3642]
[6] Sharkov B Y, Hoffmann D H, Golubev A A, Zhao Y T 2016 Matter Radiat. Extremes 128
[7] Zhao H W, Xu H S, Xiao G Q, Xia J W, Yang J C, Zhou X H, Xu N, He Y, Ma X W, Yang L, Chen X R, Tang X D, Zhao Y T, Sun Z Y, Wang Z G, Hu Z G, Zhang J H, Ma L Z, Yuan Y J, Zhan W L 2020 Sci Sin-Phys Mech Astron 50112006(in Chinses) [赵红卫, 徐瑚珊, 肖国青, 夏佳文, 杨建成, 周小红, 许怒, 何源, 马新文, 杨磊, 陈旭荣, 唐晓东, 赵永涛, 孙志宇, 王志光, 胡正国, 张军辉, 马力祯, 原有进, 詹文龙2020中国科学: 物理学力学天文学50112011]
[8] Hoffmann D H H, Fortov V E, Lomonosov I V, Mintsev V, Tahir N A, Varentsov D, Wieser J 2002 Phys. Plasmas 93651
[9] Liao L R, Liu H, Yang Y L, Mo C J, Chen L W, Zhang S, Cheng R, Zhang P, Kang W 2024 Chin. J. Comput. Phys. 1(in chinese) [廖棱锐, 刘浩, 杨咏乐, 莫崇杰, 陈良文, 张晟, 程锐, 张平, 康炜2024计算物理1]
[10] Peng H M 2008 Radiation transport in plasma and radiation hydrodynamics (Beijing: National Defense Industry Press (in chinese) [彭惠民2008等离子体中辐射输运和辐射流体力学(北京:国防工业出版社)])
[11] Atzeni S, Meyer-ter Vehn J 2004 The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter, vol. 125(Oxford, UK: Oxford University Press)
[12] Mihalas D, Weibel-Mihalas B 1999 Foundations of Radiation Hydrodynamics (Mineola, NY: Courier Corporation)
[13] Wang Y N, Ma T C 1990 Chin. J. Comput. Phys. 7235(in Chinses) [王友年, 马腾才2020计算物理7 235]
[14] Zhang Z M, Qi W, Cui B, Zhang B, Hong W, Zhou W M 2023 Chin. J. Comput. Phys. 40210(in Chinses) [张智猛, 齐伟, 崔波, 张博, 洪伟, 周维民2023计算物理40210]
[15] Couillaud C, Deicas R, Nardin P, Beuve M A, Guihaumé J M, Renaud M, Cukier M, Deutsch C, Maynard G 1994 Phys. Rev. E 491545
[16] Blöchl P E, Parrinello M 1992 Phys. Rev. B 459413
[17] Zhang S, Wang H W, Kang W, Zhang P, He X T 2016 Phys. Plasmas 23042707
[18] Cheng R, Lei Y, Zhou X M, Wang Y Y, Chen Y H, Zhao Y T, Ren J R, Sheng L N, Yang J C, Zhang Z M, Du Y C, Gai W, Ma X W, Xiao G Q 2018 Matter Radiat. Extremes 385
[19] Fortov V, Goel B S, Munz C D, Ni A L, Shutov A, Vorobiev O Y 1996 Nucl. Sci. Eng. 123169
[20] Tahir N A, Hoffmann D H H, Kozyreva A, Shutov A, Maruhn J A, Neuner U, Tauschwitz A, Spiller P, Bock R 2000 Phys. Rev. E 611975
[21] Tahir N A, Lomonosov I V, Borm B, Piriz A R, Shutov A, Neumayer P, Bagnoud V, Piriz S A 2017 ApJS 2321
[22] Tahir N A, Shutov A, Lomonosov I V, Piriz A R, Neumayer P, Bagnoud V, Piriz S A 2018 ApJS 23827
[23] Tahir N A, Shutov A, Neumayer P, Bagnoud V, Piriz A R, Deutsch C 2022 Eur. Phys. J. Plus 137273
[24] Tahir N A, Shutov A, Lomonosov I V, Piriz A R, Wouchuk G, Deutsch C, Hoffmann D, Fortov V 2006 High Energy Density Phys. 221
[25] Tahir N A, Stöhlker T, Shutov A, Lomonosov I V, Fortov V E, French M, Nettelmann N, Redmer R, Piriz A R, Deutsch C, Zhao Y, Zhang P, Xu H, Xiao G, Zhan W 2010 New J. Phys. 12073022
[26] Tahir N A, Deutsch C, Fortov V E, Gryaznov V, Hoffmann D H H, Kulish M, Lomonosov I V, Mintsev V, Ni P, Nikolaev D, Piriz A R, Shilkin N, Spiller P, Shutov A, Temporal M, Ternovoi V, Udrea S, Varentsov D 2005 Phys. Rev. Lett. 95035001
[27] Tahir N A, Shutov A, Neumayer P, Bagnoud V, Piriz A R, Lomonosov I V, Piriz S A 2021 Phys. Plasmas 28032712
[28] Tahir N, Lomonosov I, Borm B, Piriz A, Neumayer P, Shutov A, Bagnoud V, Piriz S 2017 Contrib. Plasma Phys. 57493
[29] Tahir N A, Adonin A, Deutsch C, Fortov V E, Grandjouan N, Geil B, Grayaznov V, Hoffmann D H H, Kulish M, Lomonosov I V 2005 Nucl. Instrum. Methods Phys. Res. A 54416
[30] Tahir N A, Neumayer P, Lomonosov I V, Shutov A, Bagnoud V, Piriz A R, Piriz S A, Deutsch C 2020 Phys. Rev. E 101023202
计量
- 文章访问数: 61
- PDF下载量: 5
- 被引次数: 0