搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用Aardvark程序预测HIAF上强流重离子束驱动产生的高能量密度物质状态

吴晓霞 廖棱锐 程锐 康炜 王昭 史路林 王国东 陈燕红 周泽贤 陈良文 杨杰

引用本文:
Citation:

利用Aardvark程序预测HIAF上强流重离子束驱动产生的高能量密度物质状态

吴晓霞, 廖棱锐, 程锐, 康炜, 王昭, 史路林, 王国东, 陈燕红, 周泽贤, 陈良文, 杨杰

Aardvark program predicted high-energy density matter induced by intense heavy ion beams at HIAF

WU Xiaoxia, LIAO Lingrui, CHENG Rui, KANG Wei, WANG Zhao, SHI Lulin, WANG Guodong, CHEN Yanhong, ZHOU Zexian, CHEN Liangwen, YANG Jie
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 强流重离子束驱动产生的高能量密度物质具有大体积、状态均匀、材料种类多样等显著特色, 为高能量密度物理研究提供了新的研究途径. 我国的“十二五”规划建设的强流重离子加速器装置(HIAF)正加速推进, 将为重离子束驱动的高能量密度物理实验研究提供了独特的实验平台与新的机遇. 本文基于HIAF上重离子束流参数特点, 利用 自主研发的一维辐射流体程序Aardvark进行了数值模拟计算, 预测了铀离子束与 铅靶相互作用下可产生的物质状态. 结果清晰展示了重离子束能量加载过程中, 靶物质 的单位质量的能量沉积、温度、压强和密度的含时演化图像, 以及靶物质轴心处产生的大面积均匀区. 研究发现随着重离子束流强度的逐步提升, 靶物质的温度等状态参数呈现出非线性的增长趋势, 靶物质内部还引发了冲击波现象. 本研究还构建了铀离子束与多种靶物质相互作用产生的靶物质状态参数的数据库. 相关模拟数据不仅为HIAF上重离子束驱动的高能量密度物理实验研究规划提供重要的前期理论指导, 而且为深入研究高能量密度物质的产生、演化及其特性等提供了关键的理论支持. 此研究工作将为推动我国在强流重离子束驱动的高能量密度物理研究领域 发挥重要作用.
    The unique properties of heavy-ion beam-driven high-energy density matter (HEDM), characterized by macroscale uniformity, extended volumetric dimension, and material diversity, present novel opportunities for advancing high-energy density physics (HEDP). The High-Intensity Heavy-Ion Accelerator Facility (HIAF), a cornerstone project which is initiated during China’s 12th Five-Year Plan, is currently being accelerated in construction. After completion, it will become a primary platform for experimental research on the HEDP phenomenon induced by intense heavy-ion beams.In this work, a self-developed 1D radiation hydrodynamics code, Aardvark, is used to simulate the interaction dynamics between uranium ion beams (500 MeV/u) and cylindrical targets under HIAF-relevant beam parameters. The results show time-evolution images of specific energy deposition, temperature, pressure, and density of the target material in the radial direction during heavy-ion beam energy loading. By comparing the state-of-matter parameters produced by the ion beam hitting the target at different beam intensities, a noteworthy phenomenon is observed, i.e. a plateau region of temperature and pressure are formed near the axis. This observation indicates that under the action of the heavy-ion beam, a substantially homogeneous region is formed along the axis of the target material, further elucidating the salient characteristics of the heavy-ion beam-driven high energy density material, i.e. its substantial volume and homogeneous state. The state parameters of the target material undergo significant changes in the process, particularly in the later stages, for a beam cluster length of 150 ns and a beam intensity of $ 4 × 10^{11}$ ppp. These changes are characterized by substantial changes in both the density and the pressure of the target material, which are often referred to as shock waves. The generation and propagation rate of these shock waves can be significantly controlled by adjusting the intensity of the ion beam.This study further constructs a systematic database that meticulously records the state parameters of target materials when uranium ion beams interact with various types of targets. The relevant simulation data provide important theoretical guidance for planning heavy-ion beam-driven high-energy density physics experiments at HIAF and crucial theoretical support for in-depth research on the generation, evolution, and properties of high-energy density matter. These advances in calculation position HIAF as a transformative platform for detecting extreme-state substances, with is of direct implications in studying inertial confinement fusion and modeling astrophysical plasma.
  • 图 1  HIAF装置布局高能量密度物理实验终端[5]

    Fig. 1.  Schematic of HIAF and a high-energy-density physics experiment terminal is equipped.

    图 2  根据HIAF上的铀离子束与铅靶作用的设计方案示意图. (a) 离子束打靶的能量沉积示意图; (b)铀离子束与圆柱型铅靶作用的示意图. 红色虚线区域表示能量沉积最大的位置即布拉格峰

    Fig. 2.  Schematic diagram of the design scheme based on the interaction of the uranium ion beam and the lead target on the HIAF. (a) Schematic diagram of the energy deposition of the ion beam target; (b) Schematic diagram of the interaction of the uranium ion beam with a cylindrical lead target. The red dotted line area indicates the location where the energy is deposited the most, the Bragg peak.

    图 3  不同束团能量下, 束团强度为$ 10^{11} $ ppp, 长度为100 ns的物态参数随半径的变化规律

    Fig. 3.  Variation of the beam parameters with radius at different beam energy levels, with a beam intensity of $ 10^{11} $ ppp and a length of 100 ns

    图 4  束团能量为500 MeV/u. (a), (c), (e), (g)是不同束流强度下物态参数的对比, 脉冲长度为100 ns; (b), (d), (f), (h)是脉冲长度为150 ns, 束流强度为4 $ \times 10^{11} $ ppp的物态参数演化

    Fig. 4.  The beam energy is 500 MeV/u. (a), (c), (e), (g) show the comparison of matter state parameters under different beam intensities, with a bunch length of 100 ns. (b), (d), (f), (h) show the evolution of matter state parameters with a bunch length of 150 ns and a beam intensity of 4 × 1011 ppp.

    图 5  不同脉冲长度下, 束团能量为500 MeV/u, 强度为$ 10^{11} $ ppp的物态参数随半径的变化规律

    Fig. 5.  Variation of beam parameters with radius under different bunch lengths, with a beam energy of 500 MeV/u and an intensity of $ 10^{11} $ ppp.

    表 1  重离子加速器装置参数对比

    Table 1.  Comparison of parameters of heavy ion accelerator device.

    HIHEX@FAIR HEDP@HIAF
    Ion $ \mathrm{U}^{28+} $ $ \mathrm{U}^{92+} $
    E $ 2 \ \mathrm{AGeV} $ $ 0.8-1 \ \mathrm{AGeV} $
    Intensity $ 2 \times 10^{12} \ \mathrm{ppp} $ $ (0.1-2) \times 10^{12} \ \mathrm{ppp} $
    Pulse length 50 ns $ 50-100 \ \mathrm{ns} $
    $ \Delta \mathrm{E} / \mathrm{E} $ $ \pm 1 {\text{%}} $ $ \pm 0.5{\text{%}} $
    Beam spot size $ 1 \ \mathrm{mm} $ $ 0.5-1 \ \mathrm{mm} $
    下载: 导出CSV

    表 2  Aardvark程序与BIG2程序[18]的物态参数对比.

    Table 2.  Comparison of the state parameters of the Aardvark program and the BIG2 program.

    Code pulse lengths(ns) $ \mathrm{E} (\mathrm{kJ} / \mathrm{g}) $ $ \mathrm{T}_e (\mathrm{K}) $ $ \rho \left(\mathrm{g} / \mathrm{cm}^3\right) $ $ \mathrm{P} (\mathrm{GPa}) $
    BIG210014.858000.010.275.0
    15014.055000.09.358.0
    Aardvark10019.155205.09.984.4
    15018.952613.78.869.4
    下载: 导出CSV

    表 3  随着离子束流强变化时, 不同材料的靶物质在轴心处产生的靶物质状态参数的极值

    Table 3.  Maximum values of the state parameters of target materials at the axis as ion beam intensity changes.

    Target Intensity $ (\mathrm{ppp}) $ $ \rho\left(\mathrm{g} / \mathrm{cm}^3\right) $ $ \mathrm{P}(\mathrm{GPa}) $ $ \mathrm{T_{e}}(\mathrm{K}) $ $ \mathrm{E}(\mathrm{kJ} / \mathrm{g}) $
    Pb$ 10^9 $11.331.482561.120.17
    $ 10^{10} $11.189.9813279.051.86
    $ 10^{11} $10.0779.0952577.7517.54
    $ 10^{12} $7.65441.22209187.11177.03
    Al$ 10^9 $2.690.901089.320.26
    $ 10^{10} $2.654.024952.812.57
    $ 10^{11} $2.2622.8124508.7425.95
    $ 10^{12} $1.1393.6391883.41264.66
    Au$ 10^9 $19.217.751617.670.18
    $ 10^{10} $18.5049.2410909.411.76
    $ 10^{11} $16.74172.7656315.5717.54
    $ 10^{12} $10.27574.96199485.15178.75
    LiF$ 10^9 $2.630.63696.270.23
    $ 10^{10} $2.593.494293.672.28
    $ 10^{11} $2.2520.822396.7223.08
    $ 10^{12} $1.1688.587265.98235.73
    下载: 导出CSV
  • [1]

    赵永涛, 张子民, 程锐, HOFFMANN Dieter, 马步博, 王友年, 王瑜玉, 王兴, 邓志刚, 任洁茹, 刘巍, 齐伟, 齐新, 苏有武, 杜应超, 李福利, 李锦钰, 杨杰, 杨建成, 杨磊, 肖国青, 吴栋, 何斌, 宋远红, 张小安, 张世政, 张琳, 张雅, 张艳宁, 陈本正, 陈燕红, 周征, 周贤明, 周维民, 赵红卫, 赵全堂, 赵宗清, 赵晓莹, 胡章虎, 弯峰, 栗建兴, 徐忠锋, 高飞, 唐传祥, 黄文会, 曹树春, 曹磊峰, 盛丽娜, 康炜, 雷瑜, 詹文龙 2020 中国科学: 物理学力学天文学 50 112004Google Scholar

    Zhao Y T, Zhang Z M, Cheng R, Hoffmann D, Ma B B, Wang Y N, Wang Y Y, Wang X, Deng Z G, Ren J R, Liu W, Qi W, Qi X, Su Y W, Du Y C, Li F L, Li J Y, Yang J, Yang J C, Yang L, Xiao G Q, Wu D, He B, Song Y H, Zhang X A, Zhang S Z, Zhang L, Zhang Y, Zhang Y N, Chen B Z, Chen Y H, Zhou Z, Zhou X M, Zhou W M, Zhao H W, Zhao Q T, Zhao Z Q, Zhao X Y, Hu Z H, Wan F, Li J X, Xu Z F, Gao F, Tang C X, Huang W H, Cao S C, Cao L F, Sheng L N, Kang W, Lei Y, Zhan W L 2020 Sci Sin-Phys Mech Astron 50 112004Google Scholar

    [2]

    程锐, 张晟, 申国栋, 陈燕红, 张延师, 陈良文, 张子民, 赵全堂, 杨建成, 王瑜玉, 雷瑜, 林平, 杨杰, 杨磊, 马新文, 肖国青, 赵红卫, 詹文龙 2020 中国科学: 物理学力学天文学 50 112011Google Scholar

    Cheng R, Zhang S, Shen G D, Chen Y H, Zhang Y S, Chen L W, Zhang Z M, Zhao Q T, Yang J C, Wang Y Y, Lei Y, Lin P, Yang J, Yang L, Ma X W, Xiao G Q, Zhao H W, Zhan W L 2020 Sci Sin-Phys Mech Astron 50 112011Google Scholar

    [3]

    任洁茹, 王佳乐, 陈本正, 徐皓, 张艳宁, 魏文青, 徐星, 马步博, 胡忠敏, 尹帅, 冯建华, 宋莎莎, 张世政, Hoffmann Dieter, 赵永涛 2021 强激光与粒子束 33 012005Google Scholar

    Ren J R, Wang J L, Chen B Z, Xu H, Zhang Y N, Wei W q, Xu X, Ma B B, Hu Z M, Yin S, Feng J H, Song S S, Zhang S Z, Hoffmann D, Zhao Y 2021 High Power Laser and Particle Beams 33 012005Google Scholar

    [4]

    Ren J R, Zhao Y T, Cheng R, Xu Z F, Xiao G Q 2017 Nucl. Instrum. Methods Phys. Res., Sect. B 406 703

    [5]

    赵红卫 2024 现代物理知识 36 42

    Wei Z H 2024 Mod. Phys. 36 42

    [6]

    Sharkov B Y, Hoffmann D H, Golubev A A, Zhao Y T 2016 Matter Radiat. Extremes 1 28

    [7]

    赵红卫, 徐瑚珊, 肖国青, 夏佳文, 杨建成, 周小红, 许怒, 何源, 马新文, 杨磊, 陈旭荣, 唐晓东, 赵永涛, 孙志宇, 王志光, 胡正国, 张军辉, 马力祯, 原有进, 詹文龙 2020 中国科学: 物理学力学天文学 50 112011

    Zhao H W, Xu H S, Xiao G Q, Xia J W, Yang J C, Zhou X H, Xu N, He Y, Ma X W, Yang L, Chen X R, Tang X D, Zhao Y T, Sun Z Y, Wang Z G, Hu Z G, Zhang J H, Ma L Z, Yuan Y J, Zhan W L 2020 Sci Sin-Phys Mech Astron 50 112011

    [8]

    Hoffmann D H H, Fortov V E, Lomonosov I V, Mintsev V, Tahir N A, Varentsov D, Wieser J 2002 Phys. Plasmas 9 3651Google Scholar

    [9]

    廖棱锐, 刘浩, 杨咏乐, 莫崇杰, 陈良文, 张晟, 程锐, 张平, 康炜 2024 计算物理 1Google Scholar

    Liao L R, Liu H, Yang Y L, Mo C J, Chen L W, Zhang S, Cheng R, Zhang P, Kang W 2024 Chin. J. Comput. Phys. 1Google Scholar

    [10]

    彭惠民 2008 等离子体中辐射输运和辐射流体力学 (北京: 国防工业出版社)

    Peng H M 2008 Radiation transport in plasma and radiation hydrodynamics (Beijing: National Defense Industry Press

    [11]

    Atzeni S, Meyer-ter Vehn J 2004 The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter, vol. 125 (Oxford, UK: Oxford University Press

    [12]

    Mihalas D, Weibel-Mihalas B 1999 Foundations of Radiation Hydrodynamics (Mineola, NY: Courier Corporation

    [13]

    王友年, 马腾才 2020 计算物理 7 235

    Wang Y N, Ma T C 2020 Chin. J. Comput. Phys. 7 235

    [14]

    张智猛, 齐伟, 崔波, 张博, 洪伟, 周维民 2023 计算物理 40 210

    Zhang Z M, Qi W, Cui B, Zhang B, Hong W, Zhou W M 2023 Chin. J. Comput. Phys. 40 210

    [15]

    Couillaud C, Deicas R, Nardin P, Beuve M A, Guihaumé J M, Renaud M, Cukier M, Deutsch C, Maynard G 1994 Phys. Rev. E 49 1545

    [16]

    Blöchl P E, Parrinello M 1992 Phys. Rev. B 45 9413

    [17]

    Zhang S, Wang H W, Kang W, Zhang P, He X T 2016 Phys. Plasmas 23 042707Google Scholar

    [18]

    Cheng R, Lei Y, Zhou X M, Wang Y Y, Chen Y H, Zhao Y T, Ren J R, Sheng L N, Yang J C, Zhang Z M, Du Y C, Gai W, Ma X W, Xiao G Q 2018 Matter Radiat. Extremes 3 85Google Scholar

    [19]

    Fortov V, Goel B S, Munz C D, Ni A L, Shutov A, Vorobiev O Y 1996 Nucl. Sci. Eng. 123 169Google Scholar

    [20]

    Tahir N A, Hoffmann D H H, Kozyreva A, Shutov A, Maruhn J A, Neuner U, Tauschwitz A, Spiller P, Bock R 2000 Phys. Rev. E 61 1975Google Scholar

    [21]

    Tahir N A, Lomonosov I V, Borm B, Piriz A R, Shutov A, Neumayer P, Bagnoud V, Piriz S A 2017 ApJS 232 1Google Scholar

    [22]

    Tahir N A, Shutov A, Lomonosov I V, Piriz A R, Neumayer P, Bagnoud V, Piriz S A 2018 ApJS 238 27

    [23]

    Tahir N A, Shutov A, Neumayer P, Bagnoud V, Piriz A R, Deutsch C 2022 Eur. Phys. J. Plus 137 273

    [24]

    Tahir N A, Shutov A, Lomonosov I V, Piriz A R, Wouchuk G, Deutsch C, Hoffmann D, Fortov V 2006 High Energy Density Phys. 2 21Google Scholar

    [25]

    Tahir N A, Stöhlker T, Shutov A, Lomonosov I V, Fortov V E, French M, Nettelmann N, Redmer R, Piriz A R, Deutsch C, Zhao Y, Zhang P, Xu H, Xiao G, Zhan W 2010 New J. Phys. 12 073022Google Scholar

    [26]

    Tahir N A, Deutsch C, Fortov V E, Gryaznov V, Hoffmann D H H, Kulish M, Lomonosov I V, Mintsev V, Ni P, Nikolaev D, Piriz A R, Shilkin N, Spiller P, Shutov A, Temporal M, Ternovoi V, Udrea S, Varentsov D 2005 Phys. Rev. Lett. 95 035001Google Scholar

    [27]

    Tahir N A, Shutov A, Neumayer P, Bagnoud V, Piriz A R, Lomonosov I V, Piriz S A 2021 Phys. Plasmas 28 032712Google Scholar

    [28]

    Tahir N, Lomonosov I, Borm B, Piriz A, Neumayer P, Shutov A, Bagnoud V, Piriz S 2017 Contrib. Plasma Phys. 57 493Google Scholar

    [29]

    Tahir N A, Adonin A, Deutsch C, Fortov V E, Grandjouan N, Geil B, Grayaznov V, Hoffmann D H H, Kulish M, Lomonosov I V 2005 Nucl. Instrum. Methods Phys. Res. A 544 16Google Scholar

    [30]

    Tahir N A, Neumayer P, Lomonosov I V, Shutov A, Bagnoud V, Piriz A R, Piriz S A, Deutsch C 2020 Phys. Rev. E 101 023202Google Scholar

  • [1] 谷靖萱, 郑庭, 郭明帅, 夏冬生, 张会臣. 计入粗糙峰的微纳结构表面水润滑流体动力学仿真. 物理学报, doi: 10.7498/aps.73.20240333
    [2] 许莫非, 于翔, 张世健, Gennady Efimovich Remnev, 乐小云. 一种用于强流脉冲离子束的束流输出稳定性实时监测方法. 物理学报, doi: 10.7498/aps.72.20230854
    [3] 姚能智, 王浩, 王斌, 王学生. 基于变换流体动力学的文丘里效应旋聚器的设计与非互易特性研究. 物理学报, doi: 10.7498/aps.71.20212361
    [4] 唐鹏博, 王关晴, 王路, 石中玉, 李源, 徐江荣. 单液滴正碰球面动态行为特性实验研究. 物理学报, doi: 10.7498/aps.69.20191141
    [5] 杨杰, 刘清惓, 戴伟, 冒晓莉, 张加宏, 李敏. 用于气象观测的阵列式温度传感器流体动力学分析与实验研究. 物理学报, doi: 10.7498/aps.65.094209
    [6] 戴伟, 刘清惓, 杨杰, 宿恺峰, 韩上邦, 施佳驰. 探空温度传感器的计算流体动力学分析与实验研究. 物理学报, doi: 10.7498/aps.65.114701
    [7] 陈雷鸣. 干活性物质的动力学理论. 物理学报, doi: 10.7498/aps.65.186401
    [8] 冒晓莉, 肖韶荣, 刘清惓, 李敏, 张加宏. 探空湿度测量太阳辐射误差修正流体动力学研究. 物理学报, doi: 10.7498/aps.63.144701
    [9] 蒋亦民, 刘佑. 水-气-颗粒固体三相混合系统的流体动力学. 物理学报, doi: 10.7498/aps.62.204501
    [10] 杜萌, 金宁德, 高忠科, 朱雷, 王振亚. 油水两相流水包油流型多尺度排列熵分析. 物理学报, doi: 10.7498/aps.61.230507
    [11] 高忠科, 金宁德, 杨丹, 翟路生, 杜萌. 多元时间序列复杂网络流型动力学分析. 物理学报, doi: 10.7498/aps.61.120510
    [12] 宫 野, 张建红, 王晓东, 吴 迪, 刘金远, 刘 悦, 王晓钢, 马腾才. 强流脉冲离子束辐照双层靶能量沉积的数值模拟. 物理学报, doi: 10.7498/aps.57.5095
    [13] 王 薇, 张 杰, 赵 刚. 普朗克谱分布的辐射场对束缚电子布居的影响. 物理学报, doi: 10.7498/aps.57.1759
    [14] 刘元富, 韩建民, 张谷令, 王久丽, 陈光良, 李雪明, 冯文然, 范松华, 刘赤子, 杨思泽. 脉冲高能量密度等离子体沉积(Ti, Al)N薄膜组织及其性能研究. 物理学报, doi: 10.7498/aps.54.1301
    [15] 刘元富, 张谷令, 王久丽, 刘赤子, 杨思泽. 脉冲高能量密度等离子体法制备TiN薄膜及其摩擦磨损性能研究. 物理学报, doi: 10.7498/aps.53.503
    [16] 杨武保, 范松华, 刘赤子, 张谷令, 王久丽, 杨思泽. 脉冲高能量密度等离子体法类金刚石膜的制备及分析. 物理学报, doi: 10.7498/aps.52.140
    [17] 夏江帆, 张军, 张杰. 用激光等离子体实验对天体物理动力学过程进行模拟的可行性研究. 物理学报, doi: 10.7498/aps.50.994
    [18] 匡光力, G.WAIDMANN. TEXTOR托卡马克等离子体的磁流体动力学振荡特性. 物理学报, doi: 10.7498/aps.43.1466
    [19] 田人和, 张荟星. 强流重离子束在轴对称电场中的温度和能量展宽. 物理学报, doi: 10.7498/aps.41.408
    [20] 江兴流, 陈克凡, 朴禹伯. 新型毫微秒强流脉冲电子束和离子束发生装置. 物理学报, doi: 10.7498/aps.32.1344
计量
  • 文章访问数:  290
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-04
  • 修回日期:  2025-02-18
  • 上网日期:  2025-03-07

/

返回文章
返回