搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于气象观测的阵列式温度传感器流体动力学分析与实验研究

杨杰 刘清惓 戴伟 冒晓莉 张加宏 李敏

引用本文:
Citation:

用于气象观测的阵列式温度传感器流体动力学分析与实验研究

杨杰, 刘清惓, 戴伟, 冒晓莉, 张加宏, 李敏

Fluid dynamic analysis and experimental study of a temperature sensor array used in meteorological observation

Yang Jie, Liu Qing-Quan, Dai Wei, Mao Xiao-Li, Zhang Jia-Hong, Li Min
PDF
导出引用
  • 传统百叶箱和防辐射罩内部的温度传感器受到太阳辐射会导致其温度高于大气真实温度, 升温量可达0.8 K甚至更高. 为提高大气温度观测精度, 本文设计了一种阵列式温度传感器. 利用计算流体动力学方法分析计算该传感器在不同环境条件下的辐射升温量, 采用遗传算法对计算结果进行拟合, 获得辐射升温量修正方程. 为验证阵列式温度传感器的实际性能, 研制了强制通风温度测量平台. 将阵列式温度传感器、配有传统防辐射罩的温度传感器和强制通风温度测量平台置于相同环境下, 进行大气温度观测比对实验. 配有传统防辐射罩的温度传感器辐射升温量平均值为0.409 K; 与前者相比, 阵列式温度传感器的辐射升温量仅为0.027 K. 这种阵列式温度传感器可将辐射升温引起的误差降低约93%. 辐射升温量实验测量值与修正方程修正值之间的平均偏移量为0.0174 K, 均方根误差为0.0215 K, 该结果验证了计算流体动力学方法与遗传算法的准确性. 如果配合计算流体动力学方法与遗传算法, 温度测量精度有进一步提高的潜力.
    Until now, the air temperature sensors inside thermometer screens and radiation shields are affected by solar radiation, which causes the measuring result to become greater than the actual temperature. The temperature rise can reach 0.8 K or even higher. In this paper, a temperature sensor array design is established for obtaining high precision measurement results. The temperature sensor array consists of an array of radiation shields which features a tube-shape, a platinum resistance sensor array, an aluminum plate with a silver mirror surface and a temperature measurement module that includes a high accuracy thermometer circuit. There is always at least one radiation shield that supplies relatively good ventilation under any airflow direction. A computational fluid dynamic method is implemented to analyze and calculate the temperature rise induced by radiation under various environmental conditions. A correction equation of the temperature rise is obtained by surface fitting using a genetic algorithm. The measurement accuracy can be further improved by this correction equation. In order to verify the performance of the sensor array, a forced ventilation temperature measurement platform is constructed, which consists of a platinum resistance sensor, an L-shaped radiation shield and an air pump. The airflow rate inside the radiation shield can be up to 20~m/s, and the L-shaped radiation shield can horizontally rotate under the control of a software to minimize the error caused by the heated radiation shield. The temperature sensor array, a temperature sensor with traditional radiation shield, and the forced ventilation temperature measurement platform are characterized in the same environment. To experimentally verify the computational fluid dynamic method and the genetic algorithm, a number of contrast tests are performed. The average temperature rise of sensors equipped with the traditional radiation shields is 0.409 K. In contrast, the temperature rise of the sensor array is as low as 0.027K. This temperature sensor array allows the error caused by solar radiation to be reduced by a percentage of approximately 93%. The temperature rise of temperature sensor array, caused by the angular variation of airflow direction is on the order of several mK. When the solar radiation intensity and the airflow rate are 1000W/m2 and 0.1m/s, respectively, the temperature rise is 0.097 K. The temperature rise is 0.05K, when the airflow rate is greater than 0.4 m/s. The temperature rise can be reduced to 0.01 K, when the airflow rate is greater than 2 m/s. The average offset and root mean square error between the correction equation and experimental results are 0.0174 K and 0.0215 K, respectively, which demonstrates the accuracy of the computational fluid dynamic method and genetic algorithm proposed in this research. The temperature measurement accuracy has the potential to be further improved by utilizing the computational fluid dynamics method and the genetic algorithm.
      通信作者: 杨杰, yangjie396768@163.com
    • 基金项目: 国家公益性行业(气象)科研专项(批准号: GYHY200906037, GYHY201306079)、国家自然科学基金(批准号: 41275042, 61306138)、江苏省博士研究生科研创新计划项目(批准号: KYLX15_0866)、东南大学MEMS教育部重点实验室开放研究基金(批准号: 2013-3)和江苏高校优势学科Ⅱ期建设工程资助的课题.
      Corresponding author: Yang Jie, yangjie396768@163.com
    • Funds: Project supported by the Special Scientific Research Fund of Meteorological Public Welfare Profession of China (Grant Nos. GYHY200906037, GYHY201306079), National Natural Science Foundation of China (Grant Nos. 412475042, 61306138), Colleges and Universities in Jiangsu Province Plans to Graduate Research and Innovation, China (Grant No. KYLX15_0866), the Open Research Fund of Key Laboratory of MEMS of Ministry of Education, Southeast University, China (Grant No. 2013-3), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
    [1]

    Dai X G, Liu Y, Wang P 2015 Chin. Phys. B 24 049201

    [2]

    Toggweiler J R, Joellen R 2008 Nature 451 286

    [3]

    Joan B, Oller J M, Huey R B, Gilchrist G W, Luis S 2007 Science 315 1497

    [4]

    Kerr R A 2011 Science 334 173

    [5]

    Wang X J, Zhi R, He W P, Gong Z Q 2012 Chin. Phys. B 21 029201

    [6]

    Qian Z H, Hu J G, Feng G L, Cao Y Z 2012 Chin. Phys. B 21 109203

    [7]

    Dillon M E, George W, Huey R B 2010 Nature 467 704

    [8]

    Wigley T M, Jones P D, Raper S C 1997 Proc. Natl. Acad. Sci. USA 94 8314

    [9]

    Lin X, Hubbard K G, Walter-Shea E A, Brandle J R, Meyer G E 2001 J. Atoms. Ocean. Tech. 18 1470

    [10]

    Lin X 1999 Ph. D. Dissertation (Lincoln: University of Nebraska)

    [11]

    Lin X, Hubbard K G, Walter-Shea E A 2001 J. Atoms. Ocean. Tech. 44 1299

    [12]

    Thomas C K, Smoot A R 2013 J. Atoms. Ocean. Tech. 30 526

    [13]

    Richardson S J, Brock F V, Semmer S R, Jirak C 1999 J. Atoms. Ocean. Tech. 16 1862

    [14]

    Holden Z A, Klene A E, Keefe R F, Moisen G G 2013 Arg. Forest. Meteorol. 180 281

    [15]

    Lopardo G, Bertiglia F, Curci S, Roggero G, Merlone A 2014 Int. J. Climatol. 34 1297

    [16]

    Hubbart J, Link T, Campbell C, Cobos D 2005 Hydrol. Process. 19 1517

    [17]

    Georges C, Kaser G 2002 J. Geophys. Res. 107 ACL 15-1

    [18]

    Erell E, Leal V, Maldonado E 2005 Bound-Lay. Mmteorol. 114 205

    [19]

    Nakamura R, Mahrt L 2005 J. Atmos. Ocean. Tech. 22 1046

    [20]

    Wang X L, Han Y J 2008 Meteorological, Hydrological and Marine Instruments 2 68 (in Chinese) [王晓蕾, 韩有君 2008 气象水文海洋仪器 2 68]

    [21]

    Chen F Z, Qiang H F, Gao W R 2014 Acta Phys. Sin. 62 230206 (in Chinese) [陈福振, 强洪夫, 高巍然 2014 物理学报 62 230206]

    [22]

    Jiang Y M, Liu Y 2013 Acta Phys. Sin. 62 204501 (in Chinese) [蒋亦民, 刘佑 2013 物理学报 62 204501]

    [23]

    Mao X L, Xiao S R, Liu Q Q, Li M, Zhang J H 2014 Acta Phys. Sin. 63 144701 (in Chinese) [冒晓莉, 肖韶荣, 刘清惓, 李敏, 张加宏 2014 物理学报 63 144701]

    [24]

    Wang F J 2004 Computational Fluid Dynamics: Principle and Application of CFD Software 1 (Beijing: Tsinghua University Press) pp6-7 (in Chinese) [王福军 2004 计算流体动力学分析-CFD软件原理与应用1(北京: 清华大学出版社)第6-7页]

    [25]

    Anderson J D (translated by Wu S P, Liu Z S) 2010 Computational Fluid Dynamics: The Basics with Applications (Beijing: China Machine Press) pp179-180 (in Chinese) [约翰D安德森 著(吴颂平, 刘赵森 译) 2010 计算流体力学基础及其应用(北京: 机械工业出版社)第179-180页]

  • [1]

    Dai X G, Liu Y, Wang P 2015 Chin. Phys. B 24 049201

    [2]

    Toggweiler J R, Joellen R 2008 Nature 451 286

    [3]

    Joan B, Oller J M, Huey R B, Gilchrist G W, Luis S 2007 Science 315 1497

    [4]

    Kerr R A 2011 Science 334 173

    [5]

    Wang X J, Zhi R, He W P, Gong Z Q 2012 Chin. Phys. B 21 029201

    [6]

    Qian Z H, Hu J G, Feng G L, Cao Y Z 2012 Chin. Phys. B 21 109203

    [7]

    Dillon M E, George W, Huey R B 2010 Nature 467 704

    [8]

    Wigley T M, Jones P D, Raper S C 1997 Proc. Natl. Acad. Sci. USA 94 8314

    [9]

    Lin X, Hubbard K G, Walter-Shea E A, Brandle J R, Meyer G E 2001 J. Atoms. Ocean. Tech. 18 1470

    [10]

    Lin X 1999 Ph. D. Dissertation (Lincoln: University of Nebraska)

    [11]

    Lin X, Hubbard K G, Walter-Shea E A 2001 J. Atoms. Ocean. Tech. 44 1299

    [12]

    Thomas C K, Smoot A R 2013 J. Atoms. Ocean. Tech. 30 526

    [13]

    Richardson S J, Brock F V, Semmer S R, Jirak C 1999 J. Atoms. Ocean. Tech. 16 1862

    [14]

    Holden Z A, Klene A E, Keefe R F, Moisen G G 2013 Arg. Forest. Meteorol. 180 281

    [15]

    Lopardo G, Bertiglia F, Curci S, Roggero G, Merlone A 2014 Int. J. Climatol. 34 1297

    [16]

    Hubbart J, Link T, Campbell C, Cobos D 2005 Hydrol. Process. 19 1517

    [17]

    Georges C, Kaser G 2002 J. Geophys. Res. 107 ACL 15-1

    [18]

    Erell E, Leal V, Maldonado E 2005 Bound-Lay. Mmteorol. 114 205

    [19]

    Nakamura R, Mahrt L 2005 J. Atmos. Ocean. Tech. 22 1046

    [20]

    Wang X L, Han Y J 2008 Meteorological, Hydrological and Marine Instruments 2 68 (in Chinese) [王晓蕾, 韩有君 2008 气象水文海洋仪器 2 68]

    [21]

    Chen F Z, Qiang H F, Gao W R 2014 Acta Phys. Sin. 62 230206 (in Chinese) [陈福振, 强洪夫, 高巍然 2014 物理学报 62 230206]

    [22]

    Jiang Y M, Liu Y 2013 Acta Phys. Sin. 62 204501 (in Chinese) [蒋亦民, 刘佑 2013 物理学报 62 204501]

    [23]

    Mao X L, Xiao S R, Liu Q Q, Li M, Zhang J H 2014 Acta Phys. Sin. 63 144701 (in Chinese) [冒晓莉, 肖韶荣, 刘清惓, 李敏, 张加宏 2014 物理学报 63 144701]

    [24]

    Wang F J 2004 Computational Fluid Dynamics: Principle and Application of CFD Software 1 (Beijing: Tsinghua University Press) pp6-7 (in Chinese) [王福军 2004 计算流体动力学分析-CFD软件原理与应用1(北京: 清华大学出版社)第6-7页]

    [25]

    Anderson J D (translated by Wu S P, Liu Z S) 2010 Computational Fluid Dynamics: The Basics with Applications (Beijing: China Machine Press) pp179-180 (in Chinese) [约翰D安德森 著(吴颂平, 刘赵森 译) 2010 计算流体力学基础及其应用(北京: 机械工业出版社)第179-180页]

  • [1] 周子童, 闫韶华, 赵巍胜, 冷群文. 隧穿磁阻传感器的研究进展. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211883
    [2] 吴健, 韩文, 程珍珍, 杨彬, 孙利利, 王迪, 朱程鹏, 张勇, 耿明昕, 景龑. 基于流体模型的碳纳米管电离式传感器的结构优化方法. 物理学报, 2021, 70(9): 090701. doi: 10.7498/aps.70.20201828
    [3] 侯星宇, 郭传飞. 柔性压力传感器的原理及应用. 物理学报, 2020, 69(17): 178102. doi: 10.7498/aps.69.20200987
    [4] 李胜优, 刘镓榕, 文豪, 刘向阳, 郭文熹. 蚕丝基可穿戴传感器的研究进展. 物理学报, 2020, 69(17): 178703. doi: 10.7498/aps.69.20200818
    [5] 马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬. 基于拟合衰减差自补偿的分布式光纤温度传感器. 物理学报, 2020, 69(3): 030701. doi: 10.7498/aps.69.20191456
    [6] 祁云平, 张婷, 郭嘉, 张宝和, 王向贤. 基于乙醇密封共振腔金属-介质-金属波导的高性能温度和折射率两用传感器. 物理学报, 2020, 69(16): 167301. doi: 10.7498/aps.69.20200405
    [7] 刘旭阳, 张贺秋, 李冰冰, 刘俊, 薛东阳, 王恒山, 梁红伟, 夏晓川. AlGaN/GaN高电子迁移率晶体管温度传感器特性. 物理学报, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [8] 赵勇, 蔡露, 李雪刚, 吕日清. 基于酒精与磁流体填充的单模-空芯-单模光纤结构温度磁场双参数传感器. 物理学报, 2017, 66(7): 070601. doi: 10.7498/aps.66.070601
    [9] 李自亮, 廖常锐, 刘申, 王义平. 光纤法布里-珀罗干涉温度压力传感技术研究进展. 物理学报, 2017, 66(7): 070708. doi: 10.7498/aps.66.070708
    [10] 付兴虎, 谢海洋, 杨传庆, 张顺杨, 付广伟, 毕卫红. 基于包层模谐振的三包层石英特种光纤温度传感特性研究. 物理学报, 2016, 65(2): 024211. doi: 10.7498/aps.65.024211
    [11] 戴伟, 刘清惓, 杨杰, 宿恺峰, 韩上邦, 施佳驰. 探空温度传感器的计算流体动力学分析与实验研究. 物理学报, 2016, 65(11): 114701. doi: 10.7498/aps.65.114701
    [12] 罗雪雪, 陈家璧, 胡金兵, 梁斌明, 蒋强. 基于双面金属包覆光波导的传感器温度特性研究及实验验证. 物理学报, 2015, 64(23): 234208. doi: 10.7498/aps.64.234208
    [13] 冒晓莉, 肖韶荣, 刘清惓, 李敏, 张加宏. 探空湿度测量太阳辐射误差修正流体动力学研究. 物理学报, 2014, 63(14): 144701. doi: 10.7498/aps.63.144701
    [14] 李欣, 王禄娜, 郭士亮, 李志全, 杨明. 温度测量范围加倍的单微环传感器. 物理学报, 2014, 63(15): 154209. doi: 10.7498/aps.63.154209
    [15] 孔延梅, 高超群, 景玉鹏, 陈大鹏. 基于光子晶体分光的气敏传感器研究. 物理学报, 2011, 60(5): 054215. doi: 10.7498/aps.60.054215
    [16] 黄覃, 冷逢春, 梁文耀, 董建文, 汪河洲. 光子晶体的相位特性在高灵敏温度传感器中的应用. 物理学报, 2010, 59(6): 4014-4017. doi: 10.7498/aps.59.4014
    [17] 李政颖, 王洪海, 姜宁, 程松林, 赵磊, 余鑫. 光纤气体传感器解调方法的研究. 物理学报, 2009, 58(6): 3821-3826. doi: 10.7498/aps.58.3821
    [18] 郭文刚, 杨秀峰, 罗绍均, 李勇男, 涂成厚, 吕福云, 王宏杰, 李恩邦, 吕 超. 基于激光瞬态特性的气体浓度光纤传感器. 物理学报, 2007, 56(1): 308-312. doi: 10.7498/aps.56.308
    [19] 王义平, 饶云江, 冉曾令, 朱 涛. 高频CO2激光脉冲写入的长周期光纤光栅传感器的特性研究. 物理学报, 2003, 52(6): 1432-1437. doi: 10.7498/aps.52.1432
    [20] 范良藻, 邢维复, 金若冰. 晶体压杆式压力传感器的动力传输性质. 物理学报, 1977, 26(4): 301-306. doi: 10.7498/aps.26.301
计量
  • 文章访问数:  2950
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-23
  • 修回日期:  2016-01-23
  • 刊出日期:  2016-05-05

用于气象观测的阵列式温度传感器流体动力学分析与实验研究

  • 1. 南京信息工程大学, 中国气象局气溶胶与云降水重点开放实验室, 南京 210044;
  • 2. 南京信息工程大学大气物理学院, 南京 210044;
  • 3. 南京信息工程大学, 江苏省大气环境与装备技术协同创新中心, 南京 210044;
  • 4. 南京信息工程大学, 江苏省气象探测与信息处理重点实验室, 南京 210044
  • 通信作者: 杨杰, yangjie396768@163.com
    基金项目: 国家公益性行业(气象)科研专项(批准号: GYHY200906037, GYHY201306079)、国家自然科学基金(批准号: 41275042, 61306138)、江苏省博士研究生科研创新计划项目(批准号: KYLX15_0866)、东南大学MEMS教育部重点实验室开放研究基金(批准号: 2013-3)和江苏高校优势学科Ⅱ期建设工程资助的课题.

摘要: 传统百叶箱和防辐射罩内部的温度传感器受到太阳辐射会导致其温度高于大气真实温度, 升温量可达0.8 K甚至更高. 为提高大气温度观测精度, 本文设计了一种阵列式温度传感器. 利用计算流体动力学方法分析计算该传感器在不同环境条件下的辐射升温量, 采用遗传算法对计算结果进行拟合, 获得辐射升温量修正方程. 为验证阵列式温度传感器的实际性能, 研制了强制通风温度测量平台. 将阵列式温度传感器、配有传统防辐射罩的温度传感器和强制通风温度测量平台置于相同环境下, 进行大气温度观测比对实验. 配有传统防辐射罩的温度传感器辐射升温量平均值为0.409 K; 与前者相比, 阵列式温度传感器的辐射升温量仅为0.027 K. 这种阵列式温度传感器可将辐射升温引起的误差降低约93%. 辐射升温量实验测量值与修正方程修正值之间的平均偏移量为0.0174 K, 均方根误差为0.0215 K, 该结果验证了计算流体动力学方法与遗传算法的准确性. 如果配合计算流体动力学方法与遗传算法, 温度测量精度有进一步提高的潜力.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回