搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯谐振式力学量传感器研究进展

万震 李成 刘宇健 宋学锋 樊尚春

引用本文:
Citation:

石墨烯谐振式力学量传感器研究进展

万震, 李成, 刘宇健, 宋学锋, 樊尚春

Research progress of electromechanical graphene resonant sensors

Wan Zhen, Li Cheng, Liu Yu-Jian, Song Xue-Feng, Fan Shang-Chun
PDF
HTML
导出引用
  • 传统谐振式传感器的谐振敏感元件大多采用金属、石英晶体、硅等材料制成, 但随着谐振式传感器朝着小型化、微型化、实用化的趋势发展, 不但要求新型谐振子材料可进行微纳加工, 还对其灵敏度和精度提出了更高的要求. 石墨烯这种新型二维纳米材料, 因具有出色的力学、电学、光学、热学特性, 在谐振传感领域有着巨大的应用潜力和研究价值, 因此基于石墨烯材料的力学量传感器有望在小型化、高性能和环境适应性等多方面超越硅基力学量传感器. 本文针对石墨烯谐振式力学量传感器, 介绍了石墨烯材料的基本性质、制备与转移方法, 阐述了谐振式传感器的工作原理与应用特点, 进而分析了关于石墨烯谐振特性优化与谐振器制备的理论与实验研究; 在此基础上, 重点总结了石墨烯谐振器在压力、加速度、质量等传感器领域的研究进展, 梳理了石墨烯谐振式力学量传感器在薄膜转移、结构制备与激振/拾振等方面的技术问题, 同时也明确了石墨烯在谐振传感领域的研究价值和发展潜力.
    The resonant sensor is a kind of high-sensitivity and high-stability sensor that directly outputs digital signals. The resonance sensitive elements of traditional resonant sensors are mostly made of metal, quartz crystal, silicon and other materials. However, with the development of resonant sensor toward the miniaturization and intellectualization, the sensitive materials of new resonator are micro-nano machined and highly sensitive. As a new type of two-dimensional nanomaterial, graphene has the great potentials in the field of resonance sensing because of its excellent mechanical, electrical, optical and thermal properties. Therefore, the mechanical quantity sensor based on graphene material is expected to surpass the silicon material mechanical quantity sensor in many aspects such as micro-nano size, high performance, and environmental adaptability. This review focuses on the graphene resonant mechanical quantity sensor. In the first part, we summarize the basic properties, preparation methods, and transfer methods of graphene materials. The preparation and transmission methods of graphene are key to high-performance graphene resonator, but there are still different problems in the preparation and transfer of graphene, which also greatly restricts the development of graphene resonator. In the second part, the basic theory of resonant sensors is given, and the common methods of transferring graphene films are introduced in detail. Then the theoretical and experimental studies of graphene resonator are discussed. For example, the theoretical studies of graphene resonator are investigated by using the classical elastic theory, non-local elastic theory, molecular structure mechanics and molecular dynamics. Then the effects of graphene preparation method, graphene layer number and shape, excitation and detection methods on the resonance performance are estimated in the resonant experiments of graphene resonators. After that, the research progress of graphene resonator is summarized in the fields of pressure, acceleration and mass sensors. Compared with traditional silicon resonators, graphene resonators have a small dimension and demonstrate preferable resonant performance under low-temperature and low-pressure conditions. In this case, the technical issues of graphene resonant sensor are introduced to emphasize the importance of suspended graphene film transfer, structure fabrication of harmonic oscillator and vibration excitation/detection of resonators, which contributes to the potential applications in the fields of aerospace, intelligent detection and biomedical sensing for graphene resonant sensors.
      通信作者: 李成, licheng@buaa.edu.cn ; 宋学锋, songxf@sustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62173021)、北京市自然科学基金(批准号: 4212039)、航空科学基金 (批准号: 2020Z073051002)和深圳市科技创新委员会(批准号: JCYJ20180504165721952)资助的课题.
      Corresponding author: Li Cheng, licheng@buaa.edu.cn ; Song Xue-Feng, songxf@sustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62173021), the Beijing Natural Science Foundation, China (Grant No. 4212039), the Aviation Science Foundation of China (Grant No. 2020Z073051002), and the Science Technology and Innovation Commission of Shenzhen Municipality, China (Grant No. JCYJ20180504165721952).
    [1]

    Tabata O, Yamamoto T 1999 Sensors and Actuators 75 53Google Scholar

    [2]

    樊尚春, 朱黎明, 邢维巍 2019 计测技术 39 4Google Scholar

    Fan S C, Zhu L M, Xing W W 2019 Metrology and Measurement Technology 39 4Google Scholar

    [3]

    Stachiv I, Gan L 2019 Materials 21 3593Google Scholar

    [4]

    Su S X P, Yang H S, Agino A M 2005 IEEE Sens. J. 5 1214Google Scholar

    [5]

    Nie J, Meng X, Li N, Lin L 2017 Sens. Actuat. B Chem. 256 1Google Scholar

    [6]

    Yu X, Chen X, Ding X, Zhao X 2017 IEEE Trans. Instrum. Meas. 67 1Google Scholar

    [7]

    Li C, Zhang Q W, Zhao Y L, Tian C, Li B, Han C, Bai B 2021 J. Micromech. Microeng. 31 115001Google Scholar

    [8]

    John G, Troy W 1993 Sens. Actuat. A Phys. 37 82Google Scholar

    [9]

    Ikeda K, Kuwayama H, Kobayashi T, Watanabe T, Nishikawa T, Yoshida T, Harada K 1990 Sens. Actuat. A Phys. 21 146Google Scholar

    [10]

    Chen F, Gao J, Tian W 2017 Sens. Actuat. A Phys. 269 427Google Scholar

    [11]

    Lei F, Dupuis P, Durrieu O, Zissis G, Maussion P 2017 IEEE Trans. Ind. Electron. 53 5988Google Scholar

    [12]

    樊尚春, 孙苗苗, 李成 2012 传感技术学报 25 1Google Scholar

    Fan S C, Sun M M, Li C 2012 J. Trans. Technology 25 1Google Scholar

    [13]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 5696Google Scholar

    [14]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [15]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [16]

    Geim A K 2009 Science 324 1530Google Scholar

    [17]

    Rao C N, Sood A K, Subrahmanyam K S, Govindaraj A 2010 Angew. Chem. Int. Ed. Engl. 48 7752Google Scholar

    [18]

    Smith B R, Conger M J, Mcmullen J S, Neubert M J 2019 J. Bus. Ventur. Insights 11 1Google Scholar

    [19]

    Cabrera H, Mendoza D, Benítez J L, Bautista F C, Alvarado S, Marín E 2015 J. Phys. D: Appl. Phys. 48 465501Google Scholar

    [20]

    De S, Coleman J N 2010 Acs Nano. 4 2713Google Scholar

    [21]

    Nika D L, Askerov A S, Balandin A A 2012 Nano Lett. 12 3238Google Scholar

    [22]

    Pang C, Lee G Y, Kim T I, Sang M K, Hong N K, Ann S H, Sun K Y 2012 Nat. Mater. 11 795Google Scholar

    [23]

    Ding G, Li X, Xu Z, Chen H, Wang M 2021 IEEE Electr. Device Lett. 42 236Google Scholar

    [24]

    Jung M. W, Myung S, Kim K W, Song W, Jo Y Y, Lee S S, Lim J, Park C Y, An K S 2014 Nanotechnology 25 285302Google Scholar

    [25]

    Jaakkola K, Sandberg H, Lahti M, Ermolov V 2019 IEEE Trans. Compon. Pack. Manuf. Technol. 9 1Google Scholar

    [26]

    Lee H, Choi T K, Lee Y B, Cho H R, Ghaffari R, Wang L, Kim D H 2016 Nat. Nanotechnol. 11 566Google Scholar

    [27]

    Seo D H, Pineda S, Fang J, Gozukara Y, Yick S, Bendavid A. Lam S K H, Murdock A T, Murphy A B, Han Z J 2017 Nat. Commun. 8 14217Google Scholar

    [28]

    黄乐, 张志勇, 彭练矛 2017 物理学报 66 218501Google Scholar

    Huang L, Zhang Z Y, Peng L M 2017 Acta Phys. Sin. 66 218501Google Scholar

    [29]

    赵鹏程, 樊尚春 2017 计测技术 37 4Google Scholar

    Zhao P C, Fan S C 2017 Metro. Measure. Technol. 37 4Google Scholar

    [30]

    Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Ruoff R S 2007 Carbon 45 1558Google Scholar

    [31]

    Ju H M, Huh S H, Choi S H, Lee H L 2010 Mater. Lett. 64 357Google Scholar

    [32]

    Wang H, Robinson J T, Li X, Dai H 2009 J. Am. Chem. Soc. 131 9910Google Scholar

    [33]

    Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Kong J 2009 Nano Lett. 9 3087Google Scholar

    [34]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Ruoff R S 2009 Science 324 1312Google Scholar

    [35]

    Sprinkle M, Ruan, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, de Heer W A 2010 Nat. Nanotechnol. 5 727Google Scholar

    [36]

    Liang X, Sperling B A, Calizo I, Cheng G, Hacker C A, Zhang Q, Richter C A 2011 ACS Nano. 22 9144Google Scholar

    [37]

    Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Ruoff R S 2009 Nano Lett. 9 4359Google Scholar

    [38]

    Lee Y, Bae S, Jang H, Jang S, Zhu S E, Sim S H, Ahn J H 2010 Nano Lett. 10 490Google Scholar

    [39]

    Chandrashekar B N, Deng B, Smitha A S, Chen Y, Tan C, Zhang H, Liu Z F 2015 Adv. Mater. 27 5210Google Scholar

    [40]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706Google Scholar

    [41]

    Lin Y C, Jin C, Lee J C, Jen S F, Suenaga K, Chiu P W 2011 ACS Nano 5 2362Google Scholar

    [42]

    Lin Y C, Lu C C, Yeh C H, Jin C, Suenaga K, Chiu P W 2011 Nano Lett. 12 414Google Scholar

    [43]

    Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Iijima S 2010 Nat. Nanotechnology 5 574Google Scholar

    [44]

    Kitipornchai S, He X Q, Liew K M 2005 Phys. Rev. B 72 075443Google Scholar

    [45]

    Sakhaee-Pour A, Ahmadian M T, Naghdabadi R 2008 Nanotechnology 19 085702Google Scholar

    [46]

    Atalaya J, Isacsson A, Kinaret J M 2008 Nano Lett. 8 4196Google Scholar

    [47]

    Murmu T, Pradhan S C 2009 J. Appl. Phys. 105 064319Google Scholar

    [48]

    Kwon O K, Lee G Y, Hwang H J, Kang J W 2012 Phys. E Low Dimens. Syst. Nanostruct. 45 194Google Scholar

    [49]

    Kwon O K, Lee J H, Park J, Kim K S, Kang J W 2013 Curr. Appl. Phys. B 13 360Google Scholar

    [50]

    Kang J W, Hwang H J, Kim K S 2012 Comput. Mater. Sci. 65 216Google Scholar

    [51]

    Kang J W, Kim H W, Kim K S, Lee J H 2013 Curr. Appl. Phys. 13 789Google Scholar

    [52]

    Young K S, Cho S Y, Won K J, Kuen K O 2013 Phys. E Low Dimens. Syst. Nanostruct. 54 118Google Scholar

    [53]

    Bunch J S, van der Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, McEuen P L 2007 Science 315 490Google Scholar

    [54]

    Garcia-Sanchez D, van der Zande A M, Paulo A S, Lassagne B, McEuen P L, Bachtold A 2008 Nano Lett. 8 1399Google Scholar

    [55]

    Kim S Y, Park H S 2009 Nano Lett. 9 969Google Scholar

    [56]

    Jiang J W, Wang J S 2012 J. Appl. Phys. 111 054314Google Scholar

    [57]

    Chen C, Rosenblatt S, Bolotin K I, Kalb W, Kim P, Kymissis I, Hone J 2009 Nat. Nanotechnol. 4 861Google Scholar

    [58]

    van der Zande A M, Barton R. A, Alden J S, Ruiz-Vargas C S, Whitney W S, Pham P H Q, McEuen P L 2010 Nano Lett. 10 4869Google Scholar

    [59]

    Guan F, Kumaravadivel P, Averin D V, Du X 2015 Appl. Phys. Lett. 107 193102Google Scholar

    [60]

    Barton R A, Ilic B, van der Zande A M, Whitney W S, McEuen P L, Parpia J M, Craighead H G 2011 Nano Lett. 11 1232Google Scholar

    [61]

    Oshidari Y, Hatakeyama T, Kometani R, Warisawa S, Ishihara S 2012 Appl. Phys. Express 5 117201Google Scholar

    [62]

    Lee S, Chen C, Deshpande V V, Lee G H, Lee I, Lekas M, Hone J 2013 Appl. Phys. Lett. 102 153101Google Scholar

    [63]

    Al-Mashaal A K, Wood G S, Torin A, Mastropaolo E, Newton M J, Cheung R 2018 IEEE Sens. J. 1 465Google Scholar

    [64]

    Miller D, Alemán B 2019 Appl. Phys. Lett. 115 193102Google Scholar

    [65]

    Bunch J S, Verbridge S S, Alden J S, van der Zande A M, Parpia J M, Craighead H G, McEuen P L 2008 Nano Lett. 8 2548Google Scholar

    [66]

    Ma J, Jin W, Xuan H, Wang C, Ho H L 2014 Opt. Lett. 39 4769Google Scholar

    [67]

    Dolleman R J, Davidovikj D, Cartamil-Bueno S J, van der Zant H S J, Steeneken P G 2016 Nano Lett. 16 568Google Scholar

    [68]

    Vollebregt S, Dolleman R J, van der Zant H S J, et al. 2017 19 th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) Kaohsiung, Taiwan, June 18–20, 2017 pp770–773

    [69]

    Li C, Lan T, Yu X, Bo N, Dong J, Fan S C 2017 Nanomaterials 7 366Google Scholar

    [70]

    李子昂, 樊尚春, 李成 2019 计测技术 39 36Google Scholar

    Li Z A, Fan S C, Li C 2019 Metro. Measure. Techno. 39 36Google Scholar

    [71]

    Liu Y J, Li C, Fan S C, Song X F 2022 Photonic Sens. 12 140Google Scholar

    [72]

    Lee M, Davidovikj D, Sajadi B, Šiškins M, Alijani F, van der Zant H S J, Steeneken P G 2019 Nano Lett. 19 5313Google Scholar

    [73]

    Kang J W, Lee J H, Hwang H J, Kim K S 2012 Phys. Lett. A 376 3248Google Scholar

    [74]

    Byun K R, Kim K S, Hwang H J, Kang J W 2013 J. Comput. Theor. Nanosci. 10 1886Google Scholar

    [75]

    Kwon O K, Hwang H J, Kang J W 2014 J. Comput. Theor. Nanosci. 82 280Google Scholar

    [76]

    Jie W, Hu F, Wang X, Qin S 2017 Second International Conference on Photonics and Optical Engineering Xian, China, October 14–17, 2017 p102562 E

    [77]

    Sakhaee-Pour A, Ahmadian M T, Vafai A 2008 Solid State Commun. 145 168Google Scholar

    [78]

    Atalaya J, Kinaret J M, Isacsson A 2009 EPL 91 48001Google Scholar

    [79]

    Dai M, Kim C W, Eom K 2012 Nanoscale Res. Lett. 7 499Google Scholar

    [80]

    Jiang J W, Park H S, Rabczuk T 2012 Nanotechnology 23 475501Google Scholar

    [81]

    Arash B, Wang Q, Duan W H 2011 Phys. Lett. A 375 2411Google Scholar

    [82]

    Lei X W, Natsuki T, Shi J X, Ni Q Q 2013 J. Appl. Phys. 113 154313Google Scholar

    [83]

    Kwon O K, Kim K S, Park J, Kang J W 2012 Comput. Mater. Sci. 67 329Google Scholar

    [84]

    Lee H L, Hsu J C, Lin S Y, Chang W J 2013 J. Appl. Phys. 114 123506Google Scholar

    [85]

    Natsuki T, Shi J X, Ni Q Q 2013 J. Appl. Phys. 114 094307Google Scholar

    [86]

    Gong X, Jiang S, Wang X, Liu S, Wang S 2014 15 th International Conference on Electronic Packaging Technology Chengdu, China, August 12–15, 2014 p511

    [87]

    Desai S H, Pandya A A, Panchal M B 2021 J. Phys. Conf. Ser. 1854 012029Google Scholar

    [88]

    Muruganathan M, Miyashita H, Kulothungan J, Schmidt M E, Mizuta H 2018 IEEE SENSORS Conference New Delhi, October 28–31, 2018 p1

  • 图 1  不同大学制作的石墨烯谐振器结构示意图 (a) 康奈尔大学[53]; (b) 巴塞罗那自治大学[54]; (c) 哥伦比亚大学[57]; (d) 康奈尔大学(阵列式)[58]; (e) 石溪大学[59]; (f) 康奈尔大学(圆形)[60]; (g) 东京大学[61]; (h) 哥伦比亚大学[62]

    Fig. 1.  Schematic diagrams of the structure of graphene resonators made by different universities: (a) Cornell University[53]; (b) Autonomous University of Barcelona[54]; (c) Columbia University[57]; (d) Cornell University (array) [58]; (e) Shixi University[59]; (f) Cornell University (circular) [60]; (g) University of Tokyo[61]; (h) Columbia University[62].

    图 2  石墨烯谐振式压力传感器结构示意图 (a) 康奈尔大学制作的石墨烯谐振器的光学图像[65]; (b) 香港理工大学使用的陶瓷插芯[66]; (c) 香港理工大学使用的石墨烯纳米带[66]; (d) 代尔夫特大学制造的哑铃形挤压膜石墨烯压力传感器[67]; (e) 原子力显微镜下的悬浮石墨烯束, 其中氧化物为黑色, 石墨烯束为橙色[68]; (f) 封闭腔式 F-P 谐振传感器[69]; (g) 开放腔式 F-P 谐振传感器[69]; (h) 单模光纤与石英毛细管熔接制成的石墨烯谐振探头[70]; (i) 经丙酮蚀刻处理后的插芯上石墨烯膜显微图像[71]; (j) 350 ℃退火处理的插芯上石墨烯膜显微图像[71]; (k) 经丙酮蚀刻和退火处理的插芯上石墨烯膜显微图像[71]

    Fig. 2.  Schematic diagram of the structure of graphene resonant pressure sensor: (a) Optical image of graphene resonator made by Cornell University[65]; (b) ceramic ferrules used by the Hong Kong Polytechnic University[66]; (c) graphene nanoribbons used by the Hong Kong Polytechnic University[66]; (d) dumbbell shaped squeeze-film graphene pressure sensor made by Delft University[67]; (e) suspended graphene beam under atomic force microscope, in which the oxide is black and the graphene beam is orange[68]; (f) closed cavity F-P resonant sensor[69]; (g) open cavity F-P resonant sensor[69]; (h) graphene resonant probe made by fusion of single-mode optical fiber and quartz capillary[70]; (i) microscopy image of graphene on the ferrule treated by acetone etching[71]; (j) microscopy image of graphene on the ferrule treated by 350 ℃ annealing[71]; (k) microscopy image of graphene on the ferrule treated by acetone etching and annealing[71].

    图 3  石墨烯谐振式加速度计结构及其性能测试 (a) 韩国国立交通大学设计的石墨烯谐振式加速度计[73]; (b) 在石墨烯谐振式加速度计上附着微小质量[74]; (c) 不同附着质量的频率-加速度关系曲线[74]; (d) 美国哥伦比亚大学设计的鼓式石墨烯谐振式加速度计[62]; (e) 中国国防科技大学设计的石墨烯谐振加速度计[76]

    Fig. 3.  Structure and performance test of graphene resonant accelerometer: (a) Graphene resonant accelerometer designed by Korea National Jiaotong University[73]; (b) small mass attached to graphene resonant accelerometer[74]; (c) accelerations against frequency for different attached masses[74]; (d) drum graphene resonant accelerometer designed by Columbia University, USA[62]; (e) graphene resonant accelerometer designed by National University of Defense Technology, China[76].

    图 4  石墨烯谐振式质量传感器及其性能表征 (a) 查尔姆斯理工大学设计的石墨烯谐振式质量传感器[78]; (b) 韩国世明大学设计的石墨烯谐振式质量传感器[83]; (c) 石墨烯谐振式质量传感器在不同边界条件下的灵敏度[84]; (d) 单层和多层石墨烯的谐振频率-质量变化曲线[85]; (e) 单层和多层石墨烯的谐振频移-质量变化曲线[85]; (f) 谐振频率和频移与质量的关系曲线, 蓝色曲线表示谐振频率随石墨烯层数的变化, 红色曲线表示频移随石墨烯层数的变化[86]

    Fig. 4.  Graphene resonant mass sensor and its performance characterization: (a) Graphene resonant mass sensor designed by Chalmers University of Technology[78]; (b) graphene resonant mass sensor designed by Semyung University[83]; (c) sensitivity of graphene resonant mass sensor under different boundary conditions[84]; (d) resonant frequency mass variation curve of monolayer/multilayer graphene films[85]; (e) frequency shift mass curve of monolayer/multilayer graphene films[85]; (f) relation curve of resonant frequency and frequency shift with mass, the blue curve represents the change of resonant frequency with the number of graphene layers, and the red curve is the change of frequency shift [86].

    图 5  日本北陆先端科学技术大学制作的石墨烯谐振式质量传感器[88] (a)—(h) 在285 nm厚的SiO2衬底上使用CVD法得到的石墨烯来制作石墨烯谐振器的工艺流程; (i) 制作的石墨烯谐振器光学图像

    Fig. 5.  Process of graphene resonant mass sensor produced by Japan Advanced Institute of Science and Technology[88]: (a)—(h) Schematic diagrams of top gated graphene resonator fabrication processes with CVD graphene on Si substrate with 285 nm SiO2; (i) optical image of the fabricated top-gated graphene resonator.

    表 1  石墨烯谐振器性能指标对比

    Table 1.  Comparison of performance indicators of graphene resonant pressure sensors.

    制备方法层数固支方式谐振频率f/MHz品质因数Q激励
    方式
    检测
    方式
    实验环境
    (温度, 压强P/Pa)
    文献
    机械剥离法1—224双端固支1—17020—850电学/
    空间光
    空间光室温, P < 1.3×10–4[53]
    1双端固支30—120
    30—120
    125
    14000
    电学电学室温, P < 1.3×10–3;
    5 K, P < 1.3×10–3
    [57]
    <5双端固支108—122电学电学室温, P < 6.7[59]
    ~31圆形固支1—302400±300空间光空间光室温, P < 0.79[60]
    2—5双端固支8—237000热噪声电学室温, P < 10–3[61]
    1圆形固支15.7120空间光空间光室温, P = 1.013×105[64]
    1周边固支30—9025空间光空间光室温, P = 27—3×104[65]
    ~30圆形固支12—161—100空间光空间光室温, P = 8×102—105[67]
    CVD法1双端固支5—7525
    9000
    电学/
    空间光
    电学/
    空间光
    室温, P < 6.7×10–3;
    10 K, P < 6.7×10–3
    [58]
    30—60双端固支0.060—0.20481—103光纤光光纤光室温, P = 10–2—105[66]
    ~13圆形固支0.509—0.54213.3—16.6光纤光光纤光室温, P = 105—2.99×105[69]
    下载: 导出CSV

    表 2  石墨烯谐振式压力传感器性能指标对比

    Table 2.  Comparison of performance indicators of graphene resonant pressure sensors.

    层数/层形状长度或
    直径/μm
    激励
    方式
    检测
    方式
    测压范围/Pa谐振频率f品质因数Q
    (室温)
    压力灵敏度
    (kHz·kPa–1)
    文献
    1—75正方形4.75空间光空间光10–4—10530—
    90 MHz
    ~25[65]
    多层圆形125光纤光光纤光10–2—10560—204 kHz81—103/[66]
    少层圆形5空间光空间光8×102—10512—
    16 MHz
    1—10010—90[67]
    多层正方形4空间光空间光102—10515.5—
    25.5 MHz
    50—801.65—3.10[68]
    13圆形125光纤光光纤光(1—2.99)×105509—
    542 kHz
    13.3—16.60.135[69]
    10圆形125光纤光光纤光0—6.895×1041.43—
    1.64 MHz
    10.2—13.92.93[70]
    10圆形125光纤光光纤光2—105481—
    760 kHz
    110—10341—110.4[71]
    下载: 导出CSV

    表 3  石墨烯谐振式加速度计性能指标对比

    Table 3.  Comparison of performance indicators of graphene resonant accelerations.

    分析方法薄膜形状长度或直径激励方式检测方式谐振频率 f文献

    分子动力学仿真

    长方形
    10.8 nm×0.7 nm
    电学
    0—250 GHz[73]
    12.0 nm×0.7 nm电学0—225 GHz[74]
    $1.2\;{\mu }\mathrm{m}\times 1.0\;{\mu }\mathrm{m}$0—10 MHz[76]
    实验圆形$3—10\;{\mu }\mathrm{m}$电学电学1—10 MHz[62]
    下载: 导出CSV

    表 4  石墨烯谐振式质量传感器仿真性能指标对比

    Table 4.  Comparison of simulation performance indicators of graphene resonant mass sensors.

    实验/仿真分析方法薄膜形状检测目标谐振频率f可检测到的最小
    质量/(10–21 g)
    品质
    因数Q
    文献
    仿真
    分子结构力学仿真长方形质点/原子尘埃0—104 GHz1[77]
    分子动力学仿真正方形惰性气体原子1[81]
    有限元模拟圆形质点~0—200 GHz1[86]
    连续弹性介质模型和
    瑞利能量法
    圆形质点0—105 GHz10–3[82]
    分子动力学仿真长方形纳米粒子0—230 GHz10–3[83]
    连续弹性介质模型正方形纳米粒子0—105 GHz10[85]
    薄膜理论和有限元模拟长方形烟草花叶病毒~200—1500 MHz[87]
    实验长方形氩氢混合气95.5 MHz88645[88]
    下载: 导出CSV
  • [1]

    Tabata O, Yamamoto T 1999 Sensors and Actuators 75 53Google Scholar

    [2]

    樊尚春, 朱黎明, 邢维巍 2019 计测技术 39 4Google Scholar

    Fan S C, Zhu L M, Xing W W 2019 Metrology and Measurement Technology 39 4Google Scholar

    [3]

    Stachiv I, Gan L 2019 Materials 21 3593Google Scholar

    [4]

    Su S X P, Yang H S, Agino A M 2005 IEEE Sens. J. 5 1214Google Scholar

    [5]

    Nie J, Meng X, Li N, Lin L 2017 Sens. Actuat. B Chem. 256 1Google Scholar

    [6]

    Yu X, Chen X, Ding X, Zhao X 2017 IEEE Trans. Instrum. Meas. 67 1Google Scholar

    [7]

    Li C, Zhang Q W, Zhao Y L, Tian C, Li B, Han C, Bai B 2021 J. Micromech. Microeng. 31 115001Google Scholar

    [8]

    John G, Troy W 1993 Sens. Actuat. A Phys. 37 82Google Scholar

    [9]

    Ikeda K, Kuwayama H, Kobayashi T, Watanabe T, Nishikawa T, Yoshida T, Harada K 1990 Sens. Actuat. A Phys. 21 146Google Scholar

    [10]

    Chen F, Gao J, Tian W 2017 Sens. Actuat. A Phys. 269 427Google Scholar

    [11]

    Lei F, Dupuis P, Durrieu O, Zissis G, Maussion P 2017 IEEE Trans. Ind. Electron. 53 5988Google Scholar

    [12]

    樊尚春, 孙苗苗, 李成 2012 传感技术学报 25 1Google Scholar

    Fan S C, Sun M M, Li C 2012 J. Trans. Technology 25 1Google Scholar

    [13]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 5696Google Scholar

    [14]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [15]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [16]

    Geim A K 2009 Science 324 1530Google Scholar

    [17]

    Rao C N, Sood A K, Subrahmanyam K S, Govindaraj A 2010 Angew. Chem. Int. Ed. Engl. 48 7752Google Scholar

    [18]

    Smith B R, Conger M J, Mcmullen J S, Neubert M J 2019 J. Bus. Ventur. Insights 11 1Google Scholar

    [19]

    Cabrera H, Mendoza D, Benítez J L, Bautista F C, Alvarado S, Marín E 2015 J. Phys. D: Appl. Phys. 48 465501Google Scholar

    [20]

    De S, Coleman J N 2010 Acs Nano. 4 2713Google Scholar

    [21]

    Nika D L, Askerov A S, Balandin A A 2012 Nano Lett. 12 3238Google Scholar

    [22]

    Pang C, Lee G Y, Kim T I, Sang M K, Hong N K, Ann S H, Sun K Y 2012 Nat. Mater. 11 795Google Scholar

    [23]

    Ding G, Li X, Xu Z, Chen H, Wang M 2021 IEEE Electr. Device Lett. 42 236Google Scholar

    [24]

    Jung M. W, Myung S, Kim K W, Song W, Jo Y Y, Lee S S, Lim J, Park C Y, An K S 2014 Nanotechnology 25 285302Google Scholar

    [25]

    Jaakkola K, Sandberg H, Lahti M, Ermolov V 2019 IEEE Trans. Compon. Pack. Manuf. Technol. 9 1Google Scholar

    [26]

    Lee H, Choi T K, Lee Y B, Cho H R, Ghaffari R, Wang L, Kim D H 2016 Nat. Nanotechnol. 11 566Google Scholar

    [27]

    Seo D H, Pineda S, Fang J, Gozukara Y, Yick S, Bendavid A. Lam S K H, Murdock A T, Murphy A B, Han Z J 2017 Nat. Commun. 8 14217Google Scholar

    [28]

    黄乐, 张志勇, 彭练矛 2017 物理学报 66 218501Google Scholar

    Huang L, Zhang Z Y, Peng L M 2017 Acta Phys. Sin. 66 218501Google Scholar

    [29]

    赵鹏程, 樊尚春 2017 计测技术 37 4Google Scholar

    Zhao P C, Fan S C 2017 Metro. Measure. Technol. 37 4Google Scholar

    [30]

    Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Ruoff R S 2007 Carbon 45 1558Google Scholar

    [31]

    Ju H M, Huh S H, Choi S H, Lee H L 2010 Mater. Lett. 64 357Google Scholar

    [32]

    Wang H, Robinson J T, Li X, Dai H 2009 J. Am. Chem. Soc. 131 9910Google Scholar

    [33]

    Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Kong J 2009 Nano Lett. 9 3087Google Scholar

    [34]

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Ruoff R S 2009 Science 324 1312Google Scholar

    [35]

    Sprinkle M, Ruan, Hu Y, Hankinson J, Rubio-Roy M, Zhang B, Wu X, Berger C, de Heer W A 2010 Nat. Nanotechnol. 5 727Google Scholar

    [36]

    Liang X, Sperling B A, Calizo I, Cheng G, Hacker C A, Zhang Q, Richter C A 2011 ACS Nano. 22 9144Google Scholar

    [37]

    Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Ruoff R S 2009 Nano Lett. 9 4359Google Scholar

    [38]

    Lee Y, Bae S, Jang H, Jang S, Zhu S E, Sim S H, Ahn J H 2010 Nano Lett. 10 490Google Scholar

    [39]

    Chandrashekar B N, Deng B, Smitha A S, Chen Y, Tan C, Zhang H, Liu Z F 2015 Adv. Mater. 27 5210Google Scholar

    [40]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706Google Scholar

    [41]

    Lin Y C, Jin C, Lee J C, Jen S F, Suenaga K, Chiu P W 2011 ACS Nano 5 2362Google Scholar

    [42]

    Lin Y C, Lu C C, Yeh C H, Jin C, Suenaga K, Chiu P W 2011 Nano Lett. 12 414Google Scholar

    [43]

    Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Iijima S 2010 Nat. Nanotechnology 5 574Google Scholar

    [44]

    Kitipornchai S, He X Q, Liew K M 2005 Phys. Rev. B 72 075443Google Scholar

    [45]

    Sakhaee-Pour A, Ahmadian M T, Naghdabadi R 2008 Nanotechnology 19 085702Google Scholar

    [46]

    Atalaya J, Isacsson A, Kinaret J M 2008 Nano Lett. 8 4196Google Scholar

    [47]

    Murmu T, Pradhan S C 2009 J. Appl. Phys. 105 064319Google Scholar

    [48]

    Kwon O K, Lee G Y, Hwang H J, Kang J W 2012 Phys. E Low Dimens. Syst. Nanostruct. 45 194Google Scholar

    [49]

    Kwon O K, Lee J H, Park J, Kim K S, Kang J W 2013 Curr. Appl. Phys. B 13 360Google Scholar

    [50]

    Kang J W, Hwang H J, Kim K S 2012 Comput. Mater. Sci. 65 216Google Scholar

    [51]

    Kang J W, Kim H W, Kim K S, Lee J H 2013 Curr. Appl. Phys. 13 789Google Scholar

    [52]

    Young K S, Cho S Y, Won K J, Kuen K O 2013 Phys. E Low Dimens. Syst. Nanostruct. 54 118Google Scholar

    [53]

    Bunch J S, van der Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, McEuen P L 2007 Science 315 490Google Scholar

    [54]

    Garcia-Sanchez D, van der Zande A M, Paulo A S, Lassagne B, McEuen P L, Bachtold A 2008 Nano Lett. 8 1399Google Scholar

    [55]

    Kim S Y, Park H S 2009 Nano Lett. 9 969Google Scholar

    [56]

    Jiang J W, Wang J S 2012 J. Appl. Phys. 111 054314Google Scholar

    [57]

    Chen C, Rosenblatt S, Bolotin K I, Kalb W, Kim P, Kymissis I, Hone J 2009 Nat. Nanotechnol. 4 861Google Scholar

    [58]

    van der Zande A M, Barton R. A, Alden J S, Ruiz-Vargas C S, Whitney W S, Pham P H Q, McEuen P L 2010 Nano Lett. 10 4869Google Scholar

    [59]

    Guan F, Kumaravadivel P, Averin D V, Du X 2015 Appl. Phys. Lett. 107 193102Google Scholar

    [60]

    Barton R A, Ilic B, van der Zande A M, Whitney W S, McEuen P L, Parpia J M, Craighead H G 2011 Nano Lett. 11 1232Google Scholar

    [61]

    Oshidari Y, Hatakeyama T, Kometani R, Warisawa S, Ishihara S 2012 Appl. Phys. Express 5 117201Google Scholar

    [62]

    Lee S, Chen C, Deshpande V V, Lee G H, Lee I, Lekas M, Hone J 2013 Appl. Phys. Lett. 102 153101Google Scholar

    [63]

    Al-Mashaal A K, Wood G S, Torin A, Mastropaolo E, Newton M J, Cheung R 2018 IEEE Sens. J. 1 465Google Scholar

    [64]

    Miller D, Alemán B 2019 Appl. Phys. Lett. 115 193102Google Scholar

    [65]

    Bunch J S, Verbridge S S, Alden J S, van der Zande A M, Parpia J M, Craighead H G, McEuen P L 2008 Nano Lett. 8 2548Google Scholar

    [66]

    Ma J, Jin W, Xuan H, Wang C, Ho H L 2014 Opt. Lett. 39 4769Google Scholar

    [67]

    Dolleman R J, Davidovikj D, Cartamil-Bueno S J, van der Zant H S J, Steeneken P G 2016 Nano Lett. 16 568Google Scholar

    [68]

    Vollebregt S, Dolleman R J, van der Zant H S J, et al. 2017 19 th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) Kaohsiung, Taiwan, June 18–20, 2017 pp770–773

    [69]

    Li C, Lan T, Yu X, Bo N, Dong J, Fan S C 2017 Nanomaterials 7 366Google Scholar

    [70]

    李子昂, 樊尚春, 李成 2019 计测技术 39 36Google Scholar

    Li Z A, Fan S C, Li C 2019 Metro. Measure. Techno. 39 36Google Scholar

    [71]

    Liu Y J, Li C, Fan S C, Song X F 2022 Photonic Sens. 12 140Google Scholar

    [72]

    Lee M, Davidovikj D, Sajadi B, Šiškins M, Alijani F, van der Zant H S J, Steeneken P G 2019 Nano Lett. 19 5313Google Scholar

    [73]

    Kang J W, Lee J H, Hwang H J, Kim K S 2012 Phys. Lett. A 376 3248Google Scholar

    [74]

    Byun K R, Kim K S, Hwang H J, Kang J W 2013 J. Comput. Theor. Nanosci. 10 1886Google Scholar

    [75]

    Kwon O K, Hwang H J, Kang J W 2014 J. Comput. Theor. Nanosci. 82 280Google Scholar

    [76]

    Jie W, Hu F, Wang X, Qin S 2017 Second International Conference on Photonics and Optical Engineering Xian, China, October 14–17, 2017 p102562 E

    [77]

    Sakhaee-Pour A, Ahmadian M T, Vafai A 2008 Solid State Commun. 145 168Google Scholar

    [78]

    Atalaya J, Kinaret J M, Isacsson A 2009 EPL 91 48001Google Scholar

    [79]

    Dai M, Kim C W, Eom K 2012 Nanoscale Res. Lett. 7 499Google Scholar

    [80]

    Jiang J W, Park H S, Rabczuk T 2012 Nanotechnology 23 475501Google Scholar

    [81]

    Arash B, Wang Q, Duan W H 2011 Phys. Lett. A 375 2411Google Scholar

    [82]

    Lei X W, Natsuki T, Shi J X, Ni Q Q 2013 J. Appl. Phys. 113 154313Google Scholar

    [83]

    Kwon O K, Kim K S, Park J, Kang J W 2012 Comput. Mater. Sci. 67 329Google Scholar

    [84]

    Lee H L, Hsu J C, Lin S Y, Chang W J 2013 J. Appl. Phys. 114 123506Google Scholar

    [85]

    Natsuki T, Shi J X, Ni Q Q 2013 J. Appl. Phys. 114 094307Google Scholar

    [86]

    Gong X, Jiang S, Wang X, Liu S, Wang S 2014 15 th International Conference on Electronic Packaging Technology Chengdu, China, August 12–15, 2014 p511

    [87]

    Desai S H, Pandya A A, Panchal M B 2021 J. Phys. Conf. Ser. 1854 012029Google Scholar

    [88]

    Muruganathan M, Miyashita H, Kulothungan J, Schmidt M E, Mizuta H 2018 IEEE SENSORS Conference New Delhi, October 28–31, 2018 p1

  • [1] 郑钦仁, 詹涪至, 折俊艺, 王建宇, 石若立, 孟国栋. 石墨烯的形貌特征对其场发射性能的影响. 物理学报, 2024, 73(8): 086101. doi: 10.7498/aps.73.20231784
    [2] 廖天军, 杨智敏, 林比宏. 基于电荷和热输运的石墨烯热电子器件性能优化. 物理学报, 2021, 70(22): 227901. doi: 10.7498/aps.70.20211110
    [3] 董慧莹, 秦晓茹, 薛文瑞, 程鑫, 李宁, 李昌勇. 涂覆石墨烯的非对称椭圆电介质纳米并行线的模式分析. 物理学报, 2020, 69(23): 238102. doi: 10.7498/aps.69.20201041
    [4] 张娜, 刘波, 林黎蔚. He离子辐照对石墨烯微观结构及电学性能的影响. 物理学报, 2020, 69(1): 016101. doi: 10.7498/aps.69.20191344
    [5] 程鑫, 薛文瑞, 卫壮志, 董慧莹, 李昌勇. 涂覆石墨烯的椭圆形电介质纳米线光波导的模式特性分析. 物理学报, 2019, 68(5): 058101. doi: 10.7498/aps.68.20182090
    [6] 卫壮志, 薛文瑞, 彭艳玲, 程鑫, 李昌勇. 基于涂覆石墨烯的三根电介质纳米线的THz波导的模式特性分析. 物理学报, 2018, 67(10): 108101. doi: 10.7498/aps.67.20180036
    [7] 彭艳玲, 薛文瑞, 卫壮志, 李昌勇. 涂覆石墨烯的非对称并行电介质纳米线波导的模式特性分析. 物理学报, 2018, 67(3): 038102. doi: 10.7498/aps.67.20172016
    [8] 莫军, 冯国英, 杨莫愁, 廖宇, 周昊, 周寿桓. 基于石墨烯的宽带全光空间调制器. 物理学报, 2018, 67(21): 214201. doi: 10.7498/aps.67.20180307
    [9] 韩同伟, 李攀攀. 石墨烯剪纸的大变形拉伸力学行为研究. 物理学报, 2017, 66(6): 066201. doi: 10.7498/aps.66.066201
    [10] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟. 物理学报, 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [11] 黄乐, 张志勇, 彭练矛. 高性能石墨烯霍尔传感器. 物理学报, 2017, 66(21): 218501. doi: 10.7498/aps.66.218501
    [12] 程正富, 郑瑞伦. 非简谐振动对石墨烯杨氏模量与声子频率的影响. 物理学报, 2016, 65(10): 104701. doi: 10.7498/aps.65.104701
    [13] 杨晶晶, 李俊杰, 邓伟, 程骋, 黄铭. 单层石墨烯带传输模式及其对气体分子振动谱的传感特性研究. 物理学报, 2015, 64(19): 198102. doi: 10.7498/aps.64.198102
    [14] 叶鹏飞, 陈海涛, 卜良民, 张堃, 韩玖荣. SnO2量子点/石墨烯复合结构的合成及其光催化性能研究. 物理学报, 2015, 64(7): 078102. doi: 10.7498/aps.64.078102
    [15] 许杰, 周丽, 黄志祥, 吴先良. 含石墨烯临界耦合谐振器的吸收特性研究. 物理学报, 2015, 64(23): 238103. doi: 10.7498/aps.64.238103
    [16] 徐志成, 钟伟荣. C60轰击石墨烯的瞬间动力学. 物理学报, 2014, 63(8): 083401. doi: 10.7498/aps.63.083401
    [17] 赵龙, 颜廷君. 不同传感器精度下的地磁轮廓匹配定位性能分析. 物理学报, 2013, 62(6): 067702. doi: 10.7498/aps.62.067702
    [18] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟. 物理学报, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
    [19] 杨锐, 谢拥军, 李晓峰, 蒋俊, 王元源, 王瑞. 异向介质谐振响应的Floquet模分析. 物理学报, 2009, 58(2): 901-907. doi: 10.7498/aps.58.901
    [20] 杨 帆, 文玉梅, 李 平, 郑 敏, 卞雷祥. 考虑损耗的磁致/压电层合材料谐振磁电响应分析. 物理学报, 2007, 56(6): 3539-3545. doi: 10.7498/aps.56.3539
计量
  • 文章访问数:  7784
  • PDF下载量:  219
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-29
  • 修回日期:  2022-03-01
  • 上网日期:  2022-06-23
  • 刊出日期:  2022-06-20

/

返回文章
返回