搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单层MoS2薄膜的NaCl双辅助生长方法

王奋陶 樊腾 张仕雄 孙真昊 付雷 贾伟 沈波 唐宁

引用本文:
Citation:

单层MoS2薄膜的NaCl双辅助生长方法

王奋陶, 樊腾, 张仕雄, 孙真昊, 付雷, 贾伟, 沈波, 唐宁

Growth of monolayer MoS2 films dual-assisted by NaCl

Wang Fen-Tao, Fan Teng, Zhang Shi-Xiong, Sun Zhen-Hao, Fu Lei, Jia Wei, Shen Bo, Tang Ning
PDF
HTML
导出引用
  • 以单层二硫化钼(MoS2)为代表的过渡金属硫族化合物半导体材料具有良好的光学、电学性质, 近十年来引起了人们广泛的研究兴趣. 合成高质量单层MoS2薄膜是科学研究及工业应用的基础. 最近科研人员提出了盐辅助化学气相沉积生长单层薄膜的方法, 大大提高了单层MoS2薄膜的生长速度及晶体质量. 本文基于此方法, 提出利用氯化钠(NaCl)的双辅助方法, 成功制备了高质量的单层MoS2薄膜. 光致发光(PL)谱显示其发光强度比无NaCl辅助生长的样品有了明显的提高. 本文提出的NaCl双辅助生长方法为二维材料的大规模生长提供了思路.
    In recent years, transition metal dichalcogenides materials represented by monolayer molybdenum disulfide (MoS2) have aroused great interest due to their excellent optical and electrical properties. The synthesis method of high-quality monolayer MoS2 film is a key problem for scientific research and industrial application. Recently, researchers have proposed a salt-assisted chemical vapor deposition method for growing the monolayer films, which greatly promotes the growth rate and quality of monolayer film. By using this method, we design a growth source of semi-enclosed quartz boat, and successfully obtain high-quality monolayer MoS2 films by using the double auxiliary action of sodium chloride (NaCl). Scanning electron microscopy shows the excellent film formation, and the photoluminescence spectra show that the luminescence intensity is significantly higher than that of the sample grown without NaCl. The NaCl double-assisted growth method proposed in this study can reduce the growth temperature of MoS2, shorten the growth time, and improve the optical properties of the films. Besides, the operation is simple and the cost is low, which provides an idea for growing the large-scale two-dimensional materials.
      通信作者: 贾伟, jiawei@tyut.edu.cn ; 唐宁, ntang@pku.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFE0125700)和国家自然科学基金(批准号: 61574006, 61927806)资助的课题.
      Corresponding author: Jia Wei, jiawei@tyut.edu.cn ; Tang Ning, ntang@pku.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFE0125700) and the National Natural Science Foundation of China (Grant Nos. 61574006, 61927806).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, DUbonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Xie Y, Wang Z, Zhan Y, Zhang P, Wu R, Jiang T, Wu S, Wang H, Zhao Y, Nan T, Ma X 2017 Nanotechnology 28 084001Google Scholar

    [3]

    Chen J, Zhao X, Tan S J, Xu H, Wu B, Liu B, Fu D, Fu W, Geng D, Liu Y, Liu W, Tang W, Li L, Zhou W, Sum T C, Loh K P 2017 J. Am. Chem. Soc. 139 1073Google Scholar

    [4]

    Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q, Xie X, Jiang M 2016 Nat. Mater. 15 43Google Scholar

    [5]

    徐依全, 王聪 2020 物理学报 69 184216Google Scholar

    Xu Y Q, Wang C 2020 Acta Phys. Sin. 69 184216Google Scholar

    [6]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [7]

    Yu Z, Ong Z Y, Li S, Xu J B, Zhang G, Zhang Y W, Shi Y, Wang X 2017 Adv. Funct. Mater. 27 1604093Google Scholar

    [8]

    Han T, Liu H, Wang S, Chen S, Li W, Yang X, Cai M, Yang K 2019 Nanomaterials 9 740Google Scholar

    [9]

    Lembke D, Kis A 2012 ACS Nano 6 10070Google Scholar

    [10]

    Zhang W, Huang J K, Chen C H, Chang Y H, Cheng Y J, Li L J 2013 Adv. Mater. 25 3456Google Scholar

    [11]

    Yin X B, Ye Z L, Chenet D A, Ye Y, Brien K O, Hone J C, Zhang X 2014 Science 344 488Google Scholar

    [12]

    樊子冉, 孔洋洋, 李宇豪, 李志, 贾婷婷 2019 人工晶体学报 48 1190Google Scholar

    Fan Z R, Kong Y Y, Li Y H, Li Z, Jia T T 2019 J. Synth. Cryst. 48 1190Google Scholar

    [13]

    Fu D, Zhao X, Zhang Y Y, Li L, Xu H, Jang A R, Yoon S I, Song P, Poh S M, Ren T, Ding Z, Fu W, Shin T J, Shin H S, Pantelides S T, Zhou W, Loh K P 2017 J. Am. Chem. Soc. 139 9392Google Scholar

    [14]

    Zeng Z, Yin Z, Huang X, Li H, He Q, Lu G, Boey F, Zhang H 2011 Angew. Chem. Int. Ed. 50 11093Google Scholar

    [15]

    Wang S, Rong Y, Fan Y, Pacios M, Bhaskaran H, He K, Warner J H 2014 Chem. Mater. 26 6371Google Scholar

    [16]

    魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅 2014 物理学报 63 217802Google Scholar

    Wei X X, Cheng Y, Huo D, Zhang Y H, Wang J Z, Hu Y, Shi Y 2014 Acta Phys. Sin. 63 217802Google Scholar

    [17]

    Huang Y, Pan Y H, Yang R, Bao L H, Meng L, Luo H L, Cai Y Q, Liu G D, Zhao W J, Zhou Z, Wu L M, Zhu Z L, Huang M, Liu L W, Liu L, Cheng P, Wu K H, Tian S B, Gu C Z, Shi Y G, Guo Y F, Cheng Z G, Hu J P, Zhao L, Yang G H, Sutter E, Sutter P, Wang Y L, Ji W, Zhou X J, Gao H J 2020 Nat. Commun. 11 2453Google Scholar

    [18]

    Liu X, Fechler N, Antonietti M 2013 Chem. Soc. Rev. 42 8237Google Scholar

    [19]

    Huang L, Hu Z, Jin H, Wu J, Liu K, Xu Z, Wan J, Zhou H, Duan J, Hu B, Zhou J 2020 Adv. Funct. Mater. 30 1908486Google Scholar

    [20]

    Chen K, Chen Z, Wan X, Zheng Z, Xie F, Chen W, Gui X, Chen H, Xie W, Xu J 2017 Adv. Mater. 29 1700704Google Scholar

    [21]

    Xie Y, Ma X, Wang Z, Nan T, Wu R, Zhang P, Wang H, Wang Y, Zhan Y, Hao Y 2018 MRS Adv. 3 365Google Scholar

    [22]

    Yang P, Zou X, Zhang Z, Hong M, Shi J, Chen S, Shu J, Zhao L, Jiang S, Zhou X, Huan Y, Xie C, Gao P, Chen Q, Zhang Q, Liu Z, Zhang Y 2018 Nat. Commun. 9 979Google Scholar

    [23]

    Lin Y C, Yeh C H, Lin H C, Siao M D, Liu Z, Nakajima H, Okazaki T, Chou M Y, Suenaga K, Chiu P W 2018 ACS Nano 12 12080Google Scholar

    [24]

    Pandey S K, Alsalman H, Azadani J G, Izquierdo N, Low T, Campbell S A 2018 Nanoscale 10 21374Google Scholar

    [25]

    Huan Y, Shi J, Zou X, Gong Y, Xie C, Yang Z, Zhang Z, Gao Y, Shi Y, Li M, Yang P, Jiang S, Hong M, Gu L, Zhang Q, Yan X, Zhang Y 2019 J. Am. Chem. Soc. 141 18694Google Scholar

    [26]

    Li P, Cui J, Zhou J, Guo D, Zhao Z, Yi J, Fan J, Ji Z, Jing X, Qu F, Yang C, Lu L, Lin J, Liu Z, Liu G 2019 Adv. Mater. 31 e1904641Google Scholar

    [27]

    Lan F, Yang R, Xu Y, Qian S, Zhang S, Cheng H, Zhang Y 2018 Nanomaterials 8 100Google Scholar

    [28]

    Zhou J, Lin J, Huang X, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H, Lei J, Wu D, Liu F, Fu Q, Zeng Q, Hsu C H, Yang C, Lu L, Yu T, Shen Z, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G, Liu Z 2018 Nature 556 355Google Scholar

    [29]

    Chen L, Zang L, Chen L, Wu J, Jiang C, Song J 2021 CrystEngComm 23 5337Google Scholar

    [30]

    Li S, Wang S, Tang D M, Zhao W, Xu H, Chu L, Bando Y, Golberg D, Eda G 2015 Appl. Mater. Today 1 60Google Scholar

    [31]

    Wang P, Lei J, Qu J, Cao S, Jiang H, He M, Shi H, Sun X, Gao B, Liu W 2019 Chem. Mater. 31 873Google Scholar

    [32]

    Xie C, Yang P, Huan Y, Cui F, Zhang Y 2020 Dalton Trans. 49 10319Google Scholar

    [33]

    Wang W, Shu H, Wang J, Cheng Y, Liang P, Chen X 2020 ACS Appl. Mater. Interfaces 12 9563Google Scholar

    [34]

    Song J G, Ryu G H, Lee S J, Sim S, Lee C W, Choi T, Jung H, Kim Y, Lee Z, Myoung J M, Dussarrat C, Lansalot-Matras C, Park J, Choi H, Kim H 2015 Nat. Commun. 6 7817Google Scholar

    [35]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [36]

    Mak K F, He K, Lee C, Lee G H, Hone J, Heinz T F, Shan J 2013 Nat. Mater. 12 207Google Scholar

  • 图 1  (a) 生长装置示意图; (b) 盛放Mo源的半封闭式石英舟; (c) 温度变化趋势图

    Fig. 1.  (a) Schematic illustrations of the experimental set-up; (b) semi-enclosed quartz boat for Mo source; (c) temperature program for the growth

    图 2  不同生长时间下的MoS2光学显微镜图像 (a) 10 min; (b) 15 min, 内插图为单个MoS2的AFM图; (c) 20 min

    Fig. 2.  Optical microscope images of MoS2 at different growth times: (a) 10 min; (b) 15 min, the inside image is AFM diagram of single MoS2; (c) 20 min

    图 3  Mo源中加入不同NaCl量的光学显微镜图像 (a) 0 mg; (b) 5 mg; (c) 10 mg, 内插图为单个MoS2的AFM图; (d) 15 mg

    Fig. 3.  Optical microscope images of Mo source with different amounts of NaCl: (a) 0 mg; (b) 5 mg; (c) 10 mg, the inside image is an AFM diagram of single MoS2; (d) 15 mg

    图 4  衬底上添加不同浓度NaCl的光学显微镜图像 (a) 0.1 mmol/L; (b) 0.3 mmol/L, 内插图为单个MoS2的AFM图; (c) 0.5 mmol/L

    Fig. 4.  Optical microscope images of different concentrations of NaCl: (a) 0.1 mmol/L; (b) 0.3 mmol/L, the inside image is an AFM diagram of single MoS2; (c) 0.5 mmol/L.

    图 5  (a)—(c) 不同浓度的NaCl搭配下的光学显微镜图像 (a) 10 mg + 0.1 mmol/L; (b) 10 mg + 0.3 mmol/L, 内插图为MoS2边界的AFM图; (c) 10 mg + 0.5 mmol/L. (d) 10 mg + 0.3 mmol/L条件下生长的MoS2在Si衬底的照片以及左中右三块区域的大范围SEM图像

    Fig. 5.  (a)–(c) Optical microscope images with different concentrations of NaCl: (a) 10 mg + 0.1 mmol/L; (b) 10 mg + 0.3 mmol/L, the inside image is an AFM diagram of MoS2 boundary; (c) 10 mg + 0.5 mmol/L. (d) Photographs of MoS2 grown under the condition of 10 mg + 0.3 mmol/L and large range SEM images corresponding to the three regions of left, middle and right

    图 8  (a) 4种在不同位置添加NaCl生长的单层MoS2的PL光谱; (b) 4种样品的归一化PL光谱

    Fig. 8.  (a) PL spectra of four monolayer MoS2 grown at different locations with NaCl addition; (b) normalized PL spectra of four samples

    图 6  在不同位置添加NaCl生长的MoS2的拉曼图

    Fig. 6.  Raman spectra of MoS2 growing at different locations of NaCl

    图 7  掺入NaCl和未掺入NaCl条件下合成单层MoS2的XPS表征, 其中(a)—(c)分别是(a) Mo 3d, (b) S 2p和(c) Na 1s的XPS图; (d) XPS全谱

    Fig. 7.  XPS characterizations of monolayer MoS2 synthesized with NaCl and without NaCl. The XPS spectra of two MoS2 samples: (a) Mo 3d; (b) S 2p; (c) Na 1s. (d) The full spectrum of XPS

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, DUbonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Xie Y, Wang Z, Zhan Y, Zhang P, Wu R, Jiang T, Wu S, Wang H, Zhao Y, Nan T, Ma X 2017 Nanotechnology 28 084001Google Scholar

    [3]

    Chen J, Zhao X, Tan S J, Xu H, Wu B, Liu B, Fu D, Fu W, Geng D, Liu Y, Liu W, Tang W, Li L, Zhou W, Sum T C, Loh K P 2017 J. Am. Chem. Soc. 139 1073Google Scholar

    [4]

    Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q, Xie X, Jiang M 2016 Nat. Mater. 15 43Google Scholar

    [5]

    徐依全, 王聪 2020 物理学报 69 184216Google Scholar

    Xu Y Q, Wang C 2020 Acta Phys. Sin. 69 184216Google Scholar

    [6]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [7]

    Yu Z, Ong Z Y, Li S, Xu J B, Zhang G, Zhang Y W, Shi Y, Wang X 2017 Adv. Funct. Mater. 27 1604093Google Scholar

    [8]

    Han T, Liu H, Wang S, Chen S, Li W, Yang X, Cai M, Yang K 2019 Nanomaterials 9 740Google Scholar

    [9]

    Lembke D, Kis A 2012 ACS Nano 6 10070Google Scholar

    [10]

    Zhang W, Huang J K, Chen C H, Chang Y H, Cheng Y J, Li L J 2013 Adv. Mater. 25 3456Google Scholar

    [11]

    Yin X B, Ye Z L, Chenet D A, Ye Y, Brien K O, Hone J C, Zhang X 2014 Science 344 488Google Scholar

    [12]

    樊子冉, 孔洋洋, 李宇豪, 李志, 贾婷婷 2019 人工晶体学报 48 1190Google Scholar

    Fan Z R, Kong Y Y, Li Y H, Li Z, Jia T T 2019 J. Synth. Cryst. 48 1190Google Scholar

    [13]

    Fu D, Zhao X, Zhang Y Y, Li L, Xu H, Jang A R, Yoon S I, Song P, Poh S M, Ren T, Ding Z, Fu W, Shin T J, Shin H S, Pantelides S T, Zhou W, Loh K P 2017 J. Am. Chem. Soc. 139 9392Google Scholar

    [14]

    Zeng Z, Yin Z, Huang X, Li H, He Q, Lu G, Boey F, Zhang H 2011 Angew. Chem. Int. Ed. 50 11093Google Scholar

    [15]

    Wang S, Rong Y, Fan Y, Pacios M, Bhaskaran H, He K, Warner J H 2014 Chem. Mater. 26 6371Google Scholar

    [16]

    魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅 2014 物理学报 63 217802Google Scholar

    Wei X X, Cheng Y, Huo D, Zhang Y H, Wang J Z, Hu Y, Shi Y 2014 Acta Phys. Sin. 63 217802Google Scholar

    [17]

    Huang Y, Pan Y H, Yang R, Bao L H, Meng L, Luo H L, Cai Y Q, Liu G D, Zhao W J, Zhou Z, Wu L M, Zhu Z L, Huang M, Liu L W, Liu L, Cheng P, Wu K H, Tian S B, Gu C Z, Shi Y G, Guo Y F, Cheng Z G, Hu J P, Zhao L, Yang G H, Sutter E, Sutter P, Wang Y L, Ji W, Zhou X J, Gao H J 2020 Nat. Commun. 11 2453Google Scholar

    [18]

    Liu X, Fechler N, Antonietti M 2013 Chem. Soc. Rev. 42 8237Google Scholar

    [19]

    Huang L, Hu Z, Jin H, Wu J, Liu K, Xu Z, Wan J, Zhou H, Duan J, Hu B, Zhou J 2020 Adv. Funct. Mater. 30 1908486Google Scholar

    [20]

    Chen K, Chen Z, Wan X, Zheng Z, Xie F, Chen W, Gui X, Chen H, Xie W, Xu J 2017 Adv. Mater. 29 1700704Google Scholar

    [21]

    Xie Y, Ma X, Wang Z, Nan T, Wu R, Zhang P, Wang H, Wang Y, Zhan Y, Hao Y 2018 MRS Adv. 3 365Google Scholar

    [22]

    Yang P, Zou X, Zhang Z, Hong M, Shi J, Chen S, Shu J, Zhao L, Jiang S, Zhou X, Huan Y, Xie C, Gao P, Chen Q, Zhang Q, Liu Z, Zhang Y 2018 Nat. Commun. 9 979Google Scholar

    [23]

    Lin Y C, Yeh C H, Lin H C, Siao M D, Liu Z, Nakajima H, Okazaki T, Chou M Y, Suenaga K, Chiu P W 2018 ACS Nano 12 12080Google Scholar

    [24]

    Pandey S K, Alsalman H, Azadani J G, Izquierdo N, Low T, Campbell S A 2018 Nanoscale 10 21374Google Scholar

    [25]

    Huan Y, Shi J, Zou X, Gong Y, Xie C, Yang Z, Zhang Z, Gao Y, Shi Y, Li M, Yang P, Jiang S, Hong M, Gu L, Zhang Q, Yan X, Zhang Y 2019 J. Am. Chem. Soc. 141 18694Google Scholar

    [26]

    Li P, Cui J, Zhou J, Guo D, Zhao Z, Yi J, Fan J, Ji Z, Jing X, Qu F, Yang C, Lu L, Lin J, Liu Z, Liu G 2019 Adv. Mater. 31 e1904641Google Scholar

    [27]

    Lan F, Yang R, Xu Y, Qian S, Zhang S, Cheng H, Zhang Y 2018 Nanomaterials 8 100Google Scholar

    [28]

    Zhou J, Lin J, Huang X, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H, Lei J, Wu D, Liu F, Fu Q, Zeng Q, Hsu C H, Yang C, Lu L, Yu T, Shen Z, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G, Liu Z 2018 Nature 556 355Google Scholar

    [29]

    Chen L, Zang L, Chen L, Wu J, Jiang C, Song J 2021 CrystEngComm 23 5337Google Scholar

    [30]

    Li S, Wang S, Tang D M, Zhao W, Xu H, Chu L, Bando Y, Golberg D, Eda G 2015 Appl. Mater. Today 1 60Google Scholar

    [31]

    Wang P, Lei J, Qu J, Cao S, Jiang H, He M, Shi H, Sun X, Gao B, Liu W 2019 Chem. Mater. 31 873Google Scholar

    [32]

    Xie C, Yang P, Huan Y, Cui F, Zhang Y 2020 Dalton Trans. 49 10319Google Scholar

    [33]

    Wang W, Shu H, Wang J, Cheng Y, Liang P, Chen X 2020 ACS Appl. Mater. Interfaces 12 9563Google Scholar

    [34]

    Song J G, Ryu G H, Lee S J, Sim S, Lee C W, Choi T, Jung H, Kim Y, Lee Z, Myoung J M, Dussarrat C, Lansalot-Matras C, Park J, Choi H, Kim H 2015 Nat. Commun. 6 7817Google Scholar

    [35]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [36]

    Mak K F, He K, Lee C, Lee G H, Hone J, Heinz T F, Shan J 2013 Nat. Mater. 12 207Google Scholar

  • [1] 武鹏, 谈论, 李炜, 曹立伟, 赵俊博, 曲尧, 李昂. 大面积单层二硫化钼的制备及其光电性能. 物理学报, 2023, 72(11): 118101. doi: 10.7498/aps.72.20230273
    [2] 李璐, 张养坤, 时东霞, 张广宇. 单层二硫化钼的制备及在器件应用方面的研究. 物理学报, 2022, 71(10): 108102. doi: 10.7498/aps.71.20212447
    [3] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用. 物理学报, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [4] 费翔, 张秀梅, 付泉桂, 蔡正阳, 南海燕, 顾晓峰, 肖少庆. 基于熔融玻璃的预沉积法生长毫米级单晶MoS2及WS2-MoS2异质结. 物理学报, 2022, 71(4): 048101. doi: 10.7498/aps.71.20211735
    [5] 蒋黎英, 易颖婷, 易早, 杨华, 李治友, 苏炬, 周自刚, 陈喜芳, 易有根. 基于单层二硫化钼的高品质因子、高品质因数的四波段完美吸收器. 物理学报, 2021, 70(12): 128101. doi: 10.7498/aps.70.20202163
    [6] 刘凯龙, 彭冬生. 拉伸应变对单层二硫化钼光电特性的影响. 物理学报, 2021, 70(21): 217101. doi: 10.7498/aps.70.20210816
    [7] 王铄, 王文辉, 吕俊鹏, 倪振华. 化学气相沉积法制备大面积二维材料薄膜: 方法与机制. 物理学报, 2021, 70(2): 026802. doi: 10.7498/aps.70.20201398
    [8] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [9] 魏争, 王琴琴, 郭玉拓, 李佳蔚, 时东霞, 张广宇. 高质量单层二硫化钼薄膜的研究进展. 物理学报, 2018, 67(12): 128103. doi: 10.7498/aps.67.20180732
    [10] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究. 物理学报, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [11] 张新成, 廖文虎, 左敏. 非共振圆偏振光作用下单层二硫化钼电子结构及其自旋/谷输运性质. 物理学报, 2018, 67(10): 107101. doi: 10.7498/aps.67.20180213
    [12] 危阳, 马新国, 祝林, 贺华, 黄楚云. 二硫化钼/石墨烯异质结的界面结合作用及其对带边电位影响的理论研究. 物理学报, 2017, 66(8): 087101. doi: 10.7498/aps.66.087101
    [13] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟. 物理学报, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [14] 张理勇, 方粮, 彭向阳. 单层二硫化钼多相性质及相变的第一性原理研究. 物理学报, 2016, 65(12): 127101. doi: 10.7498/aps.65.127101
    [15] 董艳芳, 何大伟, 王永生, 许海腾, 巩哲. 一种简单的化学气相沉积法制备大尺寸单层二硫化钼. 物理学报, 2016, 65(12): 128101. doi: 10.7498/aps.65.128101
    [16] 张理勇, 方粮, 彭向阳. 金衬底调控单层二硫化钼电子性能的第一性原理研究. 物理学报, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [17] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究. 物理学报, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [18] 郭平生, 陈 婷, 曹章轶, 张哲娟, 陈奕卫, 孙 卓. 场致发射阴极碳纳米管的热化学气相沉积法低温生长. 物理学报, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [19] 于 威, 刘丽辉, 侯海虹, 丁学成, 韩 理, 傅广生. 螺旋波等离子体增强化学气相沉积氮化硅薄膜. 物理学报, 2003, 52(3): 687-691. doi: 10.7498/aps.52.687
    [20] 陈小华, 吴国涛, 邓福铭, 王健雄, 杨杭生, 王淼, 卢筱楠, 彭景翠, 李文铸. 射频等离子体辅助化学气相沉积方法生长碳纳米洋葱. 物理学报, 2001, 50(7): 1264-1267. doi: 10.7498/aps.50.1264
计量
  • 文章访问数:  6030
  • PDF下载量:  256
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-14
  • 修回日期:  2022-04-17
  • 上网日期:  2022-06-06
  • 刊出日期:  2022-06-20

/

返回文章
返回