搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

化学气相沉积法制备大面积二维材料薄膜: 方法与机制

王铄 王文辉 吕俊鹏 倪振华

引用本文:
Citation:

化学气相沉积法制备大面积二维材料薄膜: 方法与机制

王铄, 王文辉, 吕俊鹏, 倪振华

Chemical vapor deposition growth of large-areas two dimensional materials: Approaches and mechanisms

Wang Shuo, Wang Wen-Hui, Lü Jun-Peng, Ni Zhen-Hua
PDF
HTML
导出引用
  • 近年来, 二维层状材料由于其丰富的材料体系和独特的物理化学性质而受到人们的广泛关注. 后摩尔时代要求器件高度集成化, 大面积、高质量的二维材料可以保证器件中结构和电子性能的连续性. 要实现二维材料工业级别的规模化生产, 样品的可控制备是其前提. 化学气相沉积是满足上述要求的一种强有力的方法, 已广泛应用于二维材料及其复合结构的生长制备. 但是要实现多种二维材料大尺寸以至晶圆级的批量制备仍然是很困难的, 因此, 需要进一步建立对各种二维材料生长控制的系统认识. 本文基于材料生长机理分析了化学气相沉积反应中的物质运输、成核、产物生长过程对二维材料尺寸的影响, 以及如何通过调控这些过程实现二维材料大面积薄膜的可控制备. 通过对目前研究成果的总结分析, 讨论了如何进一步实现二维材料的高质量大面积制备.
    Two-dimensional (2D) layered materials have attracted increasing attention in recent years because of their abundant material categories and superior physical/chemical properties. In order to satisfy the requirements for highly integrated devices in the post-Moore era, substantial efforts have been devoted to producing atomically thin 2D materials with large lateral dimensions and high crystalline quality. The controllable synthesis is the precondition of the implementation of large mass producing 2D material in industry. Chemical vapor deposition (CVD) is a powerful method widely used in the synthesis of 2D materials and their hybrid structures. However, it is still challengeable to flexibly and easily grow any 2D materials into large area. Therefore, a systematic understanding of the requirements for controllable growth of different 2D materials are desired. In this review article, we provide a comprehensive discussion on the influencing factors, material transport, nucleation and growth rate in the CVD growth process. Finally, the strategies to further improve the size and quality of 2D materials are prospected.
      通信作者: 吕俊鹏, phyljp@seu.edu.cn ; 倪振华, zhni@seu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2017YFA0205700, 2019YFA0308000)和国家自然科学基金(批准号: 61774034, 91963130)资助的课题
      Corresponding author: Lü Jun-Peng, phyljp@seu.edu.cn ; Ni Zhen-Hua, zhni@seu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2017YFA0205700, 2019YFA0308000) and the National Natural Science Foundation of China (Grant Nos. 61774034, 91963130)
    [1]

    Buscema M, Groenendijk D J, Blanter S I, Steele G A, Van Der Zant H S, Castellanos-Gomez A 2014 Nano Lett. 14 3347Google Scholar

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [3]

    Mak K F, Shan J 2016 Nat. Photonics 10 216Google Scholar

    [4]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [5]

    Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674Google Scholar

    [6]

    Wang Q H, Kalantar Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [7]

    Novoselov K S, Fal V, Colombo L, Gellert P, Schwab M, Kim K 2012 Nature 490 192Google Scholar

    [8]

    Desai S B, Madhvapathy S R, Sachid A B, Linas J P, Wang Q, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C 2016 Science 354 99Google Scholar

    [9]

    Li M Y, Su S K, Wong H S P, Li L J 2019 Nature 567 169Google Scholar

    [10]

    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206Google Scholar

    [11]

    Carvalho A, Wang M, Zhu X, Rodin A S, Su H, Neto A H C 2016 Nat. Rev. Mater. 1 1Google Scholar

    [12]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [13]

    Chen X, Qiu Y, Liu G, Zheng W, Feng W, Gao F, Cao W, Fu Y, Hu W, Hu P 2017 J. Mater. Chem. A 5 11357Google Scholar

    [14]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar

    [15]

    Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766Google Scholar

    [16]

    Yang H, Heo J, Park S, Song H J, Seo D H, Byun K E, Kim P, Yoo I, Chung H J, Kim K 2012 Science 336 1140Google Scholar

    [17]

    Goossens S, Navickaite G, Monasterio C, Gupta S, Piqueras J, Pérez R, Burwell G, Nikitskiy I, Lasanta T, Galán T 2017 Nat. Photonics 11 366Google Scholar

    [18]

    Sun L, Zhang Y, Han G, Hwang G, Jiang J, Joo B, Watanabe K, Taniguchi T, Kim Y M, Yu W J 2019 Nat. Commun. 10 1Google Scholar

    [19]

    Zhang Y, Yao Y, Sendeku M G, Yin L, Zhan X, Wang F, Wang Z, He J 2019 Adv. Mater. 31 1901694Google Scholar

    [20]

    Huo C, Yan Z, Song X, Zeng H 2015 Sci. Bull. 60 1994Google Scholar

    [21]

    Cai Z, Liu B, Zou X, Cheng H M 2018 Chem. Rev. 118 6091Google Scholar

    [22]

    Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, Park J 2015 Nature 520 656Google Scholar

    [23]

    Kalanyan B, Kimes W A, Beams R, Stranick S J, Garratt E, Kalish I, Davydov A V, Kanjolia R K, Maslar J E 2017 Chem. Mater. 29 6279Google Scholar

    [24]

    Choi S H, Stephen B, Park J H, Lee J S, Kim S M, Yang W, Kim K K 2017 Sci. Rep. 7 1Google Scholar

    [25]

    Cwik S, Mitoraj D, Mendoza Reyes O, Rogalla D, Peeters D, Kim J, Schütz H M, Bock C, Beranek R, Devi A 2018 Adv. Mater. Interfaces 5 1800140Google Scholar

    [26]

    Ma L, Nath D N, Lee E W, Lee C H, Yu M, Arehart A, Rajan S, Wu Y 2014 Appl. Phys. Lett. 105 072105Google Scholar

    [27]

    Tao L, Chen K, Chen Z, Chen W, Gui X, Chen H, Li X, Xu J B 2017 ACS Appl. Mater. Interfaces 9 12073Google Scholar

    [28]

    Qian S, Yang R, Lan F, Xu Y, Sun K, Zhang S, Zhang Y, Dong Z 2019 Mater. Sci. Semicond. Process 93 317Google Scholar

    [29]

    Gong Y, Ye G, Lei S, Shi G, He Y, Lin J, Zhang X, Vajtai R, Pantelides S T, Zhou W 2016 Adv. Funct. Mater. 26 2009Google Scholar

    [30]

    李娜, 张儒静, 甄真, 许振华, 何利民 2020 材料工程 48 36Google Scholar

    Li N, Zhang R J, Zhen Z, Xu Z H, He L M 2020 J. Mater. Eng. 48 36Google Scholar

    [31]

    Zhang L, Shi Z, Wang Y, Yang R, Shi D, Zhang G 2011 Nano Res. 4 315Google Scholar

    [32]

    Wei D, Lu Y, Han C, Niu T, Chen W, Wee A T S 2013 Angew. Chem. Int. Ed. 125 14371Google Scholar

    [33]

    Kim H, Ahn C, Arabale G, Lee C, Kim T 2013 ECS Trans. 58 47

    [34]

    Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y 2017 Nat. Nanotechnol. 12 744Google Scholar

    [35]

    Lin L, Deng B, Sun J, Peng H, Liu Z 2018 Chem. Rev. 118 9281Google Scholar

    [36]

    尤佳毅, 沈鸿烈, 吴天如, 谢晓明 2015 真空科学与技术学报 35 109Google Scholar

    You J Y, Sheng H L, Wu T R, Xie X M 2015 Chin. J. Vac. Sci. Technol. 35 109Google Scholar

    [37]

    Rao R, Weaver K, Maruyama B 2015 Mater. Express 5 541Google Scholar

    [38]

    任文杰, 朱永, 龚天诚, 王宁, 张洁 2015 功能材料 46 16115

    Ren W J, Zhu Y, Gong T C, Wang N, Zhang J 2015 J. Funct. Mater. 46 16115

    [39]

    Shi R, He P, Cai X, Zhang Z, Wang W, Wang J, Feng X, Wu Z, Amini A, Wang N 2020 ACS Nano 14 7593Google Scholar

    [40]

    Yu H, Liao M, Zhao W, Liu G, Zhou X, Wei Z, Xu X, Liu K, Hu Z, Deng K 2017 ACS Nano 11 12001Google Scholar

    [41]

    Regmi M, Chisholm M F, Eres G 2012 Carbon 50 134Google Scholar

    [42]

    Li J, Cheng S, Liu Z, Zhang W, Chang H 2018 J. Phys. Chem. C 122 7005Google Scholar

    [43]

    Yu Y, Li C, Liu Y, Su L, Zhang Y, Cao L 2013 Sci. Rep. 3 1866Google Scholar

    [44]

    Elías A L, Perea-López N, Castro-Beltrán A, Berkdemir A, Lü R, Feng S, Long A D, Hayashi T, Kim Y A, Endo M 2013 ACS Nano 7 5235Google Scholar

    [45]

    葛雯, 吕斌 2013 材料科学与工程学报 31 489Google Scholar

    Ge Wd, Lv B 2013 Mater. Sci. Eng. 31 489Google Scholar

    [46]

    Hammer B, Norskov J K 1995 Nature 376 238Google Scholar

    [47]

    Chen H, Zhu W, Zhang Z 2010 Phys. Rev. Lett. 104 186101Google Scholar

    [48]

    Gao J, Yip J, Zhao J, Yakobson B I, Ding F 2011 J. Am. Chem. Soc. 133 5009Google Scholar

    [49]

    Abraham F F 1974 Homogeneous Nucleation Theory (Vol. 263) (New York: Academic Press) pp1−8

    [50]

    Schmelzer J, Röpke G, Priezzhev V B 2005 Nucleation Theory and Applications (Vol. 76) (Hoboken: Wiley-VCH Weinheim) pp39−54

    [51]

    Pruppacher H R, Klett J D 1980 Nature 284 88

    [52]

    Vehkamäki H 2006 Classical Nucleation Theory in Multicomponent Systems (Berlin: Springer Science & Business Media) pp119−133

    [53]

    杨雅萍 2016 硕士学位论文 (长沙: 国防科学技术大学)

    Yang Y P 2016 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese)

    [54]

    Geng D, Wu B, Guo Y, Huang L, Xue Y, Chen J, Yu G, Jiang L, Hu W, Liu Y 2012 Proc. Natl. Acad. Sci. U.S.A. 109 7992Google Scholar

    [55]

    Chen J Y, Zhao X X, Tan S J R, Xu H, Wu B, Liu B, Fu D Y, Fu W, Geng D C, Liu Y P, Liu W, Tang W, Li L J, Zhou W, Sum T C, Loh K P 2017 J. Am. Chem. Soc. 139 1073Google Scholar

    [56]

    Markov I V 2003 Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy (Singapore: World Scientific) pp105−036

    [57]

    王璐, 高峻峰, 丁峰 2014 化学学报 72 345Google Scholar

    Wang L, Gao J F, Ding F 2014 Acta Chim. Sin. 72 345Google Scholar

    [58]

    Jia C, Jiang J, Gan L, Guo X 2012 Sci. Rep. 2 707Google Scholar

    [59]

    程想 2016 硕士学位论文 (武汉: 华中科技大学)

    Cheng X 2016 M. S. Thesis (WuHan: Huazhong University of Science and Technology) (in Chinese)

    [60]

    Zafar A, Zafar Z, Zhao W, Jiang J, Zhang Y, Chen Y, Lu J, Ni Z 2019 Adv. Funct. Mater. 29 1809261

    [61]

    Patera L L, Bianchini F, Africh C, Dri C, Soldano G, Mariscal M M, Peressi M, Comelli G 2018 Science 359 1243Google Scholar

    [62]

    Hao Y, Bharathi M, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B 2013 Science 342 720Google Scholar

    [63]

    Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H, Liao C, Song H, Qiao R, Gao P 2016 Nat. Nanotechnol. 11 930Google Scholar

    [64]

    Yang P, Zou X, Zhang Z, Hong M, Shi J, Chen S, Shu J, Zhao L, Jiang S, Zhou X 2018 Nat. Commun. 9 979Google Scholar

    [65]

    Zhou J, Lin J, Huang X, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H, Lei J 2018 Nature 556 355Google Scholar

    [66]

    Tan C, Tang M, Wu J, Liu Y, Li T, Liang Y, Deng B, Tan Z, Tu T, Zhang Y 2019 Nano Lett. 19 2148Google Scholar

  • 图 1  CVD过程中影响二维材料产物的参数及因素[21]

    Fig. 1.  The affecting parameters and factors during CVD growth of two-dimensional materials[21].

    图 2  传统CVD的反应过程示意图[35]

    Fig. 2.  Schematic illustration of the reaction processes in a typical CVD reactor[35].

    图 3  (a) OIAG法生长MoX2的方案示意图; (b) OIAG中OI的工作机制示意图; (c)−(f)不同OI剂量(c) 4 mg, (d) 5 mg, (e) 6 mg, (f) 7 mg 下MoS2的光镜图像[39]; (g) 使用多条路径制备MoS2薄膜的方案示意图; (h) 蓝宝石衬底上生长的晶圆级MoS2图像[40]

    Fig. 3.  Schematic illustration of (a) the growth of MoX2 by OIAG and (b) the working mechanism of OI in the progress of OIAG; (c)−(f) optical images of MoS2 with different concentrations: (c) 4 mg, (d) 5 mg, (e) 6 mg, (f) 7 mg[39]; (g) schematic illustration of the modified CVD system for MoS2 growth; (h) photograph of MoS2 film grown on sapphire substrates[40].

    图 4  合成厘米级WTe2的CVD装置图示[42]

    Fig. 4.  Schematic illustration of the growth of WTe2 film with centimeter-scale by three-zone chemical vapor depo-sition[42].

    图 5  (a), (b) 抛光前后的铜箔的扫描电子显微镜(scanning electron microscope, SEM)图像[53]; (c) 在钨衬底上平坦液体Cu表面制备石墨烯的示意图; (d) SEM下六方石墨烯畴在液体Cu表面的“自组装样”行为[54]; (e) 合成MoSe2薄膜的CVD装置图示; (f) 光镜下MoSe2薄膜的图像; (g) MoSe2薄膜的扫描隧道显微镜(scanning tunneling microscope, STM)图像[55]

    Fig. 5.  SEM images of Cu foil (a) before- and (b) after-polishing[53]; (c) schematic illustration of the synthesis of graphene on the liquid Cu surface; (d) SEM image of “self-assembling sample behavior” of hexagonal graphene domains on liquid Cu surface[54]; (e) schematic demonstration of the growth of the WTe2 film by CVD; (f) optical image of MoSe2 film; (g) STM image of MoSe2 film[55].

    图 6  (a) 石墨烯在不同温度下在Ni(111)表面和台阶处的成核率与$ \Delta \mu $的函数关系; (b) 不同温度下RE/RT比率与$ \Delta \mu $的函数关系[48] (RT, 平台上石墨烯的成核率; RE, 台阶表面的成核率); (c) 晶体生长曲线, 吉布斯自由能变化和团簇所含原子数n的关系[57]

    Fig. 6.  (a) Nucleation rates of graphene growth on a Ni(111) terrace and near a step edge as a function of$ \Delta \mu $; (b) RE/RT ratio as the function of $ \Delta \mu $[48] (RT, nucleation rate of graphene on the terrace; RE, nucleation rate of graphene on the step edge); (c) crystal growth curve: Gibbs free energy as a function of the cluster size, n[57].

    图 7  (a)铜片氧化前后对比图[58]; 不同退火时间下的石墨烯光学图片 (b) 50 min; (c) 90 min; 不同CH4和H2比例下长出的石墨烯光学图片 (d) 2 sccm: 60 sccm; (e) 1 sccm: 80 sccm; (f) 1 sccm: 100 sccm; (g) 0.5 sccm: 80 sccm; 不同生长时间下石墨烯的形貌图 (h) 100 min; (i) 200 min; (j) 420 min; (k) 500 min; (l) 660 min[59]

    Fig. 7.  (a) Comparison diagram of Cu foil with/without oxidation[58]; optical images of graphene for different annealing time: (b) 50 min; (c) 90 min; optical images of graphene for different proportion of CH4 and H2: (d) 2 sccm:60 sccm; (e) 1 sccm:80 sccm; (f) 1 sccm∶100 sccm; (g) 0.5 sccm∶80.0 sccm; optical images of graphene for different growth time: (h) 100 min; (i) 200 min; (j) 420 min; (k) 500 min; (l) 660 min[59].

    图 8  (a)—(d) 不同生长时间下WS2的光学图像 (a) 3 min; (b) 5 min; (c) 8 min; (d) 15 min; (e) WS2平均尺寸和生长时间的关系曲线[60]

    Fig. 8.  Optical images of WS2 for different time: (a) 3 min; (b) 5 min; (c) 8 min; (d) 15 min; (e) plot of average flake size versus growth durations[60].

    图 9  (a), (b) 位于石墨烯边缘的Ni原子的STM图像[61]; (c) 未经氧处理的石墨烯边缘示意图; (d) 对H附着的能量进行的密度泛函理论计算(density functional theory, DFT)[62]; (e) 氧处理的石墨烯边缘示意图; (f) 局部供氧法示意图; (g) 氧未参与反应的CH4分解过程; (h) 反应能量分布示意图; (i) 氧参与反应的CH4分解过程[63]

    Fig. 9.  (a), (b) STM images of the Ni adatoms at the graphene edges[61]; (c)−(e) schematic illustration of graphene edges (e) with and (c) without oxygen and (d) the corresponding DFT calculations of the energies for H attachment[62]; (f) schematic illustration of the growth of WTe2 film by local-oxygen-feeding method; (g)−(i) the energy profiles of the reaction of CH4 decomposition (i) with and (g) without oxygen supply on Cu surface and (h) the corresponding DFT calculations of the energy dispersion[63].

    图 10  (a) 单层MoS2的光学图像; (b), (c) 引入Na元素和未引入Na元素的DFT对比实验[64]; (d) 使用盐辅助法合成的几种TMDs薄膜的光学图像[65]

    Fig. 10.  (a) Optical image of monolayer MoS2 film; (b), (c) DFT calculations for the growth of MoS2 (b) without and (c) with Na[64]; (d) schematic illustration of the salt-assisted reaction process and optical images of TMDs films[65].

  • [1]

    Buscema M, Groenendijk D J, Blanter S I, Steele G A, Van Der Zant H S, Castellanos-Gomez A 2014 Nano Lett. 14 3347Google Scholar

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [3]

    Mak K F, Shan J 2016 Nat. Photonics 10 216Google Scholar

    [4]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [5]

    Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674Google Scholar

    [6]

    Wang Q H, Kalantar Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [7]

    Novoselov K S, Fal V, Colombo L, Gellert P, Schwab M, Kim K 2012 Nature 490 192Google Scholar

    [8]

    Desai S B, Madhvapathy S R, Sachid A B, Linas J P, Wang Q, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C 2016 Science 354 99Google Scholar

    [9]

    Li M Y, Su S K, Wong H S P, Li L J 2019 Nature 567 169Google Scholar

    [10]

    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206Google Scholar

    [11]

    Carvalho A, Wang M, Zhu X, Rodin A S, Su H, Neto A H C 2016 Nat. Rev. Mater. 1 1Google Scholar

    [12]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [13]

    Chen X, Qiu Y, Liu G, Zheng W, Feng W, Gao F, Cao W, Fu Y, Hu W, Hu P 2017 J. Mater. Chem. A 5 11357Google Scholar

    [14]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar

    [15]

    Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766Google Scholar

    [16]

    Yang H, Heo J, Park S, Song H J, Seo D H, Byun K E, Kim P, Yoo I, Chung H J, Kim K 2012 Science 336 1140Google Scholar

    [17]

    Goossens S, Navickaite G, Monasterio C, Gupta S, Piqueras J, Pérez R, Burwell G, Nikitskiy I, Lasanta T, Galán T 2017 Nat. Photonics 11 366Google Scholar

    [18]

    Sun L, Zhang Y, Han G, Hwang G, Jiang J, Joo B, Watanabe K, Taniguchi T, Kim Y M, Yu W J 2019 Nat. Commun. 10 1Google Scholar

    [19]

    Zhang Y, Yao Y, Sendeku M G, Yin L, Zhan X, Wang F, Wang Z, He J 2019 Adv. Mater. 31 1901694Google Scholar

    [20]

    Huo C, Yan Z, Song X, Zeng H 2015 Sci. Bull. 60 1994Google Scholar

    [21]

    Cai Z, Liu B, Zou X, Cheng H M 2018 Chem. Rev. 118 6091Google Scholar

    [22]

    Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, Park J 2015 Nature 520 656Google Scholar

    [23]

    Kalanyan B, Kimes W A, Beams R, Stranick S J, Garratt E, Kalish I, Davydov A V, Kanjolia R K, Maslar J E 2017 Chem. Mater. 29 6279Google Scholar

    [24]

    Choi S H, Stephen B, Park J H, Lee J S, Kim S M, Yang W, Kim K K 2017 Sci. Rep. 7 1Google Scholar

    [25]

    Cwik S, Mitoraj D, Mendoza Reyes O, Rogalla D, Peeters D, Kim J, Schütz H M, Bock C, Beranek R, Devi A 2018 Adv. Mater. Interfaces 5 1800140Google Scholar

    [26]

    Ma L, Nath D N, Lee E W, Lee C H, Yu M, Arehart A, Rajan S, Wu Y 2014 Appl. Phys. Lett. 105 072105Google Scholar

    [27]

    Tao L, Chen K, Chen Z, Chen W, Gui X, Chen H, Li X, Xu J B 2017 ACS Appl. Mater. Interfaces 9 12073Google Scholar

    [28]

    Qian S, Yang R, Lan F, Xu Y, Sun K, Zhang S, Zhang Y, Dong Z 2019 Mater. Sci. Semicond. Process 93 317Google Scholar

    [29]

    Gong Y, Ye G, Lei S, Shi G, He Y, Lin J, Zhang X, Vajtai R, Pantelides S T, Zhou W 2016 Adv. Funct. Mater. 26 2009Google Scholar

    [30]

    李娜, 张儒静, 甄真, 许振华, 何利民 2020 材料工程 48 36Google Scholar

    Li N, Zhang R J, Zhen Z, Xu Z H, He L M 2020 J. Mater. Eng. 48 36Google Scholar

    [31]

    Zhang L, Shi Z, Wang Y, Yang R, Shi D, Zhang G 2011 Nano Res. 4 315Google Scholar

    [32]

    Wei D, Lu Y, Han C, Niu T, Chen W, Wee A T S 2013 Angew. Chem. Int. Ed. 125 14371Google Scholar

    [33]

    Kim H, Ahn C, Arabale G, Lee C, Kim T 2013 ECS Trans. 58 47

    [34]

    Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y 2017 Nat. Nanotechnol. 12 744Google Scholar

    [35]

    Lin L, Deng B, Sun J, Peng H, Liu Z 2018 Chem. Rev. 118 9281Google Scholar

    [36]

    尤佳毅, 沈鸿烈, 吴天如, 谢晓明 2015 真空科学与技术学报 35 109Google Scholar

    You J Y, Sheng H L, Wu T R, Xie X M 2015 Chin. J. Vac. Sci. Technol. 35 109Google Scholar

    [37]

    Rao R, Weaver K, Maruyama B 2015 Mater. Express 5 541Google Scholar

    [38]

    任文杰, 朱永, 龚天诚, 王宁, 张洁 2015 功能材料 46 16115

    Ren W J, Zhu Y, Gong T C, Wang N, Zhang J 2015 J. Funct. Mater. 46 16115

    [39]

    Shi R, He P, Cai X, Zhang Z, Wang W, Wang J, Feng X, Wu Z, Amini A, Wang N 2020 ACS Nano 14 7593Google Scholar

    [40]

    Yu H, Liao M, Zhao W, Liu G, Zhou X, Wei Z, Xu X, Liu K, Hu Z, Deng K 2017 ACS Nano 11 12001Google Scholar

    [41]

    Regmi M, Chisholm M F, Eres G 2012 Carbon 50 134Google Scholar

    [42]

    Li J, Cheng S, Liu Z, Zhang W, Chang H 2018 J. Phys. Chem. C 122 7005Google Scholar

    [43]

    Yu Y, Li C, Liu Y, Su L, Zhang Y, Cao L 2013 Sci. Rep. 3 1866Google Scholar

    [44]

    Elías A L, Perea-López N, Castro-Beltrán A, Berkdemir A, Lü R, Feng S, Long A D, Hayashi T, Kim Y A, Endo M 2013 ACS Nano 7 5235Google Scholar

    [45]

    葛雯, 吕斌 2013 材料科学与工程学报 31 489Google Scholar

    Ge Wd, Lv B 2013 Mater. Sci. Eng. 31 489Google Scholar

    [46]

    Hammer B, Norskov J K 1995 Nature 376 238Google Scholar

    [47]

    Chen H, Zhu W, Zhang Z 2010 Phys. Rev. Lett. 104 186101Google Scholar

    [48]

    Gao J, Yip J, Zhao J, Yakobson B I, Ding F 2011 J. Am. Chem. Soc. 133 5009Google Scholar

    [49]

    Abraham F F 1974 Homogeneous Nucleation Theory (Vol. 263) (New York: Academic Press) pp1−8

    [50]

    Schmelzer J, Röpke G, Priezzhev V B 2005 Nucleation Theory and Applications (Vol. 76) (Hoboken: Wiley-VCH Weinheim) pp39−54

    [51]

    Pruppacher H R, Klett J D 1980 Nature 284 88

    [52]

    Vehkamäki H 2006 Classical Nucleation Theory in Multicomponent Systems (Berlin: Springer Science & Business Media) pp119−133

    [53]

    杨雅萍 2016 硕士学位论文 (长沙: 国防科学技术大学)

    Yang Y P 2016 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese)

    [54]

    Geng D, Wu B, Guo Y, Huang L, Xue Y, Chen J, Yu G, Jiang L, Hu W, Liu Y 2012 Proc. Natl. Acad. Sci. U.S.A. 109 7992Google Scholar

    [55]

    Chen J Y, Zhao X X, Tan S J R, Xu H, Wu B, Liu B, Fu D Y, Fu W, Geng D C, Liu Y P, Liu W, Tang W, Li L J, Zhou W, Sum T C, Loh K P 2017 J. Am. Chem. Soc. 139 1073Google Scholar

    [56]

    Markov I V 2003 Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy (Singapore: World Scientific) pp105−036

    [57]

    王璐, 高峻峰, 丁峰 2014 化学学报 72 345Google Scholar

    Wang L, Gao J F, Ding F 2014 Acta Chim. Sin. 72 345Google Scholar

    [58]

    Jia C, Jiang J, Gan L, Guo X 2012 Sci. Rep. 2 707Google Scholar

    [59]

    程想 2016 硕士学位论文 (武汉: 华中科技大学)

    Cheng X 2016 M. S. Thesis (WuHan: Huazhong University of Science and Technology) (in Chinese)

    [60]

    Zafar A, Zafar Z, Zhao W, Jiang J, Zhang Y, Chen Y, Lu J, Ni Z 2019 Adv. Funct. Mater. 29 1809261

    [61]

    Patera L L, Bianchini F, Africh C, Dri C, Soldano G, Mariscal M M, Peressi M, Comelli G 2018 Science 359 1243Google Scholar

    [62]

    Hao Y, Bharathi M, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B 2013 Science 342 720Google Scholar

    [63]

    Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H, Liao C, Song H, Qiao R, Gao P 2016 Nat. Nanotechnol. 11 930Google Scholar

    [64]

    Yang P, Zou X, Zhang Z, Hong M, Shi J, Chen S, Shu J, Zhao L, Jiang S, Zhou X 2018 Nat. Commun. 9 979Google Scholar

    [65]

    Zhou J, Lin J, Huang X, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H, Lei J 2018 Nature 556 355Google Scholar

    [66]

    Tan C, Tang M, Wu J, Liu Y, Li T, Liang Y, Deng B, Tan Z, Tu T, Zhang Y 2019 Nano Lett. 19 2148Google Scholar

  • [1] 杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红. 二维钒掺杂Cr2S3纳米片的生长与磁性研究. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231229
    [2] 杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红. 二维钒掺杂Cr2S3纳米片的生长与磁性研究. 物理学报, 2023, 72(24): 247501. doi: 10.7498/aps.72.20231229
    [3] 陈雪莲, 巨博, 焦琥珀, 李燕, 钟玉洁. 形貌可控的CsPbBr3钙钛矿纳米晶的制备及其形成动力学的原位光致发光研究. 物理学报, 2022, 71(9): 096802. doi: 10.7498/aps.71.20212228
    [4] 费翔, 张秀梅, 付泉桂, 蔡正阳, 南海燕, 顾晓峰, 肖少庆. 基于熔融玻璃的预沉积法生长毫米级单晶MoS2及WS2-MoS2异质结. 物理学报, 2022, 71(4): 048101. doi: 10.7498/aps.71.20211735
    [5] 韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究. 物理学报, 2022, 71(1): 010701. doi: 10.7498/aps.71.20211048
    [6] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用. 物理学报, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [7] 周海涛, 熊希雅, 罗飞, 罗炳威, 刘大博, 申承民. 原位生长技术制备石墨烯强化铜基复合材料. 物理学报, 2021, 70(8): 086201. doi: 10.7498/aps.70.20201943
    [8] 韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211048
    [9] 李丹阳, 韩旭, 徐光远, 刘筱, 赵枭钧, 李庚伟, 郝会颖, 董敬敬, 刘昊, 邢杰. 低功耗、高灵敏的Bi2O2Se光电导探测器. 物理学报, 2020, 69(24): 248502. doi: 10.7498/aps.69.20201044
    [10] 张宝军, 王芳, 沈稼强, 单欣, 邸希超, 胡凯, 张楷亮. 钴掺杂MoSe2共生长中氢气的作用分析及磁电特性研究. 物理学报, 2020, 69(4): 048101. doi: 10.7498/aps.69.20191302
    [11] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [12] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀. 物理学报, 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [13] 董艳芳, 何大伟, 王永生, 许海腾, 巩哲. 一种简单的化学气相沉积法制备大尺寸单层二硫化钼. 物理学报, 2016, 65(12): 128101. doi: 10.7498/aps.65.128101
    [14] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究. 物理学报, 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [15] 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢. 衬底位置对化学气相沉积法制备的磷掺杂p型ZnO纳米材料形貌和特性的影响. 物理学报, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [16] 兰木, 向钢, 辜刚旭, 张析. 一种晶体表面水平纳米线生长机理的蒙特卡罗模拟研究. 物理学报, 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [17] 胡林华, 戴俊, 刘伟庆, 王孔嘉, 戴松元. 锐钛矿相纳米TiO2晶体生长动力学及生长过程控制. 物理学报, 2009, 58(2): 1115-1119. doi: 10.7498/aps.58.1115
    [18] 郭平生, 陈 婷, 曹章轶, 张哲娟, 陈奕卫, 孙 卓. 场致发射阴极碳纳米管的热化学气相沉积法低温生长. 物理学报, 2007, 56(11): 6705-6711. doi: 10.7498/aps.56.6705
    [19] 刘志文, 谷建峰, 孙成伟, 张庆瑜. 磁控溅射ZnO薄膜的成核机制及表面形貌演化动力学研究. 物理学报, 2006, 55(4): 1965-1973. doi: 10.7498/aps.55.1965
    [20] 陈小华, 吴国涛, 邓福铭, 王健雄, 杨杭生, 王淼, 卢筱楠, 彭景翠, 李文铸. 射频等离子体辅助化学气相沉积方法生长碳纳米洋葱. 物理学报, 2001, 50(7): 1264-1267. doi: 10.7498/aps.50.1264
计量
  • 文章访问数:  18761
  • PDF下载量:  841
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-11
  • 修回日期:  2020-09-06
  • 上网日期:  2021-01-09
  • 刊出日期:  2021-01-20

/

返回文章
返回