搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子尺度构建二维材料的第一性原理计算研究

刘子媛 潘金波 张余洋 杜世萱

引用本文:
Citation:

原子尺度构建二维材料的第一性原理计算研究

刘子媛, 潘金波, 张余洋, 杜世萱

First principles calculation of two-dimensional materials at an atomic scale

Liu Zi-Yuan, Pan Jin-Bo, Zhang Yu-Yang, Du Shi-Xuan
PDF
HTML
导出引用
  • 随着信息技术的不断进步, 核心元器件朝着运行速度更快、能耗更低、尺寸更小的方向快速发展. 尺寸不断减小导致的量子尺寸效应使得材料和器件呈现出许多与传统三维体系不同的新奇物性. 从原子结构出发, 预测低维材料物性、精准合成、表征、调控并制造性能良好的电子器件, 对未来电子器件的发展及相关应用具有至关重要的意义. 理论计算能在保持原子级准确度的情况下高效、低耗地预测材料结构、物性、界面效应等, 是原子制造技术中不可或缺的重要研究手段. 本综述从第一性原理计算角度出发, 回顾了近年来其在二维材料结构探索、物性研究和异质结构造等方面的应用及取得的重要进展, 并展望了在原子尺度制造背景下二维材料的发展前景.
    With the continuous development of information and technology, core components are developing rapidly toward faster running speed, lower energy consumption, and smaller size. Due to the quantum confinement effect, the continuous reduction of size makes materials and devices exhibit many exotic properties that are different from the properties of traditional three-dimensional materials. At an atomic scale level, structure and physical properties, accurately synthesizing, characterizing of materials, property regulation, and manufacturing of electronic devices with good performance all play important roles in developing the electronic devices and relevant applications in the future. Theoretical calculation can efficiently predict the geometric structure, physical properties and interface effects with low consumption but high accuracy. It is an indispensable research means of atomic level manufacturing technology. In this paper, we review the recent progress of two-dimensional materials from the theoretical perspective. This review is divided into three parts, i.e. two-dimensional layered materials, two-dimensional non-layered materials, and two-dimensional heterostructures. Finally, we draw some conclusions and suggest some areas for future investigation.
      通信作者: 潘金波, jbpan@iphy.ac.cn ; 杜世萱, sxdu@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61888102)、国家重点研发计划(批准号: 2016YFA0202300, 2018YFA0305800)和中国科学院战略性先导科技专项(批准号: XDB30000000)资助的课题.
      Corresponding author: Pan Jin-Bo, jbpan@iphy.ac.cn ; Du Shi-Xuan, sxdu@iphy.ac.cn
    • Funds: Project supported by National Nature Science Foundation of China (Grant No. 61888102), the National Key R&D Program of China (Grant Nos. 2016YFA0202300, 2018YFA0305800), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [3]

    Shim J, Bae S H, Kong W, et al. 2018 Science 362 665Google Scholar

    [4]

    Xu M S, Liang T, Shi M M, Chen H Z 2013 Chem. Rev. 113 3766Google Scholar

    [5]

    Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804Google Scholar

    [6]

    Coy-Diaz H, Bertran F O, Avila C C, Rault J, Le F V 2000 Phys. Status Solidi RRL 9 701

    [7]

    Lin C L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N, Kawai M 2012 Appl. Phys. Express 5 045802Google Scholar

    [8]

    Liu H, Gao J, Zhao J 2013 J. Phys. Chem. C 117 10353Google Scholar

    [9]

    Gao N, Li J C, Jiang Q 2014 Chem. Phys. Lett. 592 222Google Scholar

    [10]

    Jamgotchian H, Colignon Y, Hamzaoui N, Ealet B, Hoarau J Y, Aufray B, Bibérian J P 2012 J. Phys. Condens. Matter 24 172001Google Scholar

    [11]

    Qin R, Wang C H, Zhu W J, Zhang Y L 2012 AIP Adv. 2 022159Google Scholar

    [12]

    Amlaki T, Bokdam M, Kelly P J 2016 Phys. Rev. Lett. 116 256805Google Scholar

    [13]

    Zhang L, Bampoulis P, Rudenko A N, Yao Q, Zandvliet H J W 2016 Phys. Rev. Lett. 117 256804

    [14]

    Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C, Jia J F 2015 Nat. Mater. 14 1020Google Scholar

    [15]

    Saxena S, Chaudhary R P, Shukla S 2016 Sci. Rep. 6 31073Google Scholar

    [16]

    Lee Y T, Kwon H, Kim J S, Kim H H, Lee Y J, Lim J A, Song Y W, Yi Y, Choi W K, Hwang D K, Im S 2015 ACS Nano 9 10394Google Scholar

    [17]

    Liu H W, Zou Y Q, Tao L, Ma Z L, Liu D D, Zhou P, Liu H B, Wang S Y 2017 Small 13 1700758Google Scholar

    [18]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [19]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263Google Scholar

    [20]

    Lei J C, Zhang X, Zhou Z 2015 Front. Phys. 10 276Google Scholar

    [21]

    Chen J Y, Huang Q, Huang H Y, Mao L C, Liu M Y, Zhang X Y, Wei Y 2020 Nanoscale 12 3574Google Scholar

    [22]

    Glavin N R, Rao R, Varshney V, Bianco E, Apte A, Roy A, Ringe E, Ajayan P M 2020 Adv. Mater. 32 1904302Google Scholar

    [23]

    Kohn W, Sham L J 1965 Phys. Rev 140 1133Google Scholar

    [24]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566Google Scholar

    [25]

    Burke K, Perdew J P, Ernzerhof M 1997 Int. J. Quantum Chem. 61 287Google Scholar

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [27]

    Kurth S, Perdew J P, Blaha P 2015 Int. J. Quantum Chem. 75 889

    [28]

    Perdew J P, Ernzerhof M, Burke K 1996 J. Chem. Phys. 105 9982Google Scholar

    [29]

    Paier J, Marsman M, Kresse G 2007 J. Chem. Phys. 127 024103Google Scholar

    [30]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [31]

    De Raedt H, Hams A H, Michielsen K, Miyashita S, Saito E 2000 Prog. Theor. Phys. Suppl. 138 489Google Scholar

    [32]

    Zurek E 2016 Reviews in Computational Chemistry (Hoboken: Wiley-Blackwell) pp274−326

    [33]

    Mueller T, Hautier G, Jain A, Ceder G 2011 Chem. Mater. 23 3854Google Scholar

    [34]

    Saal J E, Kirklin S, Aykol M, Meredig B, Wolverton C 2013 JOM 65 1501Google Scholar

    [35]

    Ozolins V, Majzoub E H, Wolverton C 2009 J. Am. Chem. Soc. 131 230Google Scholar

    [36]

    Ortiz C, Eriksson O, Klintenberg M 2009 Comput. Mater. Sci. 44 1042Google Scholar

    [37]

    Greeley J, Jaramillo T F, Bonde J, Chorkendorff I B, Norskov J K 2006 Nat. Mater. 5 909Google Scholar

    [38]

    Yu L P, Zunger A 2012 Phys. Rev. Lett. 108 068701Google Scholar

    [39]

    Choudhary K, Kalish I, Beams R, Tavazza F 2017 Sci. Rep 7 5179Google Scholar

    [40]

    Jiang Y C, Gao J, Wang L 2016 Sci. Rep 6 19624Google Scholar

    [41]

    Augustin J, Eyert V, Boker T, Frentrup W, Dwelk H, Janowitz C, Manzke R 2000 Phys. Rev. B 62 10812Google Scholar

    [42]

    Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, Marzari N 2018 Nat. Nanotechnol. 13 246Google Scholar

    [43]

    Haastrup S, Strange M, Pandey M, et al. 2018 2D Mater. 5 042002

    [44]

    Ashton M, Paul J, Sinnott S B, Hennig R G 2017 Phys. Rev. Lett. 118 106101Google Scholar

    [45]

    Zhou J, Shen L, Costa M D, Persson K A, Ong S P, Huck P, Lu Y H, Ma X Y, Chen Y M, Tang H M, Feng Y P 2019 Sci. Data 6 86Google Scholar

    [46]

    Liu C C, Jiang H, Yao Y 2011 Phys. Rev. B 84 4193

    [47]

    Liu C C, Feng W, Yao Y 2011 Phys. Rev. Lett. 107 076802Google Scholar

    [48]

    Zhang S L, Yan Z, Li Y F, Chen Z F, Zeng H B 2015 Angew. Chem. Int. Ed. 54 3112Google Scholar

    [49]

    Wu X, Shao Y, Liu H, et al. 2017 Adv. Mater. 29 1605407Google Scholar

    [50]

    Shao Y, Liu Z L, Cheng C, Wu X, Liu H, Liu C, Wang J O, Zhu S Y, Wang Y Q, Shi D X, Ibrahim K, Sun J T, Wang Y L, Gao H J 2018 Nano Lett. 18 2133Google Scholar

    [51]

    Gao L, Sun J T, Lu J C, Li H, Qian K, Zhang S, Zhang Y Y, Qian T, Ding H, Lin X, Du S, Gao H J 2018 Adv. Mater. 30 1707055Google Scholar

    [52]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [53]

    Jin C H, Ma E Y, Karni O, Regan E C, Wang F, Heinz T F 2018 Nat. Nanotechnol. 13 994Google Scholar

    [54]

    Nakamura S, Senoh M, Iwasa N, Nagahama S I 1995 Jpn. J. Appl. Phys. 34 L797Google Scholar

    [55]

    Ozcelik V O, Azadani J G, Yang C, Koester S J, Low T 2016 Phys. Rev. B 94 035125Google Scholar

    [56]

    Chen H, Wen X, Zhang J, Wu T, Gong Y, Zhang X, Yuan J, Yi C, Lou J, Ajayan P M 2016 Nat. Commun. 7 12512Google Scholar

    [57]

    Miller B, Steinhoff A, Pano B, Klein J, Jahnke F, Holleitner A, Wurstbauer U 2017 Nano Lett. 17 5229Google Scholar

    [58]

    Kunstmann J, Mooshammer F, Nagler P, Chaves A, Stein F, Paradiso N, Plechinger G, Strunk C, Schüller C, Seifert G 2018 Nat. Phys. 14 801Google Scholar

    [59]

    Merkl P, Mooshammer F, Steinleitner P, Girnghuber A, Lin K Q, Nagler P, Holler J, Schueller C, Lupton J M, Korn T 2019 Nat. Mater. 18 691Google Scholar

    [60]

    Ceballos F, Bellus M Z, Chiu H Y, Zhao H 2014 ACS Nano 8 12717Google Scholar

    [61]

    Hong X P, Kim J, Shi S F, Zhang Y, Jin C H, Sun Y H, Tongay S, Wu J Q, Zhang Y F, Wang F 2014 Nat. Nanotechnol. 9 682Google Scholar

    [62]

    Gong Y J, Lin J H, Wang X L, et al. 2014 Nat. Mater. 13 1135Google Scholar

    [63]

    Yu Y, Hu S, Su L, Huang L, Liu Y, Jin Z, Purezky A A, Geohegan D B, Kim K W, Zhang Y 2015 Nano Lett. 15 486Google Scholar

    [64]

    Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J, Li J B, Sinclair R, Wu J Q 2014 Nano Lett. 14 3185Google Scholar

    [65]

    Yuan J T, Najmaei S, Zhang Z H, Zhang J, Lei S D, Ajayan P M, Yakobson B I, Lou J 2015 ACS Nano 9 555Google Scholar

    [66]

    Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B, Kang J S, Bechtel H A, Desai S B, Kronast F, Unal A A 2014 Proc. Natl. Acad. Sci. U.S.A. 111 6198Google Scholar

    [67]

    Chiu M H, Li M Y, Zhang W, Hsu W T, Chang W H, Terrones M, Terrones H, Li L J 2014 ACS Nano 8 9649Google Scholar

    [68]

    Roy T, Tosun M, Cao X, Fang H, Javey A 2015 ACS Nano 9 2071Google Scholar

    [69]

    Roy T, Tosun M, Kang J S, Sachid A B, Desai S B, Hettick M, Hu C C, Javey A 2014 ACS Nano 8 6259Google Scholar

    [70]

    Cheng R, Li D H, Zhou H L, Wang C, Yin A X, Jiang S, Liu Y, Chen Y, Huang Y, Duan X F 2014 Nano Lett. 14 5590Google Scholar

    [71]

    Furchi M M, Pospischil A, Libisch F, Burgdorfer J, Mueller T 2014 Nano Lett. 14 4785Google Scholar

    [72]

    Lee C H, Lee G H, van der Zande A M, Chen W C, Li Y L, Han M Y, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676Google Scholar

    [73]

    Rivera P, Schaibley J R, Jones A M, et al. 2015 Nat. Commun. 6 6242Google Scholar

    [74]

    Ceballos F, Bellus M Z, Chiu H Y, Zhao H 2015 Nanoscale 7 17523Google Scholar

    [75]

    Hsu W T, Zhao Z A, Li L J, Chen C H, Chiu M H, Chang P S, Chou Y C, Chang W H 2014 ACS Nano 8 2951Google Scholar

    [76]

    Torun E, Miranda H P C, Molina-Sanchez A, Wirtz L 2018 Phys. Rev. B 97 245427Google Scholar

    [77]

    Gillen R, Maultzsch J 2018 Phys. Rev. B 97 165306Google Scholar

  • 图 1  截止到2020年9月以“Two-dimensional materials”为关键词, 从Web of Science网站查询到的近十年的论文发表数

    Fig. 1.  Number of publications on two-dimensional materials per year over the last decade. The data is from ISI Web of Science website by September 2020, and the searching keyword is “two-dimensional materials”.

    图 2  凸包图, 用于判断材料稳态和亚稳态[32]

    Fig. 2.  Convex hull diagram is used to estimate the ground state and metastable state of a material[32].

    图 3  预测的层状材料结构、成分等信息统计 (a) 晶格常数的相对误差; (b) 化学元素组成; (c) 晶体类型; (d) 晶体空间群; (e) 晶系; (f) 元素种类[39]

    Fig. 3.  Classification of predicted layered materials in term of (a) relative error in lattice constants; (b) chemical compositions; (c) crystal prototypes; (d) crystal space groups; (e) crystal systems; (f) number of distinct chemical constituents[39].

    图 4  C2DB数据库中典型的二维材料[43]

    Fig. 4.  Example of two dimensional materials prototypes in the C2DB[43].

    图 5  C2DB数据库的工作流程图[43]

    Fig. 5.  The workflow of producing data of C2DB[43].

    图 6  体相砷的 (a) 俯视图和(b) 顶视图; 翘曲单层砷烯的(c) 俯视图和(d) 侧视图[48]

    Fig. 6.  (a) Side view and (b) top view of the structure of arsenic; (c) top view and (d) side view of a buckled As monolayer (arsenene)[48].

    图 7  层砷烯和层锑烯的声子谱图[48]

    Fig. 7.  Phonon dispersions of arsenene and antimonene[48].

    图 8  Cu(111)上单层CuSe的(a) 高分辨率STM图像, (b) LEED图; Cu(111)上单层CuSe优化原子结构模型的(c) 俯视图, (d) 侧视图[51]

    Fig. 8.  Monolayer CuSe on Cu(111): (a) High-resolution STM image, (b) LEED pattern; optimized atomic structure of monolayer CuSe on Cu(111): (c) top view, (d) side view[51].

    图 9  Cu(111)上单层CuSe (a) 沿KΓK方向测量的ARPES图; (b) 理论计算的能带图[51]

    Fig. 9.  Monolayer CuSe on Cu(111): (a) ARPES intensity plots measured along the KΓK direction; (b) calculated band structure [51]

    图 10  电荷转移示意图 (a), (b) I型异型结; (c), (d) II型异型结[53]

    Fig. 10.  Schematic of allowed charge transfer: (a), (b) Type-I heterostructures; (c), (d) type-II heterostructures[53].

    图 11  异质结周期表[55]

    Fig. 11.  Periodic table of heterostructures[55].

    图 12  (a) MoS2, WS2和MoS2/WS2的吸收光谱图; (b) 布里渊区K点附近的电子能带; (c) 异质结的能带排列[76]

    Fig. 12.  (a) Absorption spectra of MoS2, WS2 and MoS2/WS2; (b) electron band near the K point in the Brillouin zone; (c) band arrangement of heterostructures[76].

    图 13  AA, AA', AB型MoSe2/WSe2异质结的结构及能带[77]

    Fig. 13.  Structure and energy band of AA, AA', AB MoSe2/WSe2 heterostructures[77].

    表 1  数据库统计[42]

    Table 1.  Database statistics[42].

    Unique to the ICSDUnique to the COD Common to bothTotal sum
    Experimental data
    CIF inputs9921287070186282
    Unique 3D structures (set A)345486035413521108423
    Layered 3D structures (set B)3257118011825619
    DFT calculations
    Layered 3D, relaxed (set C)21651758703210
    Binding
    energies (set D)
    17951267412662
    2D easily
    exfoliable (EE)
    663792941036
    2D potentially exfoliable (PE)52434231789
    Total11871135251825
    下载: 导出CSV

    表 2  易剥落的磁性化合物[42]

    Table 2.  Easily exfoliable magnetic compounds[42].

    FerromagneticAntiferromagnetic
    MetalsCo(OH)2, CoO2, ErHCl, ErSeI, EuOBr, EuOI, FeBr2, FeI2,
    FeTe, LaCl, NdOBr, PrOBr, ScCl, SmOBr, SmSI, TbBr,
    TmI2, TmOI, VS2, VSe2, VTe2, YCl, YbOBr, YbOCl
    CoI2, CrSe2, FeO2, FeOCl, FeSe, PrOI, VOBr
    SemiconductorsCdOCl, CoBr2, CoCl2, CrOBr, CrOCl, CrSBr, CuCl2,
    ErSCl, HoSI, LaBr2, NiBr2, NiCl2, NiI2
    CrBr2, CrI2, LaBr, Mn(OH)2, MnBr2, MnCl2,
    MnI2, VBr2, VCl2, VI2, VOBr2, VOCl2
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197Google Scholar

    [3]

    Shim J, Bae S H, Kong W, et al. 2018 Science 362 665Google Scholar

    [4]

    Xu M S, Liang T, Shi M M, Chen H Z 2013 Chem. Rev. 113 3766Google Scholar

    [5]

    Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804Google Scholar

    [6]

    Coy-Diaz H, Bertran F O, Avila C C, Rault J, Le F V 2000 Phys. Status Solidi RRL 9 701

    [7]

    Lin C L, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Takagi N, Kawai M 2012 Appl. Phys. Express 5 045802Google Scholar

    [8]

    Liu H, Gao J, Zhao J 2013 J. Phys. Chem. C 117 10353Google Scholar

    [9]

    Gao N, Li J C, Jiang Q 2014 Chem. Phys. Lett. 592 222Google Scholar

    [10]

    Jamgotchian H, Colignon Y, Hamzaoui N, Ealet B, Hoarau J Y, Aufray B, Bibérian J P 2012 J. Phys. Condens. Matter 24 172001Google Scholar

    [11]

    Qin R, Wang C H, Zhu W J, Zhang Y L 2012 AIP Adv. 2 022159Google Scholar

    [12]

    Amlaki T, Bokdam M, Kelly P J 2016 Phys. Rev. Lett. 116 256805Google Scholar

    [13]

    Zhang L, Bampoulis P, Rudenko A N, Yao Q, Zandvliet H J W 2016 Phys. Rev. Lett. 117 256804

    [14]

    Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C, Jia J F 2015 Nat. Mater. 14 1020Google Scholar

    [15]

    Saxena S, Chaudhary R P, Shukla S 2016 Sci. Rep. 6 31073Google Scholar

    [16]

    Lee Y T, Kwon H, Kim J S, Kim H H, Lee Y J, Lim J A, Song Y W, Yi Y, Choi W K, Hwang D K, Im S 2015 ACS Nano 9 10394Google Scholar

    [17]

    Liu H W, Zou Y Q, Tao L, Ma Z L, Liu D D, Zhou P, Liu H B, Wang S Y 2017 Small 13 1700758Google Scholar

    [18]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [19]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nat. Chem. 5 263Google Scholar

    [20]

    Lei J C, Zhang X, Zhou Z 2015 Front. Phys. 10 276Google Scholar

    [21]

    Chen J Y, Huang Q, Huang H Y, Mao L C, Liu M Y, Zhang X Y, Wei Y 2020 Nanoscale 12 3574Google Scholar

    [22]

    Glavin N R, Rao R, Varshney V, Bianco E, Apte A, Roy A, Ringe E, Ajayan P M 2020 Adv. Mater. 32 1904302Google Scholar

    [23]

    Kohn W, Sham L J 1965 Phys. Rev 140 1133Google Scholar

    [24]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566Google Scholar

    [25]

    Burke K, Perdew J P, Ernzerhof M 1997 Int. J. Quantum Chem. 61 287Google Scholar

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [27]

    Kurth S, Perdew J P, Blaha P 2015 Int. J. Quantum Chem. 75 889

    [28]

    Perdew J P, Ernzerhof M, Burke K 1996 J. Chem. Phys. 105 9982Google Scholar

    [29]

    Paier J, Marsman M, Kresse G 2007 J. Chem. Phys. 127 024103Google Scholar

    [30]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [31]

    De Raedt H, Hams A H, Michielsen K, Miyashita S, Saito E 2000 Prog. Theor. Phys. Suppl. 138 489Google Scholar

    [32]

    Zurek E 2016 Reviews in Computational Chemistry (Hoboken: Wiley-Blackwell) pp274−326

    [33]

    Mueller T, Hautier G, Jain A, Ceder G 2011 Chem. Mater. 23 3854Google Scholar

    [34]

    Saal J E, Kirklin S, Aykol M, Meredig B, Wolverton C 2013 JOM 65 1501Google Scholar

    [35]

    Ozolins V, Majzoub E H, Wolverton C 2009 J. Am. Chem. Soc. 131 230Google Scholar

    [36]

    Ortiz C, Eriksson O, Klintenberg M 2009 Comput. Mater. Sci. 44 1042Google Scholar

    [37]

    Greeley J, Jaramillo T F, Bonde J, Chorkendorff I B, Norskov J K 2006 Nat. Mater. 5 909Google Scholar

    [38]

    Yu L P, Zunger A 2012 Phys. Rev. Lett. 108 068701Google Scholar

    [39]

    Choudhary K, Kalish I, Beams R, Tavazza F 2017 Sci. Rep 7 5179Google Scholar

    [40]

    Jiang Y C, Gao J, Wang L 2016 Sci. Rep 6 19624Google Scholar

    [41]

    Augustin J, Eyert V, Boker T, Frentrup W, Dwelk H, Janowitz C, Manzke R 2000 Phys. Rev. B 62 10812Google Scholar

    [42]

    Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, Marzari N 2018 Nat. Nanotechnol. 13 246Google Scholar

    [43]

    Haastrup S, Strange M, Pandey M, et al. 2018 2D Mater. 5 042002

    [44]

    Ashton M, Paul J, Sinnott S B, Hennig R G 2017 Phys. Rev. Lett. 118 106101Google Scholar

    [45]

    Zhou J, Shen L, Costa M D, Persson K A, Ong S P, Huck P, Lu Y H, Ma X Y, Chen Y M, Tang H M, Feng Y P 2019 Sci. Data 6 86Google Scholar

    [46]

    Liu C C, Jiang H, Yao Y 2011 Phys. Rev. B 84 4193

    [47]

    Liu C C, Feng W, Yao Y 2011 Phys. Rev. Lett. 107 076802Google Scholar

    [48]

    Zhang S L, Yan Z, Li Y F, Chen Z F, Zeng H B 2015 Angew. Chem. Int. Ed. 54 3112Google Scholar

    [49]

    Wu X, Shao Y, Liu H, et al. 2017 Adv. Mater. 29 1605407Google Scholar

    [50]

    Shao Y, Liu Z L, Cheng C, Wu X, Liu H, Liu C, Wang J O, Zhu S Y, Wang Y Q, Shi D X, Ibrahim K, Sun J T, Wang Y L, Gao H J 2018 Nano Lett. 18 2133Google Scholar

    [51]

    Gao L, Sun J T, Lu J C, Li H, Qian K, Zhang S, Zhang Y Y, Qian T, Ding H, Lin X, Du S, Gao H J 2018 Adv. Mater. 30 1707055Google Scholar

    [52]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [53]

    Jin C H, Ma E Y, Karni O, Regan E C, Wang F, Heinz T F 2018 Nat. Nanotechnol. 13 994Google Scholar

    [54]

    Nakamura S, Senoh M, Iwasa N, Nagahama S I 1995 Jpn. J. Appl. Phys. 34 L797Google Scholar

    [55]

    Ozcelik V O, Azadani J G, Yang C, Koester S J, Low T 2016 Phys. Rev. B 94 035125Google Scholar

    [56]

    Chen H, Wen X, Zhang J, Wu T, Gong Y, Zhang X, Yuan J, Yi C, Lou J, Ajayan P M 2016 Nat. Commun. 7 12512Google Scholar

    [57]

    Miller B, Steinhoff A, Pano B, Klein J, Jahnke F, Holleitner A, Wurstbauer U 2017 Nano Lett. 17 5229Google Scholar

    [58]

    Kunstmann J, Mooshammer F, Nagler P, Chaves A, Stein F, Paradiso N, Plechinger G, Strunk C, Schüller C, Seifert G 2018 Nat. Phys. 14 801Google Scholar

    [59]

    Merkl P, Mooshammer F, Steinleitner P, Girnghuber A, Lin K Q, Nagler P, Holler J, Schueller C, Lupton J M, Korn T 2019 Nat. Mater. 18 691Google Scholar

    [60]

    Ceballos F, Bellus M Z, Chiu H Y, Zhao H 2014 ACS Nano 8 12717Google Scholar

    [61]

    Hong X P, Kim J, Shi S F, Zhang Y, Jin C H, Sun Y H, Tongay S, Wu J Q, Zhang Y F, Wang F 2014 Nat. Nanotechnol. 9 682Google Scholar

    [62]

    Gong Y J, Lin J H, Wang X L, et al. 2014 Nat. Mater. 13 1135Google Scholar

    [63]

    Yu Y, Hu S, Su L, Huang L, Liu Y, Jin Z, Purezky A A, Geohegan D B, Kim K W, Zhang Y 2015 Nano Lett. 15 486Google Scholar

    [64]

    Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J, Li J B, Sinclair R, Wu J Q 2014 Nano Lett. 14 3185Google Scholar

    [65]

    Yuan J T, Najmaei S, Zhang Z H, Zhang J, Lei S D, Ajayan P M, Yakobson B I, Lou J 2015 ACS Nano 9 555Google Scholar

    [66]

    Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B, Kang J S, Bechtel H A, Desai S B, Kronast F, Unal A A 2014 Proc. Natl. Acad. Sci. U.S.A. 111 6198Google Scholar

    [67]

    Chiu M H, Li M Y, Zhang W, Hsu W T, Chang W H, Terrones M, Terrones H, Li L J 2014 ACS Nano 8 9649Google Scholar

    [68]

    Roy T, Tosun M, Cao X, Fang H, Javey A 2015 ACS Nano 9 2071Google Scholar

    [69]

    Roy T, Tosun M, Kang J S, Sachid A B, Desai S B, Hettick M, Hu C C, Javey A 2014 ACS Nano 8 6259Google Scholar

    [70]

    Cheng R, Li D H, Zhou H L, Wang C, Yin A X, Jiang S, Liu Y, Chen Y, Huang Y, Duan X F 2014 Nano Lett. 14 5590Google Scholar

    [71]

    Furchi M M, Pospischil A, Libisch F, Burgdorfer J, Mueller T 2014 Nano Lett. 14 4785Google Scholar

    [72]

    Lee C H, Lee G H, van der Zande A M, Chen W C, Li Y L, Han M Y, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9 676Google Scholar

    [73]

    Rivera P, Schaibley J R, Jones A M, et al. 2015 Nat. Commun. 6 6242Google Scholar

    [74]

    Ceballos F, Bellus M Z, Chiu H Y, Zhao H 2015 Nanoscale 7 17523Google Scholar

    [75]

    Hsu W T, Zhao Z A, Li L J, Chen C H, Chiu M H, Chang P S, Chou Y C, Chang W H 2014 ACS Nano 8 2951Google Scholar

    [76]

    Torun E, Miranda H P C, Molina-Sanchez A, Wirtz L 2018 Phys. Rev. B 97 245427Google Scholar

    [77]

    Gillen R, Maultzsch J 2018 Phys. Rev. B 97 165306Google Scholar

  • [1] 李欣悦, 高国翔, 高强, 刘春生, 叶小娟. 二维BeB2作为镁离子电池阳极材料的理论研究. 物理学报, 2024, 73(11): 118201. doi: 10.7498/aps.73.20240134
    [2] 杨海林, 陈琦丽, 顾星, 林宁. 氧原子在氟化石墨烯上扩散的第一性原理计算. 物理学报, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [3] 姜楠, 李奥林, 蘧水仙, 勾思, 欧阳方平. 应变诱导单层NbSi2N4材料磁转变的第一性原理研究. 物理学报, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [4] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理. 物理学报, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [5] 刘天瑶, 刘灿, 刘开辉. 表界面调控米级二维单晶原子制造. 物理学报, 2022, 71(10): 108103. doi: 10.7498/aps.71.20212399
    [6] 陈思钰, 叶小娟, 刘春生. 二维锗醚在钠离子电池方面的理论研究. 物理学报, 2022, 71(22): 228202. doi: 10.7498/aps.71.20220572
    [7] 宋蕊, 王必利, 冯凯, 王黎, 梁丹丹. 二维VOBr2单层的结构畸变及其磁性和铁电性. 物理学报, 2022, 71(3): 037101. doi: 10.7498/aps.71.20211516
    [8] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究. 物理学报, 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [9] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211631
    [10] 陈旭凡, 杨强, 胡小会. 过渡金属原子掺杂对二维CrBr3电磁学性能的调控. 物理学报, 2021, 70(24): 247401. doi: 10.7498/aps.70.20210936
    [11] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [12] 钟虓䶮, 李卓. 原子尺度材料三维结构、磁性及动态演变的透射电子显微学表征. 物理学报, 2021, 70(6): 066801. doi: 10.7498/aps.70.20202072
    [13] 宋蕊. 二维VOBr2单层的结构畸变及其磁性和铁电性研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211516
    [14] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [15] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [16] 刘琪, 管鹏飞. La65X35(X=Ni,Al)非晶合金原子结构的第一性原理研究. 物理学报, 2018, 67(17): 178101. doi: 10.7498/aps.67.20180992
    [17] 史若宇, 王林锋, 高磊, 宋爱生, 刘艳敏, 胡元中, 马天宝. 基于滑动势能面的二维材料原子尺度摩擦行为的量化计算. 物理学报, 2017, 66(19): 196802. doi: 10.7498/aps.66.196802
    [18] 张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈. 5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算. 物理学报, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [19] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究. 物理学报, 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [20] 吕泉, 黄伟其, 王晓允, 孟祥翔. Si(111)面上氮原子薄膜的电子态密度第一性原理计算及分析. 物理学报, 2010, 59(11): 7880-7884. doi: 10.7498/aps.59.7880
计量
  • 文章访问数:  11536
  • PDF下载量:  675
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-03
  • 修回日期:  2020-11-02
  • 上网日期:  2021-01-14
  • 刊出日期:  2021-01-20

/

返回文章
返回