搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算

张召富 耿朝晖 王鹏 胡耀乔 郑宇斐 周铁戈

引用本文:
Citation:

5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算

张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈

Properties of 5d atoms doped boron nitride nanotubes:a first-principles calculation and molecular orbital analysis

Zhang Zhao-Fu, Geng Zhao-Hui, Wang Peng, Hu Yao-Qiao, Zheng Yu-Fei, Zhou Tie-Ge
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理计算方法,研究了当氮化硼纳米管(BNNT)中的B原子和N原子被5d过渡金属原子(Lu,Hf,Ta,W,Re,Os,Ir,Pt,Au,Hg)取代时BNNT的几何结构、电子结构和磁性性质. 作为对比,给出了理想BNNT,B缺陷体系(VB)和N缺陷体系(VN)的相应结果. 研究发现:5d原子取代B(B5d)时体系的局域对称性接近于C3v,但是取代N(N5d)时体系的局域对称性偏离C3v对称性较大;利用相同的5d原子进行掺杂时,B5d的成键能比N5d的成键能大;对于B5d或者N5d,其成键能基本上随着5d原子的原子序数的增大而降低;掺杂体系中出现了明显的杂质能级,给出了态密度等结果;不同掺杂情况的磁矩不同,取代B 时体系的总磁矩呈现出较强的规律性. 利用对称性和分子轨道理论解释了5d原子取代B时杂质能级的产生和磁性的变化规律.
    The geometry, electronic structure and magnetic property of boron nitride nanotube (BNNT), whose boron/nitride atoms are substituted by 5d atoms (B5d or N5d), are investigated by first-principles calculations based on density functional theory. The pure-BNNT and BNNT with boron vacancy (VB) or nitrogen vacancy (VN) are also investigated for comparison. Results show that the local symmetry of B5d system is similar to C3v, however the N5d system exhibits a large geometric deviation from C3v. The total magnetic moments of doped systems are different from each other, and B5d system present a strong regularity. The total density of states is presented, where impurity energy levels exist. The impurity energy levels and total magnetic moment can be explained by the molecular orbital theory under C3v symmetry.
    • 基金项目: 天津市自然科学基金(批准号:13JCQNJC00500)、天津市科技支撑计划(批准号:11ZCKFGX01300)和中央高等学校基本科研基金(批准号:65012031)资助的课题.
    • Funds: Project supported by the Natural Science Foundation of Tianjin, China (Grant No. 13JCQNJC00500), the Key Program of Science and Technology of Tianjin, China (Grant No. 11ZCKFGX01300), and the Fundamental Scientific Research Foundation for the Central Universities of China (Grant No. 65012031).
    [1]

    Blase X, Rubio A, Louie S G, Cohen M L 1994 Europhys. Lett. 28 335

    [2]

    He K H, Zheng G, L T, Chen G, Ji G F 2006 Acta Phys. Sin. 55 2908 (in Chinese) [何开华, 郑广, 吕涛, 陈刚, 姬广富 2006 物理学报 55 2908]

    [3]

    Jin C, Lin F, Suenaga K, Iijima S 2009 Phys. Rev. Lett. 102 195505

    [4]

    Zhang Z F, Zhou T G, Zuo X 2013 Acta Phys. Sin. 62 083102 (in Chinese) [张召富, 周铁戈, 左旭 2013 物理学报 62 083102]

    [5]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [6]

    Neto A C, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [7]

    Balendhran S, Deng J K, Ou Z J, Walia S, Scott J, Tang J S, Wang K L, Field M R, Russo S, Zhuiykov S, Strano M S, Medhekar N, Sriram S, Bhaskaran M, Kalantar-zadeh K 2013 Adv. Mater. 25 109

    [8]

    Iijima S 1991 Nature 354 56

    [9]

    Zhang J D, Yang C, Chen Y T, Zhang B X, Shao W Y 2011 Acta Phys. Sin. 60 106102 (in Chinese) [张建东, 杨春, 陈元涛, 张变霞, 邵文英 2011 物理学报 60 106102]

    [10]

    Wang G C, Yuan J M 2003 Acta Phys. Sin. 52 970 (in Chinese) [王贵春, 袁建民 2003 物理学报 52 970]

    [11]

    Fert A 2008 Rev. Mod. Phys. 80 1517

    [12]

    Prinz G A 1998 Science 282 1660

    [13]

    Dong J C, Li H 2012 J. Phys. Chem. C 116 17259

    [14]

    Dong J, Li H, Li L 2013 NPG Asia Mater. 5 e56

    [15]

    Zhang X, Dong J, Wang Y, Li L, Li H 2013 J. Phys. Chem. C 117 12958

    [16]

    Jiménez I, Jankowski A F, Terminello L J, Sutherland D G J, Carlisle J A, Doll G L, Tong W M, Shuh D K, Himpsel F J 1997 Phys. Rev. B 55 12025

    [17]

    Rubio A, Corkill J L, Cohen M L 1994 Phys. Rev. B 49 5081

    [18]

    Chopra N G, Luyken R J, Cherrey K, Crespi V H, Cohen M L, Louie S G, Zettl A 1995 Science 269 966

    [19]

    Li F, Zhu Z, Zhao M, Xia Y 2008 J. Phys. Chem. C 112 16231

    [20]

    Wu J, Zhang W 2009 Solid State Commun. 149 486

    [21]

    Esrafili M D, Behzadi H 2012 Struct. Chem. 24 573

    [22]

    Zhao J, Tian Y, Dai B Q 2005 J. Chin. Chem. Soc. (Taipei) 52 395

    [23]

    Wu R Q, Liu L, Peng G W, Feng Y P 2005 Appl. Phys. Lett. 86 122510

    [24]

    Shitade A, Katsura H, Kuneš J, Qi X L, Zhang S C, Nagaosa N 2009 Phys. Rev. Lett. 102 256403

    [25]

    Zhang H, Lazo C, Blgel S, Heinze S, Mokrousov Y 2012 Phys. Rev. Lett. 108 056802

    [26]

    Hu J, Alicea J, Wu R, Franz M 2012 Phys. Rev. Lett. 109 266801

    [27]

    Han R S 2010 Physics 39 753 (in Chinese) [韩汝珊 2010 物理 39 753]

    [28]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [29]

    Hohenberg P C, Kohn W 1964 Phys. Rev. 136 B864

    [30]

    Li M, Zhang J Y, Zhang Y, Wang T M 2012 Chin. Phys. B 21 087301

    [31]

    Yildirim A, Koc H, Deligoz E 2012 Chin. Phys. B 21 037101

    [32]

    Doudou B B, Chen J, Vivet A, PoîLane C 2012 J. Nanosci. Nanotechn. 12 8635

    [33]

    Junquera J, Ghosez P 2003 Nature 422 506

    [34]

    Lin Q, Chen Y H, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103 (in Chinese) [林琦, 陈余行, 吴建宝, 孔宗敏 2011 物理学报 60 097103]

    [35]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [36]

    Zhang J, Loh K P, Zheng J, Sullivan M B, Wu P 2007 Phys. Rev. B 75 245301

    [37]

    Baei M T, Kaveh F, Torabi P, Sayyad-Alangi S Z 2011 Eur. J. Chem. 8 609

  • [1]

    Blase X, Rubio A, Louie S G, Cohen M L 1994 Europhys. Lett. 28 335

    [2]

    He K H, Zheng G, L T, Chen G, Ji G F 2006 Acta Phys. Sin. 55 2908 (in Chinese) [何开华, 郑广, 吕涛, 陈刚, 姬广富 2006 物理学报 55 2908]

    [3]

    Jin C, Lin F, Suenaga K, Iijima S 2009 Phys. Rev. Lett. 102 195505

    [4]

    Zhang Z F, Zhou T G, Zuo X 2013 Acta Phys. Sin. 62 083102 (in Chinese) [张召富, 周铁戈, 左旭 2013 物理学报 62 083102]

    [5]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [6]

    Neto A C, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [7]

    Balendhran S, Deng J K, Ou Z J, Walia S, Scott J, Tang J S, Wang K L, Field M R, Russo S, Zhuiykov S, Strano M S, Medhekar N, Sriram S, Bhaskaran M, Kalantar-zadeh K 2013 Adv. Mater. 25 109

    [8]

    Iijima S 1991 Nature 354 56

    [9]

    Zhang J D, Yang C, Chen Y T, Zhang B X, Shao W Y 2011 Acta Phys. Sin. 60 106102 (in Chinese) [张建东, 杨春, 陈元涛, 张变霞, 邵文英 2011 物理学报 60 106102]

    [10]

    Wang G C, Yuan J M 2003 Acta Phys. Sin. 52 970 (in Chinese) [王贵春, 袁建民 2003 物理学报 52 970]

    [11]

    Fert A 2008 Rev. Mod. Phys. 80 1517

    [12]

    Prinz G A 1998 Science 282 1660

    [13]

    Dong J C, Li H 2012 J. Phys. Chem. C 116 17259

    [14]

    Dong J, Li H, Li L 2013 NPG Asia Mater. 5 e56

    [15]

    Zhang X, Dong J, Wang Y, Li L, Li H 2013 J. Phys. Chem. C 117 12958

    [16]

    Jiménez I, Jankowski A F, Terminello L J, Sutherland D G J, Carlisle J A, Doll G L, Tong W M, Shuh D K, Himpsel F J 1997 Phys. Rev. B 55 12025

    [17]

    Rubio A, Corkill J L, Cohen M L 1994 Phys. Rev. B 49 5081

    [18]

    Chopra N G, Luyken R J, Cherrey K, Crespi V H, Cohen M L, Louie S G, Zettl A 1995 Science 269 966

    [19]

    Li F, Zhu Z, Zhao M, Xia Y 2008 J. Phys. Chem. C 112 16231

    [20]

    Wu J, Zhang W 2009 Solid State Commun. 149 486

    [21]

    Esrafili M D, Behzadi H 2012 Struct. Chem. 24 573

    [22]

    Zhao J, Tian Y, Dai B Q 2005 J. Chin. Chem. Soc. (Taipei) 52 395

    [23]

    Wu R Q, Liu L, Peng G W, Feng Y P 2005 Appl. Phys. Lett. 86 122510

    [24]

    Shitade A, Katsura H, Kuneš J, Qi X L, Zhang S C, Nagaosa N 2009 Phys. Rev. Lett. 102 256403

    [25]

    Zhang H, Lazo C, Blgel S, Heinze S, Mokrousov Y 2012 Phys. Rev. Lett. 108 056802

    [26]

    Hu J, Alicea J, Wu R, Franz M 2012 Phys. Rev. Lett. 109 266801

    [27]

    Han R S 2010 Physics 39 753 (in Chinese) [韩汝珊 2010 物理 39 753]

    [28]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [29]

    Hohenberg P C, Kohn W 1964 Phys. Rev. 136 B864

    [30]

    Li M, Zhang J Y, Zhang Y, Wang T M 2012 Chin. Phys. B 21 087301

    [31]

    Yildirim A, Koc H, Deligoz E 2012 Chin. Phys. B 21 037101

    [32]

    Doudou B B, Chen J, Vivet A, PoîLane C 2012 J. Nanosci. Nanotechn. 12 8635

    [33]

    Junquera J, Ghosez P 2003 Nature 422 506

    [34]

    Lin Q, Chen Y H, Wu J B, Kong Z M 2011 Acta Phys. Sin. 60 097103 (in Chinese) [林琦, 陈余行, 吴建宝, 孔宗敏 2011 物理学报 60 097103]

    [35]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [36]

    Zhang J, Loh K P, Zheng J, Sullivan M B, Wu P 2007 Phys. Rev. B 75 245301

    [37]

    Baei M T, Kaveh F, Torabi P, Sayyad-Alangi S Z 2011 Eur. J. Chem. 8 609

  • [1] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理. 物理学报, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [2] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211631
    [3] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究. 物理学报, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [4] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [5] 胡前库, 侯一鸣, 吴庆华, 秦双红, 王李波, 周爱国. 过渡金属硼碳化物TM3B3C和TM4B3C2稳定性和性能的理论计算. 物理学报, 2019, 68(9): 096201. doi: 10.7498/aps.68.20190158
    [6] 张淑亭, 孙志, 赵磊. 石墨烯纳米片大自旋特性第一性原理研究. 物理学报, 2018, 67(18): 187102. doi: 10.7498/aps.67.20180867
    [7] 曾强, 张晨利. 轴压和扭转复合载荷作用下氮化硼纳米管屈曲行为的分子动力学模拟. 物理学报, 2018, 67(24): 246101. doi: 10.7498/aps.67.20180641
    [8] 杨明宇, 杨倩, 张勃, 张旭, 蔡颂, 薛玉龙, 周铁戈. 5d过渡金属原子掺杂六方氮化铝单层的磁性及自旋轨道耦合效应:可能存在的二维长程磁有序. 物理学报, 2017, 66(6): 063102. doi: 10.7498/aps.66.063102
    [9] 王雅静, 李桂霞, 王治华, 宫立基, 王秀芳. Imogolite类纳米管直径单分散性密度泛函理论研究. 物理学报, 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
    [10] 王平, 郭立新, 杨银堂, 张志勇. 铝氮共掺杂氧化锌纳米管电子结构的第一性原理研究. 物理学报, 2013, 62(5): 056105. doi: 10.7498/aps.62.056105
    [11] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算. 物理学报, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [12] 刘越颖, 周铁戈, 路远, 左旭. 第一主族元素(Li,Na,K)和第二主族元素(Be,Mg,Ca) 掺杂二维六方氮化硼单层的第一性原理计算研究. 物理学报, 2012, 61(23): 236301. doi: 10.7498/aps.61.236301
    [13] 李雪梅, 韩会磊, 何光普. LiNH2 的晶格动力学、介电性质和热力学性质第一性原理研究. 物理学报, 2011, 60(8): 087104. doi: 10.7498/aps.60.087104
    [14] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究. 物理学报, 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [15] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [16] 吕泉, 黄伟其, 王晓允, 孟祥翔. Si(111)面上氮原子薄膜的电子态密度第一性原理计算及分析. 物理学报, 2010, 59(11): 7880-7884. doi: 10.7498/aps.59.7880
    [17] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究. 物理学报, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [18] 唐春梅, 朱卫华, 邓开明. 内掺过渡金属富勒烯衍生物Ni@C20H20几何结构、成键和电磁性质的密度泛函计算研究. 物理学报, 2009, 58(7): 4567-4572. doi: 10.7498/aps.58.4567
    [19] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究. 物理学报, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
    [20] 何开华, 郑 广, 吕 涛, 陈 刚, 姬广富. 高压对氮化硼纳米管的几何结构、电子结构和光学性质的影响. 物理学报, 2006, 55(6): 2908-2913. doi: 10.7498/aps.55.2908
计量
  • 文章访问数:  3645
  • PDF下载量:  1039
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-21
  • 修回日期:  2013-09-18
  • 刊出日期:  2013-12-05

5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算

  • 1. 南开大学电子信息与光学工程学院, 天津 300071
    基金项目: 天津市自然科学基金(批准号:13JCQNJC00500)、天津市科技支撑计划(批准号:11ZCKFGX01300)和中央高等学校基本科研基金(批准号:65012031)资助的课题.

摘要: 采用基于密度泛函理论的第一性原理计算方法,研究了当氮化硼纳米管(BNNT)中的B原子和N原子被5d过渡金属原子(Lu,Hf,Ta,W,Re,Os,Ir,Pt,Au,Hg)取代时BNNT的几何结构、电子结构和磁性性质. 作为对比,给出了理想BNNT,B缺陷体系(VB)和N缺陷体系(VN)的相应结果. 研究发现:5d原子取代B(B5d)时体系的局域对称性接近于C3v,但是取代N(N5d)时体系的局域对称性偏离C3v对称性较大;利用相同的5d原子进行掺杂时,B5d的成键能比N5d的成键能大;对于B5d或者N5d,其成键能基本上随着5d原子的原子序数的增大而降低;掺杂体系中出现了明显的杂质能级,给出了态密度等结果;不同掺杂情况的磁矩不同,取代B 时体系的总磁矩呈现出较强的规律性. 利用对称性和分子轨道理论解释了5d原子取代B时杂质能级的产生和磁性的变化规律.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回