搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过渡金属硼碳化物TM3B3C和TM4B3C2稳定性和性能的理论计算

胡前库 侯一鸣 吴庆华 秦双红 王李波 周爱国

引用本文:
Citation:

过渡金属硼碳化物TM3B3C和TM4B3C2稳定性和性能的理论计算

胡前库, 侯一鸣, 吴庆华, 秦双红, 王李波, 周爱国

Theoretical calculations of stabilities and properties of transition metal borocarbides TM3B3C and TM4B3C2 compound

Hu Qian-Ku, Hou Yi-Ming, Wu Qing-Hua, Qin Shuang-Hong, Wang Li-Bo, Zhou Ai-Guo
PDF
HTML
导出引用
  • 在过渡金属轻元素化合物中, 寻找新的硬质或者超硬材料是当前的一个研究热点. 目前寻找范围多集中在过渡金属硼化物、碳化物和氮化物等二元体系, 三元相的研究则相对较少. 本文以已知Nb3B3C和Nb4B3C2结构为模板, 采用元素替代法构建了29种TM3B3C (TM为过渡金属元素)结构和29种TM4B3C2结构, 采用基于密度泛函理论的第一性原理计算方法, 成功找到了热力学、动力学以及力学都稳定的Ta3B3C和Ta4B3C2两种新相. 结构搜索计算确认了这两相为全局能量最优结构. 能带结构和态密度的计算显示这两相均为导体, 导电性主要源于Ta原子的d电子. 这两种新相的硬度大约为26 GPa, 说明Ta3B3C和Ta4B3C2属于高硬度材料, 但不是超硬材料.
    To search new hard or superhard materials in transition-metal light-element compounds is a current research focus. Most of the past researches focused on binary phases such as transition metal borides, carbides and nitrides, while the researches on ternary phases were relatively rare. The single crystals Nb3B3C and Nb4B3C2 were synthesized recently by using Al-Cu alloys as auxiliary metals and their structures were determined by Hillebrechtand Gebhardt. In the present paper, 29 TM3B3C and 29 TM4B3C2 configurations are constructed by TM atoms (TM = Sc to Zn, Y to Cd, Hf to Hg) replacing Nb atoms in the known Nb3B3C and Nb4B3C2 configuration. By calculating the formation energy from first-principles density functional theories, only 13 TM3B3C and 11 TM4B3C2 phases are stable compared with the three elemental substances of TM, boron and carbon. However compared with the most competing phases, only Ta3B3C, Nb3B3C and Nb4B3C2 phases are stable thermodynamically. The metastable Ta4B3C2 phase at 0 K becomes stable when temperature is higher than 250 K. Thus two new phases of Ta3B3C and Ta4B3C2 are uncovered to be stable thermodynamically. Global structure searches conducted by the popular USPEX and CALYPSO softwares prove the Ta3B3C and Ta4B3C2 phases to be the most favorable energetically. By calculating the phonon dispersion curves of the Ta3B3C and Ta4B3C2 phase, no imaginary phonon frequencies are observed in the whole Brillouin zone, which demonstrates the dynamical stability of the Ta3B3C and Ta4B3C2 phase. The calculated elastic constant of the Ta3B3C and Ta4B3C2 phases satisfy the criteria of mechanical stability, showing that the Ta3B3C and Ta4B3C2 phase are stable mechanically. The calculations of band structure and density of state show that the Ta3B3C and Ta4B3C2 phases are both conducting, which mainly arises from the d electrons of Ta atoms. The calculated bulk modulus and shear modulus of the Ta3B3C and Ta4B3C2 phases show their brittle nature. The hardness of Ta3B3C and Ta4B3C2 phase are nearly the same and calculated to be about 26 GPa by Chen’s and Tian’s models, which illuminates that the two phases are hard but not superhard.
      通信作者: 胡前库, hqk@hpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51472075, 51772077)、河南省高校科技创新团队(批准号: 19IRTSTHN027)和河南省自然科学基金(批准号: 182300410228, 182300410275)资助的课题.
      Corresponding author: Hu Qian-Ku, hqk@hpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51472075, 51772077), the Program for Innovative Research Team (in Science and Technology) in the University of Henan Province, China (Grant No. 19IRTSTHN027), and the Natural Science Foundation of Henan Province, China (Grant Nos. 182300410228, 182300410275).
    [1]

    Tian Y J, Xu B, Zhao Z S 2012 Int. J. Refract. Met. Hard Mat. 33 93Google Scholar

    [2]

    包括, 马帅领, 徐春红, 崔田 2017 物理学报 66 036104Google Scholar

    Bao K, Ma S L, Xu C H, Cui T 2017 Acta Phys. Sin. 66 036104Google Scholar

    [3]

    Zhou X F, Sun J, Fan Y X, Chen J, Wang H T, Guo X J, He J L, Tian Y J 2007 Phys. Rev. B 76 100101Google Scholar

    [4]

    Dong H F, Oganov A R, Wang Q G, Wang S N, Wang Z H, Zhang J, Esfahani M M D, Zhou X F, Wu F G, Zhu Q 2016 Sci. Rep. 6 31288Google Scholar

    [5]

    Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L, Liu Z Y 2013 Nature 493 385Google Scholar

    [6]

    Huang Q, Yu D L, Xu B, Hu W T, Ma Y M, Wang Y B, Zhao Z S, Wen B, He J L, Liu Z Y, Tian Y J 2014 Nature 510 250Google Scholar

    [7]

    徐波, 田永君 2017 物理学报 66 036201Google Scholar

    Xu B, Tian Y J 2017 Acta Phys. Sin. 66 036201Google Scholar

    [8]

    Kaner R B, Gilman J J, Tolbert S H 2005 Science 308 1268Google Scholar

    [9]

    Cumberland R W, Weinberger M B, Gilman J J, Clark S M, Tolbert S H, Kaner R B 2005 J. Am. Chem. Soc. 127 7264Google Scholar

    [10]

    Chung H Y, Weinberger M B, Levine J B, Kavner A, Yang J M, Tolbert S H, Kaner R B 2007 Science 316 436Google Scholar

    [11]

    Li Q, Zhou D, Zheng W T, Ma Y M, Chen C F 2013 Phys. Rev. Lett. 110 136403Google Scholar

    [12]

    Zhao C M, Duan Y F, Gao J, Liu W J, Dong H M, Dong H F, Zhang D K, Oganov A R 2018 Phys. Chem. Chem. Phys. 20 24665Google Scholar

    [13]

    Gregoryanz E, Sanloup C, Somayazulu M, Badro J, Fiquet G, Mao H K, Hemley R J 2004 Nat. Mater. 3 294Google Scholar

    [14]

    Young A F, Sanloup C, Gregoryanz E, Scandolo S, Hemley R J, Mao H K 2006 Phys. Rev. Lett. 96 155501Google Scholar

    [15]

    Ivanovskii A L 2012 Prog. Mater. Sci. 57 184Google Scholar

    [16]

    陶强, 马帅领, 崔田, 朱品文 2017 物理学报 66 036103Google Scholar

    Tao Q, Ma S L, Cui T, Zhu P W 2017 Acta Phys. Sin. 66 036103Google Scholar

    [17]

    Hillebrecht H, Gebhardt K 2001 Angewandte Chemie (Int. Ed. in English) 40 1445Google Scholar

    [18]

    Oganov A R, Glass C W 2006 J. Chem. Phys. 124 244704Google Scholar

    [19]

    Wang Y C, Lü J A, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116Google Scholar

    [20]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [21]

    Le Page Y, Saxe P 2002 Phys. Rev. B 65 104104Google Scholar

    [22]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [23]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar

    [24]

    Togo A, Chaput L, Tanaka I, Hug G 2010 Phys. Rev. B 81 174301Google Scholar

    [25]

    Mouhat F, Coudert F X 2014 Phys. Rev. B 90 224104Google Scholar

    [26]

    Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J 2007 Phys. Rev. B 76 054115Google Scholar

    [27]

    Pugh S F 1954 Philos. Mag. 45 823Google Scholar

    [28]

    Chen X Q, Niu H Y, Li D Z, Li Y Y 2011 Intermetallics 19 1275Google Scholar

  • 图 1  (a), (b) Nb3B3C和(c), (d) Nb4B3C2的晶体结构(棕球, Nb原子; 蓝球, B原子; 粉球, C原子; Nb6B三棱柱和Nb6C八面体分别用绿色和褐色表示)

    Fig. 1.  Crystal structures of the (a), (b) Nb3B3C and (c), (d) Nb4B3C2. The light brown, blue and pink spheres represent Nb, B and C atoms, respectively. The Nb6B trigonal prisms and Nb6C octahedrons are painted green and dark brown.

    图 2  不同温度下Ta3B3C, Ta4B3C2相分别和其相应最稳定竞争组合相的自由能之差

    Fig. 2.  Energy differences of Ta3B3C and Ta4B3C2 phases with respect to their most competing phases as a function of temperature.

    图 3  (a) Ta3B3C和(b) Ta4B3C2结构的声子色散曲线

    Fig. 3.  Phonon dispersion curves of (a) Ta3B3C and (b) Ta4B3C2 structures.

    图 4  (a), (c) Ta3B3C和(b), (d) Ta4B3C2结构的能带结构和态密度图

    Fig. 4.  Band structures and density of states of (a), (c) Ta3B3C and (b), (d) Ta4B3C2 structures.

    表 1  Nb3B3C, Nb4B3C2, Ta3B3C和Ta4B3C2晶体的结构参数

    Table 1.  Structural parameters of the Nb3B3C, Nb4B3C2, Ta3B3C and Ta4B3C2 configurations.

    模型 晶系和空间群 晶格参数(Å, degree) 原子坐标
    Nb3B3C Orthorhombic Cmcm a = 3.284, 3.265a, b = 28.877, 28.710a, c = 3.144, 3.129a, α = β = γ = 90 Nb1 (4c) (0, 0.2128, 0.25), Nb2 (4c) (0, 0.3620, 0.25), Nb3 (4c) (0, 0.4532, 0.25), B1 (4c) (0, 0.1120, 0.25), B2 (4c) (0, 0.0155, 0.25), B3 (4c) (0, 0.0790, 0.25), C (4c) (0, 0.2878, 0.25)
    Nb4B3C2 Orthorhombic Cmcm a = 3.257, 3.229a, b = 37.874, 37.544a, c = 3.153, 3.133a, α = β = γ = 90 Nb1 (4c) (0, 0.1621, 0.75), Nb2 (4c) (0, 0.2805, 0.75), Nb3 (4c) (0, 0.3946, 0.75), Nb4 (4c) (0, 0.4642, 0.25), B1 (4c) (0, 0.0854, 0.75), B2 (4c) (0, 0.0118, 0.25), B3 (4c) (0, 0.0602, 0.25), C1 (4c) (0, 0.2202, 0.75), C2 (4c) (0, 0.3383, 0.75)
    Ta3B3C Orthorhombic Cmcm a = 3.267, b = 28.688, c = 3.133, α = β = γ = 90 Ta1 (4c) (0, 0.2121, 0.25), Ta2 (4c) (0, 0.3619, 0.25), Ta3 (4c) (0, 0.4531, 0.25), B1 (4c) (0, 0.1130, 0.25), B2 (4c) (0, 0.0155, 0.25), B3 (4c) (0, 0.0791, 0.25), C (4c) (0, 0.2874, 0.25)
    Ta4B3C2 Orthorhombic Cmcm a = 3.243, b = 37.609, c = 3.141, α = β = γ = 90 Ta1 (4c) (0, 0.1615, 0.75), Nb2 (4c) (0, 0.2806, 0.75), Nb3 (4c) (0, 0.3945, 0.75), Nb4 (4c) (0, 0.4641, 0.25), B1 (4c) (0, 0.0861, 0.75), B2 (4c) (0, 0.0118, 0.25), B3 (4c) (0, 0.0602, 0.25), C1 (4c) (0, 0.2202, 0.75), C2 (4c) (0, 0.3380, 0.75)
    注: a文献[17]中的实验值.
    下载: 导出CSV

    表 2  不同成分TM3B3C和TM4B3C2的形成焓(eV/atom)

    Table 2.  Calculated formation enthalpies of different TM3B3C and TM4B3C2 phases (eV/atom).

    TM TM3B3C TM4B3C2
    $\Delta {H_{{\rm{elements}}}}$ $\Delta {H_{{\rm{comp}}}}$ 最稳定竞争组合 $\Delta {H_{{\rm{elements}}}}$ $\Delta {H_{{\rm{comp}}}}$ 最稳定竞争组合
    Sc –0.637 0.071 6ScB2 + Sc4C3 + Sc2C = 4Sc3B3C –0.520 0.144 10ScB2 + 4Sc4C3 + Sc2BC2 = 7Sc4B3C2
    Ti –0.896 0.019 9TiB2 + TiC + Ti8C5 = 6Ti3B3C –0.863 0.018 9TiB2 + 7TiC + Ti8C5 = 6Ti4B3C2
    V –0.687 0.101 3VB + C = V3B3C –0.628 0.092 18VB + 7C + V6C5 = 6V4B3C2
    Cr –0.294 0.159 3CrB + C = Cr3B3C –0.194 0.178 9CrB + 4C + Cr3C2 = 3Cr4B3C2
    Mn –0.100 0.195 3MnB + C = Mn3B3C 0.024
    Fe 0.002 0.139
    Co 0.094 0.255
    Ni 0.296 0.456
    Cu 0.738 0.959
    Zn 0.713 0.929
    Y –0.385 0.089 9YB2 + 5Y2C + Y2B3C2 = 7Y3B3C –0.283 0.160 6YB2 + 8Y2C + 3Y2B3C2 = 7Y4B3C2
    Zr –0.851 0.019 3ZrB2 + 2ZrC + Zr = 2Zr3B3C –0.838 0.020 3ZrB2 + 4ZrC + Zr = 2Zr4B3C2
    Nb –0.698 –0.023 3NbB + C = Nb3B3C –0.661 –0.002 C + 6Nb3B3C + Nb6C5 = 6Nb4B3C2
    Mo –0.257 0.175 3MoB + C = Mo3B3C –0.155 0.202 3MoB + C + MoC = Mo4B3C2
    Tc –0.005 0.326 12TcB2 + 11C + 3Tc7B3 = 11Tc3B3C 0.138
    Ru 0.211 –0.369
    Rh 0.230 –0.406
    Pd 0.552 0.744
    Ag 1.027 1.295
    Cd 0.846 1.112
    Hf –0.920 0.016 3HfB2 + 2HfC + Hf = 2Hf3B3C –0.922 0.018 3HfB2 + 4HfC + Hf = 2Hf4B3C2
    Ta –0.704 0.003 3Ta3B4 + C + 3TaC = 4Ta3B3C –0.691 –0.010 3Ta3B4 + C + 7TaC = 4Ta4B3C2
    W –0.094 0.227 3WB + C = W3B3C –0.007 0.273 3WB + C + WC = W4B3C2
    Re 0.281 0.425
    Os 0.590 0.755
    Ir 0.604 0.758
    Pt 0.708 0.855
    Au 1.096 1.310
    Hg 1.186 1.333
    下载: 导出CSV

    表 3  Ta3B3C, Ta4B3C2结构的弹性常数、体弹模量、剪切模量和维氏硬度 (GPa)

    Table 3.  Calculated elastic constants Cij, bulk modulus B, shear modulus G, Vickers hardness HV of Ta3B3C and Ta4B3C2 configurations (GPa).

    结构 弹性常数 力学性能a 硬度
    C11 C22 C33 C44 C55 C66 C12 C13 C23 B G B/G HChen HTian
    Ta3B3C 569.6 514.4 563.5 194.1 180.0 261.8 187.1 147.3 173.9 295.9 200.8 1.47 25.3 25.3
    Ta4B3C2 581.1 535.3 602.1 197.3 185.1 275.8 200.3 146.0 170.2 305.7 209.0 1.46 26.2 26.2
    Nb3B3C 544.3 479.8 522.8 181.5 171.9 245.3 170.9 132.9 162.2 275.3 189.7 1.45 24.8 24.7
    Nb4B3C2 551.5 499.2 548.5 184.0 175.1 257.1 183.2 132.7 157.8 282.9 195.8 1.44 25.5 25.4
    TaB2 302 200 1.51 24.4 24.5
    NbB2 287 195 1.47 24.8 24.8
    TaC 324 215 1.51 25.6 25.9
    NbC 239 161 1.48 21.6 21.4
    SiC 213 187 1.14 33.6 32.2
    Al2O3 232 147 1.58 18.7 18.7
    TiN 259 180 1.44 24.3 24.0
    注: a二元相力学性能数据来自Materials Project网站.
    下载: 导出CSV
  • [1]

    Tian Y J, Xu B, Zhao Z S 2012 Int. J. Refract. Met. Hard Mat. 33 93Google Scholar

    [2]

    包括, 马帅领, 徐春红, 崔田 2017 物理学报 66 036104Google Scholar

    Bao K, Ma S L, Xu C H, Cui T 2017 Acta Phys. Sin. 66 036104Google Scholar

    [3]

    Zhou X F, Sun J, Fan Y X, Chen J, Wang H T, Guo X J, He J L, Tian Y J 2007 Phys. Rev. B 76 100101Google Scholar

    [4]

    Dong H F, Oganov A R, Wang Q G, Wang S N, Wang Z H, Zhang J, Esfahani M M D, Zhou X F, Wu F G, Zhu Q 2016 Sci. Rep. 6 31288Google Scholar

    [5]

    Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L, Liu Z Y 2013 Nature 493 385Google Scholar

    [6]

    Huang Q, Yu D L, Xu B, Hu W T, Ma Y M, Wang Y B, Zhao Z S, Wen B, He J L, Liu Z Y, Tian Y J 2014 Nature 510 250Google Scholar

    [7]

    徐波, 田永君 2017 物理学报 66 036201Google Scholar

    Xu B, Tian Y J 2017 Acta Phys. Sin. 66 036201Google Scholar

    [8]

    Kaner R B, Gilman J J, Tolbert S H 2005 Science 308 1268Google Scholar

    [9]

    Cumberland R W, Weinberger M B, Gilman J J, Clark S M, Tolbert S H, Kaner R B 2005 J. Am. Chem. Soc. 127 7264Google Scholar

    [10]

    Chung H Y, Weinberger M B, Levine J B, Kavner A, Yang J M, Tolbert S H, Kaner R B 2007 Science 316 436Google Scholar

    [11]

    Li Q, Zhou D, Zheng W T, Ma Y M, Chen C F 2013 Phys. Rev. Lett. 110 136403Google Scholar

    [12]

    Zhao C M, Duan Y F, Gao J, Liu W J, Dong H M, Dong H F, Zhang D K, Oganov A R 2018 Phys. Chem. Chem. Phys. 20 24665Google Scholar

    [13]

    Gregoryanz E, Sanloup C, Somayazulu M, Badro J, Fiquet G, Mao H K, Hemley R J 2004 Nat. Mater. 3 294Google Scholar

    [14]

    Young A F, Sanloup C, Gregoryanz E, Scandolo S, Hemley R J, Mao H K 2006 Phys. Rev. Lett. 96 155501Google Scholar

    [15]

    Ivanovskii A L 2012 Prog. Mater. Sci. 57 184Google Scholar

    [16]

    陶强, 马帅领, 崔田, 朱品文 2017 物理学报 66 036103Google Scholar

    Tao Q, Ma S L, Cui T, Zhu P W 2017 Acta Phys. Sin. 66 036103Google Scholar

    [17]

    Hillebrecht H, Gebhardt K 2001 Angewandte Chemie (Int. Ed. in English) 40 1445Google Scholar

    [18]

    Oganov A R, Glass C W 2006 J. Chem. Phys. 124 244704Google Scholar

    [19]

    Wang Y C, Lü J A, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116Google Scholar

    [20]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [21]

    Le Page Y, Saxe P 2002 Phys. Rev. B 65 104104Google Scholar

    [22]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [23]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar

    [24]

    Togo A, Chaput L, Tanaka I, Hug G 2010 Phys. Rev. B 81 174301Google Scholar

    [25]

    Mouhat F, Coudert F X 2014 Phys. Rev. B 90 224104Google Scholar

    [26]

    Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J, Meng J 2007 Phys. Rev. B 76 054115Google Scholar

    [27]

    Pugh S F 1954 Philos. Mag. 45 823Google Scholar

    [28]

    Chen X Q, Niu H Y, Li D Z, Li Y Y 2011 Intermetallics 19 1275Google Scholar

  • [1] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 物理学报, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [2] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料的预测. 物理学报, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [3] 宋睿, 刘雪梅, 王海滨, 吕皓, 宋晓艳. 机器学习辅助的WC-Co硬质合金硬度预测. 物理学报, 2024, 73(12): 126201. doi: 10.7498/aps.73.20240284
    [4] 周金萍, 李春梅, 姜博, 黄仁忠. Co和Ni过量影响Co2NiGa合金晶体结构及相稳定性的第一性原理研究. 物理学报, 2023, 72(15): 156301. doi: 10.7498/aps.72.20230626
    [5] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [6] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究. 物理学报, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [7] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [8] 胡前库, 秦双红, 吴庆华, 李丹丹, 张斌, 袁文凤, 王李波, 周爱国. 三元Nb系和Ta系硼碳化物稳定性和物理性能的第一性原理研究. 物理学报, 2020, 69(11): 116201. doi: 10.7498/aps.69.20200234
    [9] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [10] 王丹, 邹娟, 唐黎明. 氢化二维过渡金属硫化物的稳定性和电子特性: 第一性原理研究. 物理学报, 2019, 68(3): 037102. doi: 10.7498/aps.68.20181597
    [11] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [12] 陈献, 程梅娟, 吴顺情, 朱梓忠. 石墨炔衍生物结构稳定性和电子结构的第一性原理研究. 物理学报, 2017, 66(10): 107102. doi: 10.7498/aps.66.107102
    [13] 白静, 王晓书, 俎启睿, 赵骧, 左良. Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究. 物理学报, 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [14] 陈海军, 李高清, 薛具奎. 变分法研究一维Bose-Fermi系统的稳定性. 物理学报, 2011, 60(4): 040304. doi: 10.7498/aps.60.040304.1
    [15] 屈年瑞, 高发明. 固态二氧化碳电子结构及性能的理论研究. 物理学报, 2011, 60(6): 067102. doi: 10.7498/aps.60.067102
    [16] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究. 物理学报, 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [17] 王作雷. 一类简化Lang-Kobayashi方程的Hopf分岔及其稳定性. 物理学报, 2008, 57(8): 4771-4776. doi: 10.7498/aps.57.4771
    [18] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究. 物理学报, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
    [19] 王 岩, 韩晓艳, 任慧志, 侯国付, 郭群超, 朱 锋, 张德坤, 孙 建, 薛俊明, 赵 颖, 耿新华. 相变域硅薄膜材料的光稳定性. 物理学报, 2006, 55(2): 947-951. doi: 10.7498/aps.55.947
    [20] 张 凯, 冯 俊. 相对论Birkhoff系统的对称性与稳定性. 物理学报, 2005, 54(7): 2985-2989. doi: 10.7498/aps.54.2985
计量
  • 文章访问数:  9983
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-27
  • 修回日期:  2019-03-05
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-05

/

返回文章
返回